| Step | Hyp | Ref | Expression | 
						
							| 1 |  | perfectlem.1 |  |-  ( ph -> A e. NN ) | 
						
							| 2 |  | perfectlem.2 |  |-  ( ph -> B e. NN ) | 
						
							| 3 |  | perfectlem.3 |  |-  ( ph -> -. 2 || B ) | 
						
							| 4 |  | perfectlem.4 |  |-  ( ph -> ( 1 sigma ( ( 2 ^ A ) x. B ) ) = ( 2 x. ( ( 2 ^ A ) x. B ) ) ) | 
						
							| 5 |  | 1red |  |-  ( ph -> 1 e. RR ) | 
						
							| 6 | 1 2 3 4 | perfectlem1 |  |-  ( ph -> ( ( 2 ^ ( A + 1 ) ) e. NN /\ ( ( 2 ^ ( A + 1 ) ) - 1 ) e. NN /\ ( B / ( ( 2 ^ ( A + 1 ) ) - 1 ) ) e. NN ) ) | 
						
							| 7 | 6 | simp3d |  |-  ( ph -> ( B / ( ( 2 ^ ( A + 1 ) ) - 1 ) ) e. NN ) | 
						
							| 8 | 7 | nnred |  |-  ( ph -> ( B / ( ( 2 ^ ( A + 1 ) ) - 1 ) ) e. RR ) | 
						
							| 9 | 2 | nnred |  |-  ( ph -> B e. RR ) | 
						
							| 10 | 7 | nnge1d |  |-  ( ph -> 1 <_ ( B / ( ( 2 ^ ( A + 1 ) ) - 1 ) ) ) | 
						
							| 11 |  | 2cn |  |-  2 e. CC | 
						
							| 12 |  | exp1 |  |-  ( 2 e. CC -> ( 2 ^ 1 ) = 2 ) | 
						
							| 13 | 11 12 | ax-mp |  |-  ( 2 ^ 1 ) = 2 | 
						
							| 14 |  | df-2 |  |-  2 = ( 1 + 1 ) | 
						
							| 15 | 13 14 | eqtri |  |-  ( 2 ^ 1 ) = ( 1 + 1 ) | 
						
							| 16 |  | 2re |  |-  2 e. RR | 
						
							| 17 | 16 | a1i |  |-  ( ph -> 2 e. RR ) | 
						
							| 18 |  | 1zzd |  |-  ( ph -> 1 e. ZZ ) | 
						
							| 19 | 1 | peano2nnd |  |-  ( ph -> ( A + 1 ) e. NN ) | 
						
							| 20 | 19 | nnzd |  |-  ( ph -> ( A + 1 ) e. ZZ ) | 
						
							| 21 |  | 1lt2 |  |-  1 < 2 | 
						
							| 22 | 21 | a1i |  |-  ( ph -> 1 < 2 ) | 
						
							| 23 |  | 1re |  |-  1 e. RR | 
						
							| 24 | 1 | nnrpd |  |-  ( ph -> A e. RR+ ) | 
						
							| 25 |  | ltaddrp |  |-  ( ( 1 e. RR /\ A e. RR+ ) -> 1 < ( 1 + A ) ) | 
						
							| 26 | 23 24 25 | sylancr |  |-  ( ph -> 1 < ( 1 + A ) ) | 
						
							| 27 |  | ax-1cn |  |-  1 e. CC | 
						
							| 28 | 1 | nncnd |  |-  ( ph -> A e. CC ) | 
						
							| 29 |  | addcom |  |-  ( ( 1 e. CC /\ A e. CC ) -> ( 1 + A ) = ( A + 1 ) ) | 
						
							| 30 | 27 28 29 | sylancr |  |-  ( ph -> ( 1 + A ) = ( A + 1 ) ) | 
						
							| 31 | 26 30 | breqtrd |  |-  ( ph -> 1 < ( A + 1 ) ) | 
						
							| 32 |  | ltexp2a |  |-  ( ( ( 2 e. RR /\ 1 e. ZZ /\ ( A + 1 ) e. ZZ ) /\ ( 1 < 2 /\ 1 < ( A + 1 ) ) ) -> ( 2 ^ 1 ) < ( 2 ^ ( A + 1 ) ) ) | 
						
							| 33 | 17 18 20 22 31 32 | syl32anc |  |-  ( ph -> ( 2 ^ 1 ) < ( 2 ^ ( A + 1 ) ) ) | 
						
							| 34 | 15 33 | eqbrtrrid |  |-  ( ph -> ( 1 + 1 ) < ( 2 ^ ( A + 1 ) ) ) | 
						
							| 35 | 6 | simp1d |  |-  ( ph -> ( 2 ^ ( A + 1 ) ) e. NN ) | 
						
							| 36 | 35 | nnred |  |-  ( ph -> ( 2 ^ ( A + 1 ) ) e. RR ) | 
						
							| 37 | 5 5 36 | ltaddsubd |  |-  ( ph -> ( ( 1 + 1 ) < ( 2 ^ ( A + 1 ) ) <-> 1 < ( ( 2 ^ ( A + 1 ) ) - 1 ) ) ) | 
						
							| 38 | 34 37 | mpbid |  |-  ( ph -> 1 < ( ( 2 ^ ( A + 1 ) ) - 1 ) ) | 
						
							| 39 |  | 0lt1 |  |-  0 < 1 | 
						
							| 40 | 39 | a1i |  |-  ( ph -> 0 < 1 ) | 
						
							| 41 |  | peano2rem |  |-  ( ( 2 ^ ( A + 1 ) ) e. RR -> ( ( 2 ^ ( A + 1 ) ) - 1 ) e. RR ) | 
						
							| 42 | 36 41 | syl |  |-  ( ph -> ( ( 2 ^ ( A + 1 ) ) - 1 ) e. RR ) | 
						
							| 43 |  | expgt1 |  |-  ( ( 2 e. RR /\ ( A + 1 ) e. NN /\ 1 < 2 ) -> 1 < ( 2 ^ ( A + 1 ) ) ) | 
						
							| 44 | 16 19 22 43 | mp3an2i |  |-  ( ph -> 1 < ( 2 ^ ( A + 1 ) ) ) | 
						
							| 45 |  | posdif |  |-  ( ( 1 e. RR /\ ( 2 ^ ( A + 1 ) ) e. RR ) -> ( 1 < ( 2 ^ ( A + 1 ) ) <-> 0 < ( ( 2 ^ ( A + 1 ) ) - 1 ) ) ) | 
						
							| 46 | 23 36 45 | sylancr |  |-  ( ph -> ( 1 < ( 2 ^ ( A + 1 ) ) <-> 0 < ( ( 2 ^ ( A + 1 ) ) - 1 ) ) ) | 
						
							| 47 | 44 46 | mpbid |  |-  ( ph -> 0 < ( ( 2 ^ ( A + 1 ) ) - 1 ) ) | 
						
							| 48 | 2 | nngt0d |  |-  ( ph -> 0 < B ) | 
						
							| 49 |  | ltdiv2 |  |-  ( ( ( 1 e. RR /\ 0 < 1 ) /\ ( ( ( 2 ^ ( A + 1 ) ) - 1 ) e. RR /\ 0 < ( ( 2 ^ ( A + 1 ) ) - 1 ) ) /\ ( B e. RR /\ 0 < B ) ) -> ( 1 < ( ( 2 ^ ( A + 1 ) ) - 1 ) <-> ( B / ( ( 2 ^ ( A + 1 ) ) - 1 ) ) < ( B / 1 ) ) ) | 
						
							| 50 | 5 40 42 47 9 48 49 | syl222anc |  |-  ( ph -> ( 1 < ( ( 2 ^ ( A + 1 ) ) - 1 ) <-> ( B / ( ( 2 ^ ( A + 1 ) ) - 1 ) ) < ( B / 1 ) ) ) | 
						
							| 51 | 38 50 | mpbid |  |-  ( ph -> ( B / ( ( 2 ^ ( A + 1 ) ) - 1 ) ) < ( B / 1 ) ) | 
						
