| Step | Hyp | Ref | Expression | 
						
							| 1 |  | perfectlem.1 | ⊢ ( 𝜑  →  𝐴  ∈  ℕ ) | 
						
							| 2 |  | perfectlem.2 | ⊢ ( 𝜑  →  𝐵  ∈  ℕ ) | 
						
							| 3 |  | perfectlem.3 | ⊢ ( 𝜑  →  ¬  2  ∥  𝐵 ) | 
						
							| 4 |  | perfectlem.4 | ⊢ ( 𝜑  →  ( 1  σ  ( ( 2 ↑ 𝐴 )  ·  𝐵 ) )  =  ( 2  ·  ( ( 2 ↑ 𝐴 )  ·  𝐵 ) ) ) | 
						
							| 5 |  | 2nn | ⊢ 2  ∈  ℕ | 
						
							| 6 | 1 | nnnn0d | ⊢ ( 𝜑  →  𝐴  ∈  ℕ0 ) | 
						
							| 7 |  | peano2nn0 | ⊢ ( 𝐴  ∈  ℕ0  →  ( 𝐴  +  1 )  ∈  ℕ0 ) | 
						
							| 8 | 6 7 | syl | ⊢ ( 𝜑  →  ( 𝐴  +  1 )  ∈  ℕ0 ) | 
						
							| 9 |  | nnexpcl | ⊢ ( ( 2  ∈  ℕ  ∧  ( 𝐴  +  1 )  ∈  ℕ0 )  →  ( 2 ↑ ( 𝐴  +  1 ) )  ∈  ℕ ) | 
						
							| 10 | 5 8 9 | sylancr | ⊢ ( 𝜑  →  ( 2 ↑ ( 𝐴  +  1 ) )  ∈  ℕ ) | 
						
							| 11 |  | 2re | ⊢ 2  ∈  ℝ | 
						
							| 12 | 1 | peano2nnd | ⊢ ( 𝜑  →  ( 𝐴  +  1 )  ∈  ℕ ) | 
						
							| 13 |  | 1lt2 | ⊢ 1  <  2 | 
						
							| 14 | 13 | a1i | ⊢ ( 𝜑  →  1  <  2 ) | 
						
							| 15 |  | expgt1 | ⊢ ( ( 2  ∈  ℝ  ∧  ( 𝐴  +  1 )  ∈  ℕ  ∧  1  <  2 )  →  1  <  ( 2 ↑ ( 𝐴  +  1 ) ) ) | 
						
							| 16 | 11 12 14 15 | mp3an2i | ⊢ ( 𝜑  →  1  <  ( 2 ↑ ( 𝐴  +  1 ) ) ) | 
						
							| 17 |  | 1nn | ⊢ 1  ∈  ℕ | 
						
							| 18 |  | nnsub | ⊢ ( ( 1  ∈  ℕ  ∧  ( 2 ↑ ( 𝐴  +  1 ) )  ∈  ℕ )  →  ( 1  <  ( 2 ↑ ( 𝐴  +  1 ) )  ↔  ( ( 2 ↑ ( 𝐴  +  1 ) )  −  1 )  ∈  ℕ ) ) | 
						
							| 19 | 17 10 18 | sylancr | ⊢ ( 𝜑  →  ( 1  <  ( 2 ↑ ( 𝐴  +  1 ) )  ↔  ( ( 2 ↑ ( 𝐴  +  1 ) )  −  1 )  ∈  ℕ ) ) | 
						
							| 20 | 16 19 | mpbid | ⊢ ( 𝜑  →  ( ( 2 ↑ ( 𝐴  +  1 ) )  −  1 )  ∈  ℕ ) | 
						
							| 21 | 10 | nnzd | ⊢ ( 𝜑  →  ( 2 ↑ ( 𝐴  +  1 ) )  ∈  ℤ ) | 
						
							| 22 |  | peano2zm | ⊢ ( ( 2 ↑ ( 𝐴  +  1 ) )  ∈  ℤ  →  ( ( 2 ↑ ( 𝐴  +  1 ) )  −  1 )  ∈  ℤ ) | 
						
							| 23 | 21 22 | syl | ⊢ ( 𝜑  →  ( ( 2 ↑ ( 𝐴  +  1 ) )  −  1 )  ∈  ℤ ) | 
						
							| 24 |  | 1nn0 | ⊢ 1  ∈  ℕ0 | 
						
							| 25 |  | sgmnncl | ⊢ ( ( 1  ∈  ℕ0  ∧  𝐵  ∈  ℕ )  →  ( 1  σ  𝐵 )  ∈  ℕ ) | 
						
							| 26 | 24 2 25 | sylancr | ⊢ ( 𝜑  →  ( 1  σ  𝐵 )  ∈  ℕ ) | 
						
							| 27 | 26 | nnzd | ⊢ ( 𝜑  →  ( 1  σ  𝐵 )  ∈  ℤ ) | 
						
							| 28 |  | dvdsmul1 | ⊢ ( ( ( ( 2 ↑ ( 𝐴  +  1 ) )  −  1 )  ∈  ℤ  ∧  ( 1  σ  𝐵 )  ∈  ℤ )  →  ( ( 2 ↑ ( 𝐴  +  1 ) )  −  1 )  ∥  ( ( ( 2 ↑ ( 𝐴  +  1 ) )  −  1 )  ·  ( 1  σ  𝐵 ) ) ) | 
						
							| 29 | 23 27 28 | syl2anc | ⊢ ( 𝜑  →  ( ( 2 ↑ ( 𝐴  +  1 ) )  −  1 )  ∥  ( ( ( 2 ↑ ( 𝐴  +  1 ) )  −  1 )  ·  ( 1  σ  𝐵 ) ) ) | 
						
							| 30 |  | 2cn | ⊢ 2  ∈  ℂ | 
						
							| 31 |  | expp1 | ⊢ ( ( 2  ∈  ℂ  ∧  𝐴  ∈  ℕ0 )  →  ( 2 ↑ ( 𝐴  +  1 ) )  =  ( ( 2 ↑ 𝐴 )  ·  2 ) ) | 
						
							| 32 | 30 6 31 | sylancr | ⊢ ( 𝜑  →  ( 2 ↑ ( 𝐴  +  1 ) )  =  ( ( 2 ↑ 𝐴 )  ·  2 ) ) | 
						
							| 33 |  | nnexpcl | ⊢ ( ( 2  ∈  ℕ  ∧  𝐴  ∈  ℕ0 )  →  ( 2 ↑ 𝐴 )  ∈  ℕ ) | 
						
							| 34 | 5 6 33 | sylancr | ⊢ ( 𝜑  →  ( 2 ↑ 𝐴 )  ∈  ℕ ) | 
						
							| 35 | 34 | nncnd | ⊢ ( 𝜑  →  ( 2 ↑ 𝐴 )  ∈  ℂ ) | 
						
							| 36 |  | mulcom | ⊢ ( ( ( 2 ↑ 𝐴 )  ∈  ℂ  ∧  2  ∈  ℂ )  →  ( ( 2 ↑ 𝐴 )  ·  2 )  =  ( 2  ·  ( 2 ↑ 𝐴 ) ) ) | 
						
							| 37 | 35 30 36 | sylancl | ⊢ ( 𝜑  →  ( ( 2 ↑ 𝐴 )  ·  2 )  =  ( 2  ·  ( 2 ↑ 𝐴 ) ) ) | 
						
							| 38 | 32 37 | eqtrd | ⊢ ( 𝜑  →  ( 2 ↑ ( 𝐴  +  1 ) )  =  ( 2  ·  ( 2 ↑ 𝐴 ) ) ) | 
						
							| 39 | 38 | oveq1d | ⊢ ( 𝜑  →  ( ( 2 ↑ ( 𝐴  +  1 ) )  ·  𝐵 )  =  ( ( 2  ·  ( 2 ↑ 𝐴 ) )  ·  𝐵 ) ) | 
						