							| 52 | 2 | nncnd |  |-  ( ph -> B e. CC ) | 
						
							| 53 | 52 | div1d |  |-  ( ph -> ( B / 1 ) = B ) | 
						
							| 54 | 51 53 | breqtrd |  |-  ( ph -> ( B / ( ( 2 ^ ( A + 1 ) ) - 1 ) ) < B ) | 
						
							| 55 | 5 8 9 10 54 | lelttrd |  |-  ( ph -> 1 < B ) | 
						
							| 56 |  | eluz2b2 |  |-  ( B e. ( ZZ>= ` 2 ) <-> ( B e. NN /\ 1 < B ) ) | 
						
							| 57 | 2 55 56 | sylanbrc |  |-  ( ph -> B e. ( ZZ>= ` 2 ) ) | 
						
							| 58 |  | fzfid |  |-  ( ph -> ( 1 ... B ) e. Fin ) | 
						
							| 59 |  | dvdsssfz1 |  |-  ( B e. NN -> { x e. NN | x || B } C_ ( 1 ... B ) ) | 
						
							| 60 | 2 59 | syl |  |-  ( ph -> { x e. NN | x || B } C_ ( 1 ... B ) ) | 
						
							| 61 | 58 60 | ssfid |  |-  ( ph -> { x e. NN | x || B } e. Fin ) | 
						
							| 62 | 61 | ad2antrr |  |-  ( ( ( ph /\ ( n e. NN /\ n || B ) ) /\ -. n e. { ( B / ( ( 2 ^ ( A + 1 ) ) - 1 ) ) , B } ) -> { x e. NN | x || B } e. Fin ) | 
						
							| 63 |  | ssrab2 |  |-  { x e. NN | x || B } C_ NN | 
						
							| 64 | 63 | a1i |  |-  ( ( ( ph /\ ( n e. NN /\ n || B ) ) /\ -. n e. { ( B / ( ( 2 ^ ( A + 1 ) ) - 1 ) ) , B } ) -> { x e. NN | x || B } C_ NN ) | 
						
							| 65 | 64 | sselda |  |-  ( ( ( ( ph /\ ( n e. NN /\ n || B ) ) /\ -. n e. { ( B / ( ( 2 ^ ( A + 1 ) ) - 1 ) ) , B } ) /\ k e. { x e. NN | x || B } ) -> k e. NN ) | 
						
							| 66 | 65 | nnred |  |-  ( ( ( ( ph /\ ( n e. NN /\ n || B ) ) /\ -. n e. { ( B / ( ( 2 ^ ( A + 1 ) ) - 1 ) ) , B } ) /\ k e. { x e. NN | x || B } ) -> k e. RR ) | 
						
							| 67 | 65 | nnnn0d |  |-  ( ( ( ( ph /\ ( n e. NN /\ n || B ) ) /\ -. n e. { ( B / ( ( 2 ^ ( A + 1 ) ) - 1 ) ) , B } ) /\ k e. { x e. NN | x || B } ) -> k e. NN0 ) | 
						
							| 68 | 67 | nn0ge0d |  |-  ( ( ( ( ph /\ ( n e. NN /\ n || B ) ) /\ -. n e. { ( B / ( ( 2 ^ ( A + 1 ) ) - 1 ) ) , B } ) /\ k e. { x e. NN | x || B } ) -> 0 <_ k ) | 
						
							| 69 |  | df-tp |  |-  { ( B / ( ( 2 ^ ( A + 1 ) ) - 1 ) ) , B , n } = ( { ( B / ( ( 2 ^ ( A + 1 ) ) - 1 ) ) , B } u. { n } ) | 
						
							| 70 | 7 2 | prssd |  |-  ( ph -> { ( B / ( ( 2 ^ ( A + 1 ) ) - 1 ) ) , B } C_ NN ) | 
						
							| 71 | 70 | ad2antrr |  |-  ( ( ( ph /\ ( n e. NN /\ n || B ) ) /\ -. n e. { ( B / ( ( 2 ^ ( A + 1 ) ) - 1 ) ) , B } ) -> { ( B / ( ( 2 ^ ( A + 1 ) ) - 1 ) ) , B } C_ NN ) | 
						
							| 72 |  | simplrl |  |-  ( ( ( ph /\ ( n e. NN /\ n || B ) ) /\ -. n e. { ( B / ( ( 2 ^ ( A + 1 ) ) - 1 ) ) , B } ) -> n e. NN ) | 
						
							| 73 | 72 | snssd |  |-  ( ( ( ph /\ ( n e. NN /\ n || B ) ) /\ -. n e. { ( B / ( ( 2 ^ ( A + 1 ) ) - 1 ) ) , B } ) -> { n } C_ NN ) | 
						
							| 74 | 71 73 | unssd |  |-  ( ( ( ph /\ ( n e. NN /\ n || B ) ) /\ -. n e. { ( B / ( ( 2 ^ ( A + 1 ) ) - 1 ) ) , B } ) -> ( { ( B / ( ( 2 ^ ( A + 1 ) ) - 1 ) ) , B } u. { n } ) C_ NN ) | 
						
							| 75 | 69 74 | eqsstrid |  |-  ( ( ( ph /\ ( n e. NN /\ n || B ) ) /\ -. n e. { ( B / ( ( 2 ^ ( A + 1 ) ) - 1 ) ) , B } ) -> { ( B / ( ( 2 ^ ( A + 1 ) ) - 1 ) ) , B , n } C_ NN ) | 
						
							| 76 | 6 | simp2d |  |-  ( ph -> ( ( 2 ^ ( A + 1 ) ) - 1 ) e. NN ) | 
						
							| 77 | 76 | nnzd |  |-  ( ph -> ( ( 2 ^ ( A + 1 ) ) - 1 ) e. ZZ ) | 
						
							| 78 | 7 | nnzd |  |-  ( ph -> ( B / ( ( 2 ^ ( A + 1 ) ) - 1 ) ) e. ZZ ) | 
						
							| 79 |  | dvdsmul2 |  |-  ( ( ( ( 2 ^ ( A + 1 ) ) - 1 ) e. ZZ /\ ( B / ( ( 2 ^ ( A + 1 ) ) - 1 ) ) e. ZZ ) -> ( B / ( ( 2 ^ ( A + 1 ) ) - 1 ) ) || ( ( ( 2 ^ ( A + 1 ) ) - 1 ) x. ( B / ( ( 2 ^ ( A + 1 ) ) - 1 ) ) ) ) | 
						
							| 80 | 77 78 79 | syl2anc |  |-  ( ph -> ( B / ( ( 2 ^ ( A + 1 ) ) - 1 ) ) || ( ( ( 2 ^ ( A + 1 ) ) - 1 ) x. ( B / ( ( 2 ^ ( A + 1 ) ) - 1 ) ) ) ) | 
						
							| 81 | 76 | nncnd |  |-  ( ph -> ( ( 2 ^ ( A + 1 ) ) - 1 ) e. CC ) | 
						
							| 82 | 76 | nnne0d |  |-  ( ph -> ( ( 2 ^ ( A + 1 ) ) - 1 ) =/= 0 ) | 
						
							| 83 | 52 81 82 | divcan2d |  |-  ( ph -> ( ( ( 2 ^ ( A + 1 ) ) - 1 ) x. ( B / ( ( 2 ^ ( A + 1 ) ) - 1 ) ) ) = B ) | 
						
							| 84 | 80 83 | breqtrd |  |-  ( ph -> ( B / ( ( 2 ^ ( A + 1 ) ) - 1 ) ) || B ) | 
						
							| 85 |  | breq1 |  |-  ( x = ( B / ( ( 2 ^ ( A + 1 ) ) - 1 ) ) -> ( x || B <-> ( B / ( ( 2 ^ ( A + 1 ) ) - 1 ) ) || B ) ) | 
						
							| 86 | 84 85 | syl5ibrcom |  |-  ( ph -> ( x = ( B / ( ( 2 ^ ( A + 1 ) ) - 1 ) ) -> x || B ) ) | 
						
							| 87 | 86 | ad2antrr |  |-  ( ( ( ph /\ ( n e. NN /\ n || B ) ) /\ -. n e. { ( B / ( ( 2 ^ ( A + 1 ) ) - 1 ) ) , B } ) -> ( x = ( B / ( ( 2 ^ ( A + 1 ) ) - 1 ) ) -> x || B ) ) | 
						
							| 88 | 2 | nnzd |  |-  ( ph -> B e. ZZ ) | 
						
							| 89 |  | iddvds |  |-  ( B e. ZZ -> B || B ) | 
						
							| 90 | 88 89 | syl |  |-  ( ph -> B || B ) | 
						
							| 91 |  | breq1 |  |-  ( x = B -> ( x || B <-> B || B ) ) | 
						
							| 92 | 90 91 | syl5ibrcom |  |-  ( ph -> ( x = B -> x || B ) ) | 
						
							| 93 | 92 | ad2antrr |  |-  ( ( ( ph /\ ( n e. NN /\ n || B ) ) /\ -. n e. { ( B / ( ( 2 ^ ( A + 1 ) ) - 1 ) ) , B } ) -> ( x = B -> x || B ) ) | 
						