							| 40 | 30 | a1i | ⊢ ( 𝜑  →  2  ∈  ℂ ) | 
						
							| 41 | 2 | nncnd | ⊢ ( 𝜑  →  𝐵  ∈  ℂ ) | 
						
							| 42 | 40 35 41 | mulassd | ⊢ ( 𝜑  →  ( ( 2  ·  ( 2 ↑ 𝐴 ) )  ·  𝐵 )  =  ( 2  ·  ( ( 2 ↑ 𝐴 )  ·  𝐵 ) ) ) | 
						
							| 43 |  | ax-1cn | ⊢ 1  ∈  ℂ | 
						
							| 44 | 43 | a1i | ⊢ ( 𝜑  →  1  ∈  ℂ ) | 
						
							| 45 |  | 2prm | ⊢ 2  ∈  ℙ | 
						
							| 46 | 2 | nnzd | ⊢ ( 𝜑  →  𝐵  ∈  ℤ ) | 
						
							| 47 |  | coprm | ⊢ ( ( 2  ∈  ℙ  ∧  𝐵  ∈  ℤ )  →  ( ¬  2  ∥  𝐵  ↔  ( 2  gcd  𝐵 )  =  1 ) ) | 
						
							| 48 | 45 46 47 | sylancr | ⊢ ( 𝜑  →  ( ¬  2  ∥  𝐵  ↔  ( 2  gcd  𝐵 )  =  1 ) ) | 
						
							| 49 | 3 48 | mpbid | ⊢ ( 𝜑  →  ( 2  gcd  𝐵 )  =  1 ) | 
						
							| 50 |  | 2z | ⊢ 2  ∈  ℤ | 
						
							| 51 |  | rpexp1i | ⊢ ( ( 2  ∈  ℤ  ∧  𝐵  ∈  ℤ  ∧  𝐴  ∈  ℕ0 )  →  ( ( 2  gcd  𝐵 )  =  1  →  ( ( 2 ↑ 𝐴 )  gcd  𝐵 )  =  1 ) ) | 
						
							| 52 | 50 46 6 51 | mp3an2i | ⊢ ( 𝜑  →  ( ( 2  gcd  𝐵 )  =  1  →  ( ( 2 ↑ 𝐴 )  gcd  𝐵 )  =  1 ) ) | 
						
							| 53 | 49 52 | mpd | ⊢ ( 𝜑  →  ( ( 2 ↑ 𝐴 )  gcd  𝐵 )  =  1 ) | 
						
							| 54 |  | sgmmul | ⊢ ( ( 1  ∈  ℂ  ∧  ( ( 2 ↑ 𝐴 )  ∈  ℕ  ∧  𝐵  ∈  ℕ  ∧  ( ( 2 ↑ 𝐴 )  gcd  𝐵 )  =  1 ) )  →  ( 1  σ  ( ( 2 ↑ 𝐴 )  ·  𝐵 ) )  =  ( ( 1  σ  ( 2 ↑ 𝐴 ) )  ·  ( 1  σ  𝐵 ) ) ) | 
						
							| 55 | 44 34 2 53 54 | syl13anc | ⊢ ( 𝜑  →  ( 1  σ  ( ( 2 ↑ 𝐴 )  ·  𝐵 ) )  =  ( ( 1  σ  ( 2 ↑ 𝐴 ) )  ·  ( 1  σ  𝐵 ) ) ) | 
						
							| 56 | 1 | nncnd | ⊢ ( 𝜑  →  𝐴  ∈  ℂ ) | 
						
							| 57 |  | pncan | ⊢ ( ( 𝐴  ∈  ℂ  ∧  1  ∈  ℂ )  →  ( ( 𝐴  +  1 )  −  1 )  =  𝐴 ) | 
						