							| 94 |  | simplrr |  |-  ( ( ( ph /\ ( n e. NN /\ n || B ) ) /\ -. n e. { ( B / ( ( 2 ^ ( A + 1 ) ) - 1 ) ) , B } ) -> n || B ) | 
						
							| 95 |  | breq1 |  |-  ( x = n -> ( x || B <-> n || B ) ) | 
						
							| 96 | 94 95 | syl5ibrcom |  |-  ( ( ( ph /\ ( n e. NN /\ n || B ) ) /\ -. n e. { ( B / ( ( 2 ^ ( A + 1 ) ) - 1 ) ) , B } ) -> ( x = n -> x || B ) ) | 
						
							| 97 | 87 93 96 | 3jaod |  |-  ( ( ( ph /\ ( n e. NN /\ n || B ) ) /\ -. n e. { ( B / ( ( 2 ^ ( A + 1 ) ) - 1 ) ) , B } ) -> ( ( x = ( B / ( ( 2 ^ ( A + 1 ) ) - 1 ) ) \/ x = B \/ x = n ) -> x || B ) ) | 
						
							| 98 |  | eltpi |  |-  ( x e. { ( B / ( ( 2 ^ ( A + 1 ) ) - 1 ) ) , B , n } -> ( x = ( B / ( ( 2 ^ ( A + 1 ) ) - 1 ) ) \/ x = B \/ x = n ) ) | 
						
							| 99 | 97 98 | impel |  |-  ( ( ( ( ph /\ ( n e. NN /\ n || B ) ) /\ -. n e. { ( B / ( ( 2 ^ ( A + 1 ) ) - 1 ) ) , B } ) /\ x e. { ( B / ( ( 2 ^ ( A + 1 ) ) - 1 ) ) , B , n } ) -> x || B ) | 
						
							| 100 | 75 99 | ssrabdv |  |-  ( ( ( ph /\ ( n e. NN /\ n || B ) ) /\ -. n e. { ( B / ( ( 2 ^ ( A + 1 ) ) - 1 ) ) , B } ) -> { ( B / ( ( 2 ^ ( A + 1 ) ) - 1 ) ) , B , n } C_ { x e. NN | x || B } ) | 
						
							| 101 | 62 66 68 100 | fsumless |  |-  ( ( ( ph /\ ( n e. NN /\ n || B ) ) /\ -. n e. { ( B / ( ( 2 ^ ( A + 1 ) ) - 1 ) ) , B } ) -> sum_ k e. { ( B / ( ( 2 ^ ( A + 1 ) ) - 1 ) ) , B , n } k <_ sum_ k e. { x e. NN | x || B } k ) | 
						
							| 102 |  | simpr |  |-  ( ( ( ph /\ ( n e. NN /\ n || B ) ) /\ -. n e. { ( B / ( ( 2 ^ ( A + 1 ) ) - 1 ) ) , B } ) -> -. n e. { ( B / ( ( 2 ^ ( A + 1 ) ) - 1 ) ) , B } ) | 
						
							| 103 |  | disjsn |  |-  ( ( { ( B / ( ( 2 ^ ( A + 1 ) ) - 1 ) ) , B } i^i { n } ) = (/) <-> -. n e. { ( B / ( ( 2 ^ ( A + 1 ) ) - 1 ) ) , B } ) | 
						
							| 104 | 102 103 | sylibr |  |-  ( ( ( ph /\ ( n e. NN /\ n || B ) ) /\ -. n e. { ( B / ( ( 2 ^ ( A + 1 ) ) - 1 ) ) , B } ) -> ( { ( B / ( ( 2 ^ ( A + 1 ) ) - 1 ) ) , B } i^i { n } ) = (/) ) | 
						
							| 105 | 69 | a1i |  |-  ( ( ( ph /\ ( n e. NN /\ n || B ) ) /\ -. n e. { ( B / ( ( 2 ^ ( A + 1 ) ) - 1 ) ) , B } ) -> { ( B / ( ( 2 ^ ( A + 1 ) ) - 1 ) ) , B , n } = ( { ( B / ( ( 2 ^ ( A + 1 ) ) - 1 ) ) , B } u. { n } ) ) | 
						
							| 106 |  | tpfi |  |-  { ( B / ( ( 2 ^ ( A + 1 ) ) - 1 ) ) , B , n } e. Fin | 
						
							| 107 | 106 | a1i |  |-  ( ( ( ph /\ ( n e. NN /\ n || B ) ) /\ -. n e. { ( B / ( ( 2 ^ ( A + 1 ) ) - 1 ) ) , B } ) -> { ( B / ( ( 2 ^ ( A + 1 ) ) - 1 ) ) , B , n } e. Fin ) | 
						
							| 108 | 75 | sselda |  |-  ( ( ( ( ph /\ ( n e. NN /\ n || B ) ) /\ -. n e. { ( B / ( ( 2 ^ ( A + 1 ) ) - 1 ) ) , B } ) /\ k e. { ( B / ( ( 2 ^ ( A + 1 ) ) - 1 ) ) , B , n } ) -> k e. NN ) | 
						
							| 109 | 108 | nncnd |  |-  ( ( ( ( ph /\ ( n e. NN /\ n || B ) ) /\ -. n e. { ( B / ( ( 2 ^ ( A + 1 ) ) - 1 ) ) , B } ) /\ k e. { ( B / ( ( 2 ^ ( A + 1 ) ) - 1 ) ) , B , n } ) -> k e. CC ) | 
						
							| 110 | 104 105 107 109 | fsumsplit |  |-  ( ( ( ph /\ ( n e. NN /\ n || B ) ) /\ -. n e. { ( B / ( ( 2 ^ ( A + 1 ) ) - 1 ) ) , B } ) -> sum_ k e. { ( B / ( ( 2 ^ ( A + 1 ) ) - 1 ) ) , B , n } k = ( sum_ k e. { ( B / ( ( 2 ^ ( A + 1 ) ) - 1 ) ) , B } k + sum_ k e. { n } k ) ) | 
						
							| 111 | 7 | nncnd |  |-  ( ph -> ( B / ( ( 2 ^ ( A + 1 ) ) - 1 ) ) e. CC ) | 
						
							| 112 |  | id |  |-  ( k = ( B / ( ( 2 ^ ( A + 1 ) ) - 1 ) ) -> k = ( B / ( ( 2 ^ ( A + 1 ) ) - 1 ) ) ) | 
						
							| 113 | 112 | sumsn |  |-  ( ( ( B / ( ( 2 ^ ( A + 1 ) ) - 1 ) ) e. NN /\ ( B / ( ( 2 ^ ( A + 1 ) ) - 1 ) ) e. CC ) -> sum_ k e. { ( B / ( ( 2 ^ ( A + 1 ) ) - 1 ) ) } k = ( B / ( ( 2 ^ ( A + 1 ) ) - 1 ) ) ) | 
						
							| 114 | 7 111 113 | syl2anc |  |-  ( ph -> sum_ k e. { ( B / ( ( 2 ^ ( A + 1 ) ) - 1 ) ) } k = ( B / ( ( 2 ^ ( A + 1 ) ) - 1 ) ) ) | 
						
							| 115 |  | id |  |-  ( k = B -> k = B ) | 
						
							| 116 | 115 | sumsn |  |-  ( ( B e. NN /\ B e. CC ) -> sum_ k e. { B } k = B ) | 
						
							| 117 | 2 52 116 | syl2anc |  |-  ( ph -> sum_ k e. { B } k = B ) | 
						
							| 118 | 114 117 | oveq12d |  |-  ( ph -> ( sum_ k e. { ( B / ( ( 2 ^ ( A + 1 ) ) - 1 ) ) } k + sum_ k e. { B } k ) = ( ( B / ( ( 2 ^ ( A + 1 ) ) - 1 ) ) + B ) ) | 
						
							| 119 |  | incom |  |-  ( { B } i^i { ( B / ( ( 2 ^ ( A + 1 ) ) - 1 ) ) } ) = ( { ( B / ( ( 2 ^ ( A + 1 ) ) - 1 ) ) } i^i { B } ) | 
						
							| 120 | 8 54 | gtned |  |-  ( ph -> B =/= ( B / ( ( 2 ^ ( A + 1 ) ) - 1 ) ) ) | 
						
							| 121 |  | disjsn2 |  |-  ( B =/= ( B / ( ( 2 ^ ( A + 1 ) ) - 1 ) ) -> ( { B } i^i { ( B / ( ( 2 ^ ( A + 1 ) ) - 1 ) ) } ) = (/) ) | 
						
							| 122 | 120 121 | syl |  |-  ( ph -> ( { B } i^i { ( B / ( ( 2 ^ ( A + 1 ) ) - 1 ) ) } ) = (/) ) | 
						
							| 123 | 119 122 | eqtr3id |  |-  ( ph -> ( { ( B / ( ( 2 ^ ( A + 1 ) ) - 1 ) ) } i^i { B } ) = (/) ) | 
						
							| 124 |  | df-pr |  |-  { ( B / ( ( 2 ^ ( A + 1 ) ) - 1 ) ) , B } = ( { ( B / ( ( 2 ^ ( A + 1 ) ) - 1 ) ) } u. { B } ) | 
						
							| 125 | 124 | a1i |  |-  ( ph -> { ( B / ( ( 2 ^ ( A + 1 ) ) - 1 ) ) , B } = ( { ( B / ( ( 2 ^ ( A + 1 ) ) - 1 ) ) } u. { B } ) ) | 
						
							| 126 |  | prfi |  |-  { ( B / ( ( 2 ^ ( A + 1 ) ) - 1 ) ) , B } e. Fin | 
						
							| 127 | 126 | a1i |  |-  ( ph -> { ( B / ( ( 2 ^ ( A + 1 ) ) - 1 ) ) , B } e. Fin ) | 
						
							| 128 | 70 | sselda |  |-  ( ( ph /\ k e. { ( B / ( ( 2 ^ ( A + 1 ) ) - 1 ) ) , B } ) -> k e. NN ) | 
						
							| 129 | 128 | nncnd |  |-  ( ( ph /\ k e. { ( B / ( ( 2 ^ ( A + 1 ) ) - 1 ) ) , B } ) -> k e. CC ) | 
						
							| 130 | 123 125 127 129 | fsumsplit |  |-  ( ph -> sum_ k e. { ( B / ( ( 2 ^ ( A + 1 ) ) - 1 ) ) , B } k = ( sum_ k e. { ( B / ( ( 2 ^ ( A + 1 ) ) - 1 ) ) } k + sum_ k e. { B } k ) ) | 
						
							| 131 | 81 52 | mulcld |  |-  ( ph -> ( ( ( 2 ^ ( A + 1 ) ) - 1 ) x. B ) e. CC ) | 
						
							| 132 | 52 131 81 82 | divdird |  |-  ( ph -> ( ( B + ( ( ( 2 ^ ( A + 1 ) ) - 1 ) x. B ) ) / ( ( 2 ^ ( A + 1 ) ) - 1 ) ) = ( ( B / ( ( 2 ^ ( A + 1 ) ) - 1 ) ) + ( ( ( ( 2 ^ ( A + 1 ) ) - 1 ) x. B ) / ( ( 2 ^ ( A + 1 ) ) - 1 ) ) ) ) | 
						
							| 133 | 35 | nncnd |  |-  ( ph -> ( 2 ^ ( A + 1 ) ) e. CC ) | 
						
							| 134 |  | 1cnd |  |-  ( ph -> 1 e. CC ) | 
						
							| 135 | 133 134 52 | subdird |  |-  ( ph -> ( ( ( 2 ^ ( A + 1 ) ) - 1 ) x. B ) = ( ( ( 2 ^ ( A + 1 ) ) x. B ) - ( 1 x. B ) ) ) | 
						
							| 136 | 52 | mullidd |  |-  ( ph -> ( 1 x. B ) = B ) | 
						
							| 137 | 136 | oveq2d |  |-  ( ph -> ( ( ( 2 ^ ( A + 1 ) ) x. B ) - ( 1 x. B ) ) = ( ( ( 2 ^ ( A + 1 ) ) x. B ) - B ) ) | 
						
							| 138 | 135 137 | eqtrd |  |-  ( ph -> ( ( ( 2 ^ ( A + 1 ) ) - 1 ) x. B ) = ( ( ( 2 ^ ( A + 1 ) ) x. B ) - B ) ) | 
						
							| 139 | 138 | oveq2d |  |-  ( ph -> ( B + ( ( ( 2 ^ ( A + 1 ) ) - 1 ) x. B ) ) = ( B + ( ( ( 2 ^ ( A + 1 ) ) x. B ) - B ) ) ) | 
						
							| 140 | 133 52 | mulcld |  |-  ( ph -> ( ( 2 ^ ( A + 1 ) ) x. B ) e. CC ) | 
						
							| 141 | 52 140 | pncan3d |  |-  ( ph -> ( B + ( ( ( 2 ^ ( A + 1 ) ) x. B ) - B ) ) = ( ( 2 ^ ( A + 1 ) ) x. B ) ) | 
						
							| 142 | 139 141 | eqtrd |  |-  ( ph -> ( B + ( ( ( 2 ^ ( A + 1 ) ) - 1 ) x. B ) ) = ( ( 2 ^ ( A + 1 ) ) x. B ) ) | 
						
							| 143 | 142 | oveq1d |  |-  ( ph -> ( ( B + ( ( ( 2 ^ ( A + 1 ) ) - 1 ) x. B ) ) / ( ( 2 ^ ( A + 1 ) ) - 1 ) ) = ( ( ( 2 ^ ( A + 1 ) ) x. B ) / ( ( 2 ^ ( A + 1 ) ) - 1 ) ) ) | 
						
							| 144 | 133 52 81 82 | divassd |  |-  ( ph -> ( ( ( 2 ^ ( A + 1 ) ) x. B ) / ( ( 2 ^ ( A + 1 ) ) - 1 ) ) = ( ( 2 ^ ( A + 1 ) ) x. ( B / ( ( 2 ^ ( A + 1 ) ) - 1 ) ) ) ) | 
						
							| 145 | 143 144 | eqtrd |  |-  ( ph -> ( ( B + ( ( ( 2 ^ ( A + 1 ) ) - 1 ) x. B ) ) / ( ( 2 ^ ( A + 1 ) ) - 1 ) ) = ( ( 2 ^ ( A + 1 ) ) x. ( B / ( ( 2 ^ ( A + 1 ) ) - 1 ) ) ) ) | 
						
							| 146 | 52 81 82 | divcan3d |  |-  ( ph -> ( ( ( ( 2 ^ ( A + 1 ) ) - 1 ) x. B ) / ( ( 2 ^ ( A + 1 ) ) - 1 ) ) = B ) | 
						
							| 147 | 146 | oveq2d |  |-  ( ph -> ( ( B / ( ( 2 ^ ( A + 1 ) ) - 1 ) ) + ( ( ( ( 2 ^ ( A + 1 ) ) - 1 ) x. B ) / ( ( 2 ^ ( A + 1 ) ) - 1 ) ) ) = ( ( B / ( ( 2 ^ ( A + 1 ) ) - 1 ) ) + B ) ) | 
						
							| 148 | 132 145 147 | 3eqtr3d |  |-  ( ph -> ( ( 2 ^ ( A + 1 ) ) x. ( B / ( ( 2 ^ ( A + 1 ) ) - 1 ) ) ) = ( ( B / ( ( 2 ^ ( A + 1 ) ) - 1 ) ) + B ) ) | 
						
							| 149 | 118 130 148 | 3eqtr4d |  |-  ( ph -> sum_ k e. { ( B / ( ( 2 ^ ( A + 1 ) ) - 1 ) ) , B } k = ( ( 2 ^ ( A + 1 ) ) x. ( B / ( ( 2 ^ ( A + 1 ) ) - 1 ) ) ) ) | 
						
							| 150 | 149 | ad2antrr |  |-  ( ( ( ph /\ ( n e. NN /\ n || B ) ) /\ -. n e. { ( B / ( ( 2 ^ ( A + 1 ) ) - 1 ) ) , B } ) -> sum_ k e. { ( B / ( ( 2 ^ ( A + 1 ) ) - 1 ) ) , B } k = ( ( 2 ^ ( A + 1 ) ) x. ( B / ( ( 2 ^ ( A + 1 ) ) - 1 ) ) ) ) | 
						
							| 151 | 72 | nncnd |  |-  ( ( ( ph /\ ( n e. NN /\ n || B ) ) /\ -. n e. { ( B / ( ( 2 ^ ( A + 1 ) ) - 1 ) ) , B } ) -> n e. CC ) | 
						
							| 152 |  | id |  |-  ( k = n -> k = n ) | 
						
							| 153 | 152 | sumsn |  |-  ( ( n e. CC /\ n e. CC ) -> sum_ k e. { n } k = n ) | 
						
							| 154 | 151 151 153 | syl2anc |  |-  ( ( ( ph /\ ( n e. NN /\ n || B ) ) /\ -. n e. { ( B / ( ( 2 ^ ( A + 1 ) ) - 1 ) ) , B } ) -> sum_ k e. { n } k = n ) | 
						