							| 58 | 56 43 57 | sylancl | ⊢ ( 𝜑  →  ( ( 𝐴  +  1 )  −  1 )  =  𝐴 ) | 
						
							| 59 | 58 | oveq2d | ⊢ ( 𝜑  →  ( 2 ↑ ( ( 𝐴  +  1 )  −  1 ) )  =  ( 2 ↑ 𝐴 ) ) | 
						
							| 60 | 59 | oveq2d | ⊢ ( 𝜑  →  ( 1  σ  ( 2 ↑ ( ( 𝐴  +  1 )  −  1 ) ) )  =  ( 1  σ  ( 2 ↑ 𝐴 ) ) ) | 
						
							| 61 |  | 1sgm2ppw | ⊢ ( ( 𝐴  +  1 )  ∈  ℕ  →  ( 1  σ  ( 2 ↑ ( ( 𝐴  +  1 )  −  1 ) ) )  =  ( ( 2 ↑ ( 𝐴  +  1 ) )  −  1 ) ) | 
						
							| 62 | 12 61 | syl | ⊢ ( 𝜑  →  ( 1  σ  ( 2 ↑ ( ( 𝐴  +  1 )  −  1 ) ) )  =  ( ( 2 ↑ ( 𝐴  +  1 ) )  −  1 ) ) | 
						
							| 63 | 60 62 | eqtr3d | ⊢ ( 𝜑  →  ( 1  σ  ( 2 ↑ 𝐴 ) )  =  ( ( 2 ↑ ( 𝐴  +  1 ) )  −  1 ) ) | 
						
							| 64 | 63 | oveq1d | ⊢ ( 𝜑  →  ( ( 1  σ  ( 2 ↑ 𝐴 ) )  ·  ( 1  σ  𝐵 ) )  =  ( ( ( 2 ↑ ( 𝐴  +  1 ) )  −  1 )  ·  ( 1  σ  𝐵 ) ) ) | 
						
							| 65 | 55 4 64 | 3eqtr3d | ⊢ ( 𝜑  →  ( 2  ·  ( ( 2 ↑ 𝐴 )  ·  𝐵 ) )  =  ( ( ( 2 ↑ ( 𝐴  +  1 ) )  −  1 )  ·  ( 1  σ  𝐵 ) ) ) | 
						
							| 66 | 39 42 65 | 3eqtrd | ⊢ ( 𝜑  →  ( ( 2 ↑ ( 𝐴  +  1 ) )  ·  𝐵 )  =  ( ( ( 2 ↑ ( 𝐴  +  1 ) )  −  1 )  ·  ( 1  σ  𝐵 ) ) ) | 
						
							| 67 | 29 66 | breqtrrd | ⊢ ( 𝜑  →  ( ( 2 ↑ ( 𝐴  +  1 ) )  −  1 )  ∥  ( ( 2 ↑ ( 𝐴  +  1 ) )  ·  𝐵 ) ) | 
						
							| 68 | 23 21 | gcdcomd | ⊢ ( 𝜑  →  ( ( ( 2 ↑ ( 𝐴  +  1 ) )  −  1 )  gcd  ( 2 ↑ ( 𝐴  +  1 ) ) )  =  ( ( 2 ↑ ( 𝐴  +  1 ) )  gcd  ( ( 2 ↑ ( 𝐴  +  1 ) )  −  1 ) ) ) | 
						
							| 69 |  | iddvdsexp | ⊢ ( ( 2  ∈  ℤ  ∧  ( 𝐴  +  1 )  ∈  ℕ )  →  2  ∥  ( 2 ↑ ( 𝐴  +  1 ) ) ) | 
						