							| 155 | 150 154 | oveq12d |  |-  ( ( ( ph /\ ( n e. NN /\ n || B ) ) /\ -. n e. { ( B / ( ( 2 ^ ( A + 1 ) ) - 1 ) ) , B } ) -> ( sum_ k e. { ( B / ( ( 2 ^ ( A + 1 ) ) - 1 ) ) , B } k + sum_ k e. { n } k ) = ( ( ( 2 ^ ( A + 1 ) ) x. ( B / ( ( 2 ^ ( A + 1 ) ) - 1 ) ) ) + n ) ) | 
						
							| 156 | 110 155 | eqtrd |  |-  ( ( ( ph /\ ( n e. NN /\ n || B ) ) /\ -. n e. { ( B / ( ( 2 ^ ( A + 1 ) ) - 1 ) ) , B } ) -> sum_ k e. { ( B / ( ( 2 ^ ( A + 1 ) ) - 1 ) ) , B , n } k = ( ( ( 2 ^ ( A + 1 ) ) x. ( B / ( ( 2 ^ ( A + 1 ) ) - 1 ) ) ) + n ) ) | 
						
							| 157 | 1 | nnnn0d |  |-  ( ph -> A e. NN0 ) | 
						
							| 158 |  | expp1 |  |-  ( ( 2 e. CC /\ A e. NN0 ) -> ( 2 ^ ( A + 1 ) ) = ( ( 2 ^ A ) x. 2 ) ) | 
						
							| 159 | 11 157 158 | sylancr |  |-  ( ph -> ( 2 ^ ( A + 1 ) ) = ( ( 2 ^ A ) x. 2 ) ) | 
						
							| 160 |  | 2nn |  |-  2 e. NN | 
						
							| 161 |  | nnexpcl |  |-  ( ( 2 e. NN /\ A e. NN0 ) -> ( 2 ^ A ) e. NN ) | 
						
							| 162 | 160 157 161 | sylancr |  |-  ( ph -> ( 2 ^ A ) e. NN ) | 
						
							| 163 | 162 | nncnd |  |-  ( ph -> ( 2 ^ A ) e. CC ) | 
						
							| 164 |  | mulcom |  |-  ( ( ( 2 ^ A ) e. CC /\ 2 e. CC ) -> ( ( 2 ^ A ) x. 2 ) = ( 2 x. ( 2 ^ A ) ) ) | 
						
							| 165 | 163 11 164 | sylancl |  |-  ( ph -> ( ( 2 ^ A ) x. 2 ) = ( 2 x. ( 2 ^ A ) ) ) | 
						
							| 166 | 159 165 | eqtrd |  |-  ( ph -> ( 2 ^ ( A + 1 ) ) = ( 2 x. ( 2 ^ A ) ) ) | 
						
							| 167 | 166 | oveq1d |  |-  ( ph -> ( ( 2 ^ ( A + 1 ) ) x. B ) = ( ( 2 x. ( 2 ^ A ) ) x. B ) ) | 
						
							| 168 |  | 2cnd |  |-  ( ph -> 2 e. CC ) | 
						
							| 169 | 168 163 52 | mulassd |  |-  ( ph -> ( ( 2 x. ( 2 ^ A ) ) x. B ) = ( 2 x. ( ( 2 ^ A ) x. B ) ) ) | 
						
							| 170 |  | 2prm |  |-  2 e. Prime | 
						
							| 171 |  | coprm |  |-  ( ( 2 e. Prime /\ B e. ZZ ) -> ( -. 2 || B <-> ( 2 gcd B ) = 1 ) ) | 
						
							| 172 | 170 88 171 | sylancr |  |-  ( ph -> ( -. 2 || B <-> ( 2 gcd B ) = 1 ) ) | 
						
							| 173 | 3 172 | mpbid |  |-  ( ph -> ( 2 gcd B ) = 1 ) | 
						
							| 174 |  | 2z |  |-  2 e. ZZ | 
						
							| 175 |  | rpexp1i |  |-  ( ( 2 e. ZZ /\ B e. ZZ /\ A e. NN0 ) -> ( ( 2 gcd B ) = 1 -> ( ( 2 ^ A ) gcd B ) = 1 ) ) | 
						
							| 176 | 174 88 157 175 | mp3an2i |  |-  ( ph -> ( ( 2 gcd B ) = 1 -> ( ( 2 ^ A ) gcd B ) = 1 ) ) | 
						
							| 177 | 173 176 | mpd |  |-  ( ph -> ( ( 2 ^ A ) gcd B ) = 1 ) | 
						
							| 178 |  | sgmmul |  |-  ( ( 1 e. CC /\ ( ( 2 ^ A ) e. NN /\ B e. NN /\ ( ( 2 ^ A ) gcd B ) = 1 ) ) -> ( 1 sigma ( ( 2 ^ A ) x. B ) ) = ( ( 1 sigma ( 2 ^ A ) ) x. ( 1 sigma B ) ) ) | 
						
							| 179 | 134 162 2 177 178 | syl13anc |  |-  ( ph -> ( 1 sigma ( ( 2 ^ A ) x. B ) ) = ( ( 1 sigma ( 2 ^ A ) ) x. ( 1 sigma B ) ) ) | 
						
							| 180 |  | pncan |  |-  ( ( A e. CC /\ 1 e. CC ) -> ( ( A + 1 ) - 1 ) = A ) | 
						
							| 181 | 28 27 180 | sylancl |  |-  ( ph -> ( ( A + 1 ) - 1 ) = A ) | 
						
							| 182 | 181 | oveq2d |  |-  ( ph -> ( 2 ^ ( ( A + 1 ) - 1 ) ) = ( 2 ^ A ) ) | 
						
							| 183 | 182 | oveq2d |  |-  ( ph -> ( 1 sigma ( 2 ^ ( ( A + 1 ) - 1 ) ) ) = ( 1 sigma ( 2 ^ A ) ) ) | 
						
							| 184 |  | 1sgm2ppw |  |-  ( ( A + 1 ) e. NN -> ( 1 sigma ( 2 ^ ( ( A + 1 ) - 1 ) ) ) = ( ( 2 ^ ( A + 1 ) ) - 1 ) ) | 
						
							| 185 | 19 184 | syl |  |-  ( ph -> ( 1 sigma ( 2 ^ ( ( A + 1 ) - 1 ) ) ) = ( ( 2 ^ ( A + 1 ) ) - 1 ) ) | 
						
							| 186 | 183 185 | eqtr3d |  |-  ( ph -> ( 1 sigma ( 2 ^ A ) ) = ( ( 2 ^ ( A + 1 ) ) - 1 ) ) | 
						
							| 187 | 186 | oveq1d |  |-  ( ph -> ( ( 1 sigma ( 2 ^ A ) ) x. ( 1 sigma B ) ) = ( ( ( 2 ^ ( A + 1 ) ) - 1 ) x. ( 1 sigma B ) ) ) | 
						
							| 188 | 179 4 187 | 3eqtr3d |  |-  ( ph -> ( 2 x. ( ( 2 ^ A ) x. B ) ) = ( ( ( 2 ^ ( A + 1 ) ) - 1 ) x. ( 1 sigma B ) ) ) | 
						
							| 189 | 167 169 188 | 3eqtrd |  |-  ( ph -> ( ( 2 ^ ( A + 1 ) ) x. B ) = ( ( ( 2 ^ ( A + 1 ) ) - 1 ) x. ( 1 sigma B ) ) ) | 
						
							| 190 | 189 | oveq1d |  |-  ( ph -> ( ( ( 2 ^ ( A + 1 ) ) x. B ) / ( ( 2 ^ ( A + 1 ) ) - 1 ) ) = ( ( ( ( 2 ^ ( A + 1 ) ) - 1 ) x. ( 1 sigma B ) ) / ( ( 2 ^ ( A + 1 ) ) - 1 ) ) ) | 
						
							| 191 |  | 1nn0 |  |-  1 e. NN0 | 
						
							| 192 |  | sgmnncl |  |-  ( ( 1 e. NN0 /\ B e. NN ) -> ( 1 sigma B ) e. NN ) | 
						
							| 193 | 191 2 192 | sylancr |  |-  ( ph -> ( 1 sigma B ) e. NN ) | 
						
							| 194 | 193 | nncnd |  |-  ( ph -> ( 1 sigma B ) e. CC ) | 
						
							| 195 | 194 81 82 | divcan3d |  |-  ( ph -> ( ( ( ( 2 ^ ( A + 1 ) ) - 1 ) x. ( 1 sigma B ) ) / ( ( 2 ^ ( A + 1 ) ) - 1 ) ) = ( 1 sigma B ) ) | 
						
							| 196 | 190 144 195 | 3eqtr3d |  |-  ( ph -> ( ( 2 ^ ( A + 1 ) ) x. ( B / ( ( 2 ^ ( A + 1 ) ) - 1 ) ) ) = ( 1 sigma B ) ) | 
						
							| 197 |  | sgmval |  |-  ( ( 1 e. CC /\ B e. NN ) -> ( 1 sigma B ) = sum_ k e. { x e. NN | x || B } ( k ^c 1 ) ) | 
						
							| 198 | 27 2 197 | sylancr |  |-  ( ph -> ( 1 sigma B ) = sum_ k e. { x e. NN | x || B } ( k ^c 1 ) ) | 
						
							| 199 |  | simpr |  |-  ( ( ph /\ k e. { x e. NN | x || B } ) -> k e. { x e. NN | x || B } ) | 
						
							| 200 | 63 199 | sselid |  |-  ( ( ph /\ k e. { x e. NN | x || B } ) -> k e. NN ) | 
						
							| 201 | 200 | nncnd |  |-  ( ( ph /\ k e. { x e. NN | x || B } ) -> k e. CC ) | 
						
							| 202 | 201 | cxp1d |  |-  ( ( ph /\ k e. { x e. NN | x || B } ) -> ( k ^c 1 ) = k ) | 
						
							| 203 | 202 | sumeq2dv |  |-  ( ph -> sum_ k e. { x e. NN | x || B } ( k ^c 1 ) = sum_ k e. { x e. NN | x || B } k ) | 
						
							| 204 | 196 198 203 | 3eqtrrd |  |-  ( ph -> sum_ k e. { x e. NN | x || B } k = ( ( 2 ^ ( A + 1 ) ) x. ( B / ( ( 2 ^ ( A + 1 ) ) - 1 ) ) ) ) | 
						
							| 205 | 204 | ad2antrr |  |-  ( ( ( ph /\ ( n e. NN /\ n || B ) ) /\ -. n e. { ( B / ( ( 2 ^ ( A + 1 ) ) - 1 ) ) , B } ) -> sum_ k e. { x e. NN | x || B } k = ( ( 2 ^ ( A + 1 ) ) x. ( B / ( ( 2 ^ ( A + 1 ) ) - 1 ) ) ) ) | 
						
							| 206 | 101 156 205 | 3brtr3d |  |-  ( ( ( ph /\ ( n e. NN /\ n || B ) ) /\ -. n e. { ( B / ( ( 2 ^ ( A + 1 ) ) - 1 ) ) , B } ) -> ( ( ( 2 ^ ( A + 1 ) ) x. ( B / ( ( 2 ^ ( A + 1 ) ) - 1 ) ) ) + n ) <_ ( ( 2 ^ ( A + 1 ) ) x. ( B / ( ( 2 ^ ( A + 1 ) ) - 1 ) ) ) ) | 
						
							| 207 | 36 8 | remulcld |  |-  ( ph -> ( ( 2 ^ ( A + 1 ) ) x. ( B / ( ( 2 ^ ( A + 1 ) ) - 1 ) ) ) e. RR ) | 
						
							| 208 | 207 | ad2antrr |  |-  ( ( ( ph /\ ( n e. NN /\ n || B ) ) /\ -. n e. { ( B / ( ( 2 ^ ( A + 1 ) ) - 1 ) ) , B } ) -> ( ( 2 ^ ( A + 1 ) ) x. ( B / ( ( 2 ^ ( A + 1 ) ) - 1 ) ) ) e. RR ) | 
						
							| 209 | 72 | nnrpd |  |-  ( ( ( ph /\ ( n e. NN /\ n || B ) ) /\ -. n e. { ( B / ( ( 2 ^ ( A + 1 ) ) - 1 ) ) , B } ) -> n e. RR+ ) | 
						
							| 210 | 208 209 | ltaddrpd |  |-  ( ( ( ph /\ ( n e. NN /\ n || B ) ) /\ -. n e. { ( B / ( ( 2 ^ ( A + 1 ) ) - 1 ) ) , B } ) -> ( ( 2 ^ ( A + 1 ) ) x. ( B / ( ( 2 ^ ( A + 1 ) ) - 1 ) ) ) < ( ( ( 2 ^ ( A + 1 ) ) x. ( B / ( ( 2 ^ ( A + 1 ) ) - 1 ) ) ) + n ) ) | 
						
							| 211 | 72 | nnred |  |-  ( ( ( ph /\ ( n e. NN /\ n || B ) ) /\ -. n e. { ( B / ( ( 2 ^ ( A + 1 ) ) - 1 ) ) , B } ) -> n e. RR ) | 
						
							| 212 | 208 211 | readdcld |  |-  ( ( ( ph /\ ( n e. NN /\ n || B ) ) /\ -. n e. { ( B / ( ( 2 ^ ( A + 1 ) ) - 1 ) ) , B } ) -> ( ( ( 2 ^ ( A + 1 ) ) x. ( B / ( ( 2 ^ ( A + 1 ) ) - 1 ) ) ) + n ) e. RR ) | 
						
							| 213 | 208 212 | ltnled |  |-  ( ( ( ph /\ ( n e. NN /\ n || B ) ) /\ -. n e. { ( B / ( ( 2 ^ ( A + 1 ) ) - 1 ) ) , B } ) -> ( ( ( 2 ^ ( A + 1 ) ) x. ( B / ( ( 2 ^ ( A + 1 ) ) - 1 ) ) ) < ( ( ( 2 ^ ( A + 1 ) ) x. ( B / ( ( 2 ^ ( A + 1 ) ) - 1 ) ) ) + n ) <-> -. ( ( ( 2 ^ ( A + 1 ) ) x. ( B / ( ( 2 ^ ( A + 1 ) ) - 1 ) ) ) + n ) <_ ( ( 2 ^ ( A + 1 ) ) x. ( B / ( ( 2 ^ ( A + 1 ) ) - 1 ) ) ) ) ) | 
						
							| 214 | 210 213 | mpbid |  |-  ( ( ( ph /\ ( n e. NN /\ n || B ) ) /\ -. n e. { ( B / ( ( 2 ^ ( A + 1 ) ) - 1 ) ) , B } ) -> -. ( ( ( 2 ^ ( A + 1 ) ) x. ( B / ( ( 2 ^ ( A + 1 ) ) - 1 ) ) ) + n ) <_ ( ( 2 ^ ( A + 1 ) ) x. ( B / ( ( 2 ^ ( A + 1 ) ) - 1 ) ) ) ) | 
						
							| 215 | 206 214 | condan |  |-  ( ( ph /\ ( n e. NN /\ n || B ) ) -> n e. { ( B / ( ( 2 ^ ( A + 1 ) ) - 1 ) ) , B } ) | 
						
							| 216 |  | elpri |  |-  ( n e. { ( B / ( ( 2 ^ ( A + 1 ) ) - 1 ) ) , B } -> ( n = ( B / ( ( 2 ^ ( A + 1 ) ) - 1 ) ) \/ n = B ) ) | 
						
							| 217 | 215 216 | syl |  |-  ( ( ph /\ ( n e. NN /\ n || B ) ) -> ( n = ( B / ( ( 2 ^ ( A + 1 ) ) - 1 ) ) \/ n = B ) ) | 
						
							| 218 | 217 | expr |  |-  ( ( ph /\ n e. NN ) -> ( n || B -> ( n = ( B / ( ( 2 ^ ( A + 1 ) ) - 1 ) ) \/ n = B ) ) ) | 
						
							| 219 | 218 | ralrimiva |  |-  ( ph -> A. n e. NN ( n || B -> ( n = ( B / ( ( 2 ^ ( A + 1 ) ) - 1 ) ) \/ n = B ) ) ) | 
						
							| 220 | 5 55 | gtned |  |-  ( ph -> B =/= 1 ) | 
						
							| 221 | 220 | necomd |  |-  ( ph -> 1 =/= B ) | 
						
							| 222 |  | 1dvds |  |-  ( B e. ZZ -> 1 || B ) | 
						
							| 223 | 88 222 | syl |  |-  ( ph -> 1 || B ) | 
						
							| 224 |  | breq1 |  |-  ( n = 1 -> ( n || B <-> 1 || B ) ) | 
						
							| 225 |  | eqeq1 |  |-  ( n = 1 -> ( n = ( B / ( ( 2 ^ ( A + 1 ) ) - 1 ) ) <-> 1 = ( B / ( ( 2 ^ ( A + 1 ) ) - 1 ) ) ) ) | 
						