							| 70 | 50 12 69 | sylancr | ⊢ ( 𝜑  →  2  ∥  ( 2 ↑ ( 𝐴  +  1 ) ) ) | 
						
							| 71 |  | n2dvds1 | ⊢ ¬  2  ∥  1 | 
						
							| 72 | 50 | a1i | ⊢ ( 𝜑  →  2  ∈  ℤ ) | 
						
							| 73 |  | 1zzd | ⊢ ( 𝜑  →  1  ∈  ℤ ) | 
						
							| 74 | 72 21 73 | 3jca | ⊢ ( 𝜑  →  ( 2  ∈  ℤ  ∧  ( 2 ↑ ( 𝐴  +  1 ) )  ∈  ℤ  ∧  1  ∈  ℤ ) ) | 
						
							| 75 |  | dvdssub2 | ⊢ ( ( ( 2  ∈  ℤ  ∧  ( 2 ↑ ( 𝐴  +  1 ) )  ∈  ℤ  ∧  1  ∈  ℤ )  ∧  2  ∥  ( ( 2 ↑ ( 𝐴  +  1 ) )  −  1 ) )  →  ( 2  ∥  ( 2 ↑ ( 𝐴  +  1 ) )  ↔  2  ∥  1 ) ) | 
						
							| 76 | 74 75 | sylan | ⊢ ( ( 𝜑  ∧  2  ∥  ( ( 2 ↑ ( 𝐴  +  1 ) )  −  1 ) )  →  ( 2  ∥  ( 2 ↑ ( 𝐴  +  1 ) )  ↔  2  ∥  1 ) ) | 
						
							| 77 | 71 76 | mtbiri | ⊢ ( ( 𝜑  ∧  2  ∥  ( ( 2 ↑ ( 𝐴  +  1 ) )  −  1 ) )  →  ¬  2  ∥  ( 2 ↑ ( 𝐴  +  1 ) ) ) | 
						
							| 78 | 77 | ex | ⊢ ( 𝜑  →  ( 2  ∥  ( ( 2 ↑ ( 𝐴  +  1 ) )  −  1 )  →  ¬  2  ∥  ( 2 ↑ ( 𝐴  +  1 ) ) ) ) | 
						
							| 79 | 70 78 | mt2d | ⊢ ( 𝜑  →  ¬  2  ∥  ( ( 2 ↑ ( 𝐴  +  1 ) )  −  1 ) ) | 
						
							| 80 |  | coprm | ⊢ ( ( 2  ∈  ℙ  ∧  ( ( 2 ↑ ( 𝐴  +  1 ) )  −  1 )  ∈  ℤ )  →  ( ¬  2  ∥  ( ( 2 ↑ ( 𝐴  +  1 ) )  −  1 )  ↔  ( 2  gcd  ( ( 2 ↑ ( 𝐴  +  1 ) )  −  1 ) )  =  1 ) ) | 
						
							| 81 | 45 23 80 | sylancr | ⊢ ( 𝜑  →  ( ¬  2  ∥  ( ( 2 ↑ ( 𝐴  +  1 ) )  −  1 )  ↔  ( 2  gcd  ( ( 2 ↑ ( 𝐴  +  1 ) )  −  1 ) )  =  1 ) ) | 
						
							| 82 | 79 81 | mpbid | ⊢ ( 𝜑  →  ( 2  gcd  ( ( 2 ↑ ( 𝐴  +  1 ) )  −  1 ) )  =  1 ) | 
						
							| 83 |  | rpexp1i | ⊢ ( ( 2  ∈  ℤ  ∧  ( ( 2 ↑ ( 𝐴  +  1 ) )  −  1 )  ∈  ℤ  ∧  ( 𝐴  +  1 )  ∈  ℕ0 )  →  ( ( 2  gcd  ( ( 2 ↑ ( 𝐴  +  1 ) )  −  1 ) )  =  1  →  ( ( 2 ↑ ( 𝐴  +  1 ) )  gcd  ( ( 2 ↑ ( 𝐴  +  1 ) )  −  1 ) )  =  1 ) ) | 
						
							| 84 | 50 23 8 83 | mp3an2i | ⊢ ( 𝜑  →  ( ( 2  gcd  ( ( 2 ↑ ( 𝐴  +  1 ) )  −  1 ) )  =  1  →  ( ( 2 ↑ ( 𝐴  +  1 ) )  gcd  ( ( 2 ↑ ( 𝐴  +  1 ) )  −  1 ) )  =  1 ) ) | 
						