							| 226 |  | eqeq1 |  |-  ( n = 1 -> ( n = B <-> 1 = B ) ) | 
						
							| 227 | 225 226 | orbi12d |  |-  ( n = 1 -> ( ( n = ( B / ( ( 2 ^ ( A + 1 ) ) - 1 ) ) \/ n = B ) <-> ( 1 = ( B / ( ( 2 ^ ( A + 1 ) ) - 1 ) ) \/ 1 = B ) ) ) | 
						
							| 228 | 224 227 | imbi12d |  |-  ( n = 1 -> ( ( n || B -> ( n = ( B / ( ( 2 ^ ( A + 1 ) ) - 1 ) ) \/ n = B ) ) <-> ( 1 || B -> ( 1 = ( B / ( ( 2 ^ ( A + 1 ) ) - 1 ) ) \/ 1 = B ) ) ) ) | 
						
							| 229 |  | 1nn |  |-  1 e. NN | 
						
							| 230 | 229 | a1i |  |-  ( ph -> 1 e. NN ) | 
						
							| 231 | 228 219 230 | rspcdva |  |-  ( ph -> ( 1 || B -> ( 1 = ( B / ( ( 2 ^ ( A + 1 ) ) - 1 ) ) \/ 1 = B ) ) ) | 
						
							| 232 | 223 231 | mpd |  |-  ( ph -> ( 1 = ( B / ( ( 2 ^ ( A + 1 ) ) - 1 ) ) \/ 1 = B ) ) | 
						
							| 233 | 232 | ord |  |-  ( ph -> ( -. 1 = ( B / ( ( 2 ^ ( A + 1 ) ) - 1 ) ) -> 1 = B ) ) | 
						
							| 234 | 233 | necon1ad |  |-  ( ph -> ( 1 =/= B -> 1 = ( B / ( ( 2 ^ ( A + 1 ) ) - 1 ) ) ) ) | 
						
							| 235 | 221 234 | mpd |  |-  ( ph -> 1 = ( B / ( ( 2 ^ ( A + 1 ) ) - 1 ) ) ) | 
						
							| 236 | 235 | eqeq2d |  |-  ( ph -> ( n = 1 <-> n = ( B / ( ( 2 ^ ( A + 1 ) ) - 1 ) ) ) ) | 
						
							| 237 | 236 | orbi1d |  |-  ( ph -> ( ( n = 1 \/ n = B ) <-> ( n = ( B / ( ( 2 ^ ( A + 1 ) ) - 1 ) ) \/ n = B ) ) ) | 
						
							| 238 | 237 | imbi2d |  |-  ( ph -> ( ( n || B -> ( n = 1 \/ n = B ) ) <-> ( n || B -> ( n = ( B / ( ( 2 ^ ( A + 1 ) ) - 1 ) ) \/ n = B ) ) ) ) | 
						
							| 239 | 238 | ralbidv |  |-  ( ph -> ( A. n e. NN ( n || B -> ( n = 1 \/ n = B ) ) <-> A. n e. NN ( n || B -> ( n = ( B / ( ( 2 ^ ( A + 1 ) ) - 1 ) ) \/ n = B ) ) ) ) | 
						
							| 240 | 219 239 | mpbird |  |-  ( ph -> A. n e. NN ( n || B -> ( n = 1 \/ n = B ) ) ) | 
						
							| 241 |  | isprm2 |  |-  ( B e. Prime <-> ( B e. ( ZZ>= ` 2 ) /\ A. n e. NN ( n || B -> ( n = 1 \/ n = B ) ) ) ) | 
						
							| 242 | 57 240 241 | sylanbrc |  |-  ( ph -> B e. Prime ) | 
						
							| 243 | 207 | ltp1d |  |-  ( ph -> ( ( 2 ^ ( A + 1 ) ) x. ( B / ( ( 2 ^ ( A + 1 ) ) - 1 ) ) ) < ( ( ( 2 ^ ( A + 1 ) ) x. ( B / ( ( 2 ^ ( A + 1 ) ) - 1 ) ) ) + 1 ) ) | 
						
							| 244 |  | peano2re |  |-  ( ( ( 2 ^ ( A + 1 ) ) x. ( B / ( ( 2 ^ ( A + 1 ) ) - 1 ) ) ) e. RR -> ( ( ( 2 ^ ( A + 1 ) ) x. ( B / ( ( 2 ^ ( A + 1 ) ) - 1 ) ) ) + 1 ) e. RR ) | 
						
							| 245 | 207 244 | syl |  |-  ( ph -> ( ( ( 2 ^ ( A + 1 ) ) x. ( B / ( ( 2 ^ ( A + 1 ) ) - 1 ) ) ) + 1 ) e. RR ) | 
						
							| 246 | 207 245 | ltnled |  |-  ( ph -> ( ( ( 2 ^ ( A + 1 ) ) x. ( B / ( ( 2 ^ ( A + 1 ) ) - 1 ) ) ) < ( ( ( 2 ^ ( A + 1 ) ) x. ( B / ( ( 2 ^ ( A + 1 ) ) - 1 ) ) ) + 1 ) <-> -. ( ( ( 2 ^ ( A + 1 ) ) x. ( B / ( ( 2 ^ ( A + 1 ) ) - 1 ) ) ) + 1 ) <_ ( ( 2 ^ ( A + 1 ) ) x. ( B / ( ( 2 ^ ( A + 1 ) ) - 1 ) ) ) ) ) | 
						
							| 247 | 243 246 | mpbid |  |-  ( ph -> -. ( ( ( 2 ^ ( A + 1 ) ) x. ( B / ( ( 2 ^ ( A + 1 ) ) - 1 ) ) ) + 1 ) <_ ( ( 2 ^ ( A + 1 ) ) x. ( B / ( ( 2 ^ ( A + 1 ) ) - 1 ) ) ) ) | 
						
							| 248 | 200 | nnred |  |-  ( ( ph /\ k e. { x e. NN | x || B } ) -> k e. RR ) | 
						
							| 249 | 200 | nnnn0d |  |-  ( ( ph /\ k e. { x e. NN | x || B } ) -> k e. NN0 ) | 
						
							| 250 | 249 | nn0ge0d |  |-  ( ( ph /\ k e. { x e. NN | x || B } ) -> 0 <_ k ) | 
						
							| 251 |  | df-tp |  |-  { ( B / ( ( 2 ^ ( A + 1 ) ) - 1 ) ) , B , 1 } = ( { ( B / ( ( 2 ^ ( A + 1 ) ) - 1 ) ) , B } u. { 1 } ) | 
						
							| 252 |  | snssi |  |-  ( 1 e. NN -> { 1 } C_ NN ) | 
						
							| 253 | 229 252 | mp1i |  |-  ( ph -> { 1 } C_ NN ) | 
						
							| 254 | 70 253 | unssd |  |-  ( ph -> ( { ( B / ( ( 2 ^ ( A + 1 ) ) - 1 ) ) , B } u. { 1 } ) C_ NN ) | 
						
							| 255 | 251 254 | eqsstrid |  |-  ( ph -> { ( B / ( ( 2 ^ ( A + 1 ) ) - 1 ) ) , B , 1 } C_ NN ) | 
						
							| 256 |  | breq1 |  |-  ( x = 1 -> ( x || B <-> 1 || B ) ) | 
						
							| 257 | 223 256 | syl5ibrcom |  |-  ( ph -> ( x = 1 -> x || B ) ) | 
						
							| 258 | 86 92 257 | 3jaod |  |-  ( ph -> ( ( x = ( B / ( ( 2 ^ ( A + 1 ) ) - 1 ) ) \/ x = B \/ x = 1 ) -> x || B ) ) | 
						
							| 259 |  | eltpi |  |-  ( x e. { ( B / ( ( 2 ^ ( A + 1 ) ) - 1 ) ) , B , 1 } -> ( x = ( B / ( ( 2 ^ ( A + 1 ) ) - 1 ) ) \/ x = B \/ x = 1 ) ) | 
						
							| 260 | 258 259 | impel |  |-  ( ( ph /\ x e. { ( B / ( ( 2 ^ ( A + 1 ) ) - 1 ) ) , B , 1 } ) -> x || B ) | 
						
							| 261 | 255 260 | ssrabdv |  |-  ( ph -> { ( B / ( ( 2 ^ ( A + 1 ) ) - 1 ) ) , B , 1 } C_ { x e. NN | x || B } ) | 
						
							| 262 | 61 248 250 261 | fsumless |  |-  ( ph -> sum_ k e. { ( B / ( ( 2 ^ ( A + 1 ) ) - 1 ) ) , B , 1 } k <_ sum_ k e. { x e. NN | x || B } k ) | 
						
							| 263 | 262 | adantr |  |-  ( ( ph /\ B =/= ( ( 2 ^ ( A + 1 ) ) - 1 ) ) -> sum_ k e. { ( B / ( ( 2 ^ ( A + 1 ) ) - 1 ) ) , B , 1 } k <_ sum_ k e. { x e. NN | x || B } k ) | 
						
							| 264 | 52 81 82 | diveq1ad |  |-  ( ph -> ( ( B / ( ( 2 ^ ( A + 1 ) ) - 1 ) ) = 1 <-> B = ( ( 2 ^ ( A + 1 ) ) - 1 ) ) ) | 
						
							| 265 | 264 | necon3bid |  |-  ( ph -> ( ( B / ( ( 2 ^ ( A + 1 ) ) - 1 ) ) =/= 1 <-> B =/= ( ( 2 ^ ( A + 1 ) ) - 1 ) ) ) | 
						
							| 266 | 265 | biimpar |  |-  ( ( ph /\ B =/= ( ( 2 ^ ( A + 1 ) ) - 1 ) ) -> ( B / ( ( 2 ^ ( A + 1 ) ) - 1 ) ) =/= 1 ) | 
						
							| 267 | 266 | necomd |  |-  ( ( ph /\ B =/= ( ( 2 ^ ( A + 1 ) ) - 1 ) ) -> 1 =/= ( B / ( ( 2 ^ ( A + 1 ) ) - 1 ) ) ) | 
						
							| 268 | 221 | adantr |  |-  ( ( ph /\ B =/= ( ( 2 ^ ( A + 1 ) ) - 1 ) ) -> 1 =/= B ) | 
						
							| 269 | 267 268 | nelprd |  |-  ( ( ph /\ B =/= ( ( 2 ^ ( A + 1 ) ) - 1 ) ) -> -. 1 e. { ( B / ( ( 2 ^ ( A + 1 ) ) - 1 ) ) , B } ) | 
						
							| 270 |  | disjsn |  |-  ( ( { ( B / ( ( 2 ^ ( A + 1 ) ) - 1 ) ) , B } i^i { 1 } ) = (/) <-> -. 1 e. { ( B / ( ( 2 ^ ( A + 1 ) ) - 1 ) ) , B } ) | 
						
							| 271 | 269 270 | sylibr |  |-  ( ( ph /\ B =/= ( ( 2 ^ ( A + 1 ) ) - 1 ) ) -> ( { ( B / ( ( 2 ^ ( A + 1 ) ) - 1 ) ) , B } i^i { 1 } ) = (/) ) | 
						
							| 272 | 251 | a1i |  |-  ( ( ph /\ B =/= ( ( 2 ^ ( A + 1 ) ) - 1 ) ) -> { ( B / ( ( 2 ^ ( A + 1 ) ) - 1 ) ) , B , 1 } = ( { ( B / ( ( 2 ^ ( A + 1 ) ) - 1 ) ) , B } u. { 1 } ) ) | 
						
							| 273 |  | tpfi |  |-  { ( B / ( ( 2 ^ ( A + 1 ) ) - 1 ) ) , B , 1 } e. Fin | 
						
							| 274 | 273 | a1i |  |-  ( ( ph /\ B =/= ( ( 2 ^ ( A + 1 ) ) - 1 ) ) -> { ( B / ( ( 2 ^ ( A + 1 ) ) - 1 ) ) , B , 1 } e. Fin ) | 
						
							| 275 | 255 | adantr |  |-  ( ( ph /\ B =/= ( ( 2 ^ ( A + 1 ) ) - 1 ) ) -> { ( B / ( ( 2 ^ ( A + 1 ) ) - 1 ) ) , B , 1 } C_ NN ) | 
						
							| 276 | 275 | sselda |  |-  ( ( ( ph /\ B =/= ( ( 2 ^ ( A + 1 ) ) - 1 ) ) /\ k e. { ( B / ( ( 2 ^ ( A + 1 ) ) - 1 ) ) , B , 1 } ) -> k e. NN ) | 
						
							| 277 | 276 | nncnd |  |-  ( ( ( ph /\ B =/= ( ( 2 ^ ( A + 1 ) ) - 1 ) ) /\ k e. { ( B / ( ( 2 ^ ( A + 1 ) ) - 1 ) ) , B , 1 } ) -> k e. CC ) | 
						
							| 278 | 271 272 274 277 | fsumsplit |  |-  ( ( ph /\ B =/= ( ( 2 ^ ( A + 1 ) ) - 1 ) ) -> sum_ k e. { ( B / ( ( 2 ^ ( A + 1 ) ) - 1 ) ) , B , 1 } k = ( sum_ k e. { ( B / ( ( 2 ^ ( A + 1 ) ) - 1 ) ) , B } k + sum_ k e. { 1 } k ) ) | 
						
							| 279 |  | id |  |-  ( k = 1 -> k = 1 ) | 
						
							| 280 | 279 | sumsn |  |-  ( ( 1 e. RR /\ 1 e. CC ) -> sum_ k e. { 1 } k = 1 ) | 
						
							| 281 | 5 27 280 | sylancl |  |-  ( ph -> sum_ k e. { 1 } k = 1 ) | 
						
							| 282 | 149 281 | oveq12d |  |-  ( ph -> ( sum_ k e. { ( B / ( ( 2 ^ ( A + 1 ) ) - 1 ) ) , B } k + sum_ k e. { 1 } k ) = ( ( ( 2 ^ ( A + 1 ) ) x. ( B / ( ( 2 ^ ( A + 1 ) ) - 1 ) ) ) + 1 ) ) | 
						
							| 283 | 282 | adantr |  |-  ( ( ph /\ B =/= ( ( 2 ^ ( A + 1 ) ) - 1 ) ) -> ( sum_ k e. { ( B / ( ( 2 ^ ( A + 1 ) ) - 1 ) ) , B } k + sum_ k e. { 1 } k ) = ( ( ( 2 ^ ( A + 1 ) ) x. ( B / ( ( 2 ^ ( A + 1 ) ) - 1 ) ) ) + 1 ) ) | 
						
							| 284 | 278 283 | eqtrd |  |-  ( ( ph /\ B =/= ( ( 2 ^ ( A + 1 ) ) - 1 ) ) -> sum_ k e. { ( B / ( ( 2 ^ ( A + 1 ) ) - 1 ) ) , B , 1 } k = ( ( ( 2 ^ ( A + 1 ) ) x. ( B / ( ( 2 ^ ( A + 1 ) ) - 1 ) ) ) + 1 ) ) | 
						
							| 285 | 204 | adantr |  |-  ( ( ph /\ B =/= ( ( 2 ^ ( A + 1 ) ) - 1 ) ) -> sum_ k e. { x e. NN | x || B } k = ( ( 2 ^ ( A + 1 ) ) x. ( B / ( ( 2 ^ ( A + 1 ) ) - 1 ) ) ) ) | 
						
							| 286 | 263 284 285 | 3brtr3d |  |-  ( ( ph /\ B =/= ( ( 2 ^ ( A + 1 ) ) - 1 ) ) -> ( ( ( 2 ^ ( A + 1 ) ) x. ( B / ( ( 2 ^ ( A + 1 ) ) - 1 ) ) ) + 1 ) <_ ( ( 2 ^ ( A + 1 ) ) x. ( B / ( ( 2 ^ ( A + 1 ) ) - 1 ) ) ) ) | 
						
							| 287 | 286 | ex |  |-  ( ph -> ( B =/= ( ( 2 ^ ( A + 1 ) ) - 1 ) -> ( ( ( 2 ^ ( A + 1 ) ) x. ( B / ( ( 2 ^ ( A + 1 ) ) - 1 ) ) ) + 1 ) <_ ( ( 2 ^ ( A + 1 ) ) x. ( B / ( ( 2 ^ ( A + 1 ) ) - 1 ) ) ) ) ) | 
						
							| 288 | 287 | necon1bd |  |-  ( ph -> ( -. ( ( ( 2 ^ ( A + 1 ) ) x. ( B / ( ( 2 ^ ( A + 1 ) ) - 1 ) ) ) + 1 ) <_ ( ( 2 ^ ( A + 1 ) ) x. ( B / ( ( 2 ^ ( A + 1 ) ) - 1 ) ) ) -> B = ( ( 2 ^ ( A + 1 ) ) - 1 ) ) ) | 
						
							| 289 | 247 288 | mpd |  |-  ( ph -> B = ( ( 2 ^ ( A + 1 ) ) - 1 ) ) | 
						
							| 290 | 242 289 | jca |  |-  ( ph -> ( B e. Prime /\ B = ( ( 2 ^ ( A + 1 ) ) - 1 ) ) ) |