							| 85 | 82 84 | mpd | ⊢ ( 𝜑  →  ( ( 2 ↑ ( 𝐴  +  1 ) )  gcd  ( ( 2 ↑ ( 𝐴  +  1 ) )  −  1 ) )  =  1 ) | 
						
							| 86 | 68 85 | eqtrd | ⊢ ( 𝜑  →  ( ( ( 2 ↑ ( 𝐴  +  1 ) )  −  1 )  gcd  ( 2 ↑ ( 𝐴  +  1 ) ) )  =  1 ) | 
						
							| 87 |  | coprmdvds | ⊢ ( ( ( ( 2 ↑ ( 𝐴  +  1 ) )  −  1 )  ∈  ℤ  ∧  ( 2 ↑ ( 𝐴  +  1 ) )  ∈  ℤ  ∧  𝐵  ∈  ℤ )  →  ( ( ( ( 2 ↑ ( 𝐴  +  1 ) )  −  1 )  ∥  ( ( 2 ↑ ( 𝐴  +  1 ) )  ·  𝐵 )  ∧  ( ( ( 2 ↑ ( 𝐴  +  1 ) )  −  1 )  gcd  ( 2 ↑ ( 𝐴  +  1 ) ) )  =  1 )  →  ( ( 2 ↑ ( 𝐴  +  1 ) )  −  1 )  ∥  𝐵 ) ) | 
						
							| 88 | 23 21 46 87 | syl3anc | ⊢ ( 𝜑  →  ( ( ( ( 2 ↑ ( 𝐴  +  1 ) )  −  1 )  ∥  ( ( 2 ↑ ( 𝐴  +  1 ) )  ·  𝐵 )  ∧  ( ( ( 2 ↑ ( 𝐴  +  1 ) )  −  1 )  gcd  ( 2 ↑ ( 𝐴  +  1 ) ) )  =  1 )  →  ( ( 2 ↑ ( 𝐴  +  1 ) )  −  1 )  ∥  𝐵 ) ) | 
						
							| 89 | 67 86 88 | mp2and | ⊢ ( 𝜑  →  ( ( 2 ↑ ( 𝐴  +  1 ) )  −  1 )  ∥  𝐵 ) | 
						
							| 90 |  | nndivdvds | ⊢ ( ( 𝐵  ∈  ℕ  ∧  ( ( 2 ↑ ( 𝐴  +  1 ) )  −  1 )  ∈  ℕ )  →  ( ( ( 2 ↑ ( 𝐴  +  1 ) )  −  1 )  ∥  𝐵  ↔  ( 𝐵  /  ( ( 2 ↑ ( 𝐴  +  1 ) )  −  1 ) )  ∈  ℕ ) ) | 
						
							| 91 | 2 20 90 | syl2anc | ⊢ ( 𝜑  →  ( ( ( 2 ↑ ( 𝐴  +  1 ) )  −  1 )  ∥  𝐵  ↔  ( 𝐵  /  ( ( 2 ↑ ( 𝐴  +  1 ) )  −  1 ) )  ∈  ℕ ) ) | 
						
							| 92 | 89 91 | mpbid | ⊢ ( 𝜑  →  ( 𝐵  /  ( ( 2 ↑ ( 𝐴  +  1 ) )  −  1 ) )  ∈  ℕ ) | 
						
							| 93 | 10 20 92 | 3jca | ⊢ ( 𝜑  →  ( ( 2 ↑ ( 𝐴  +  1 ) )  ∈  ℕ  ∧  ( ( 2 ↑ ( 𝐴  +  1 ) )  −  1 )  ∈  ℕ  ∧  ( 𝐵  /  ( ( 2 ↑ ( 𝐴  +  1 ) )  −  1 ) )  ∈  ℕ ) ) |