| Step | Hyp | Ref | Expression | 
						
							| 1 |  | simplr |  |-  ( ( ( N e. NN /\ 2 || N ) /\ ( 1 sigma N ) = ( 2 x. N ) ) -> 2 || N ) | 
						
							| 2 |  | 2prm |  |-  2 e. Prime | 
						
							| 3 |  | simpll |  |-  ( ( ( N e. NN /\ 2 || N ) /\ ( 1 sigma N ) = ( 2 x. N ) ) -> N e. NN ) | 
						
							| 4 |  | pcelnn |  |-  ( ( 2 e. Prime /\ N e. NN ) -> ( ( 2 pCnt N ) e. NN <-> 2 || N ) ) | 
						
							| 5 | 2 3 4 | sylancr |  |-  ( ( ( N e. NN /\ 2 || N ) /\ ( 1 sigma N ) = ( 2 x. N ) ) -> ( ( 2 pCnt N ) e. NN <-> 2 || N ) ) | 
						
							| 6 | 1 5 | mpbird |  |-  ( ( ( N e. NN /\ 2 || N ) /\ ( 1 sigma N ) = ( 2 x. N ) ) -> ( 2 pCnt N ) e. NN ) | 
						
							| 7 | 6 | nnzd |  |-  ( ( ( N e. NN /\ 2 || N ) /\ ( 1 sigma N ) = ( 2 x. N ) ) -> ( 2 pCnt N ) e. ZZ ) | 
						
							| 8 | 7 | peano2zd |  |-  ( ( ( N e. NN /\ 2 || N ) /\ ( 1 sigma N ) = ( 2 x. N ) ) -> ( ( 2 pCnt N ) + 1 ) e. ZZ ) | 
						
							| 9 |  | pcdvds |  |-  ( ( 2 e. Prime /\ N e. NN ) -> ( 2 ^ ( 2 pCnt N ) ) || N ) | 
						
							| 10 | 2 3 9 | sylancr |  |-  ( ( ( N e. NN /\ 2 || N ) /\ ( 1 sigma N ) = ( 2 x. N ) ) -> ( 2 ^ ( 2 pCnt N ) ) || N ) | 
						
							| 11 |  | 2nn |  |-  2 e. NN | 
						
							| 12 | 6 | nnnn0d |  |-  ( ( ( N e. NN /\ 2 || N ) /\ ( 1 sigma N ) = ( 2 x. N ) ) -> ( 2 pCnt N ) e. NN0 ) | 
						
							| 13 |  | nnexpcl |  |-  ( ( 2 e. NN /\ ( 2 pCnt N ) e. NN0 ) -> ( 2 ^ ( 2 pCnt N ) ) e. NN ) | 
						
							| 14 | 11 12 13 | sylancr |  |-  ( ( ( N e. NN /\ 2 || N ) /\ ( 1 sigma N ) = ( 2 x. N ) ) -> ( 2 ^ ( 2 pCnt N ) ) e. NN ) | 
						
							| 15 |  | nndivdvds |  |-  ( ( N e. NN /\ ( 2 ^ ( 2 pCnt N ) ) e. NN ) -> ( ( 2 ^ ( 2 pCnt N ) ) || N <-> ( N / ( 2 ^ ( 2 pCnt N ) ) ) e. NN ) ) | 
						
							| 16 | 3 14 15 | syl2anc |  |-  ( ( ( N e. NN /\ 2 || N ) /\ ( 1 sigma N ) = ( 2 x. N ) ) -> ( ( 2 ^ ( 2 pCnt N ) ) || N <-> ( N / ( 2 ^ ( 2 pCnt N ) ) ) e. NN ) ) | 
						
							| 17 | 10 16 | mpbid |  |-  ( ( ( N e. NN /\ 2 || N ) /\ ( 1 sigma N ) = ( 2 x. N ) ) -> ( N / ( 2 ^ ( 2 pCnt N ) ) ) e. NN ) | 
						
							| 18 |  | pcndvds2 |  |-  ( ( 2 e. Prime /\ N e. NN ) -> -. 2 || ( N / ( 2 ^ ( 2 pCnt N ) ) ) ) | 
						
							| 19 | 2 3 18 | sylancr |  |-  ( ( ( N e. NN /\ 2 || N ) /\ ( 1 sigma N ) = ( 2 x. N ) ) -> -. 2 || ( N / ( 2 ^ ( 2 pCnt N ) ) ) ) | 
						
							| 20 |  | simpr |  |-  ( ( ( N e. NN /\ 2 || N ) /\ ( 1 sigma N ) = ( 2 x. N ) ) -> ( 1 sigma N ) = ( 2 x. N ) ) | 
						
							| 21 |  | nncn |  |-  ( N e. NN -> N e. CC ) | 
						
							| 22 | 21 | ad2antrr |  |-  ( ( ( N e. NN /\ 2 || N ) /\ ( 1 sigma N ) = ( 2 x. N ) ) -> N e. CC ) | 
						
							| 23 | 14 | nncnd |  |-  ( ( ( N e. NN /\ 2 || N ) /\ ( 1 sigma N ) = ( 2 x. N ) ) -> ( 2 ^ ( 2 pCnt N ) ) e. CC ) | 
						
							| 24 | 14 | nnne0d |  |-  ( ( ( N e. NN /\ 2 || N ) /\ ( 1 sigma N ) = ( 2 x. N ) ) -> ( 2 ^ ( 2 pCnt N ) ) =/= 0 ) | 
						
							| 25 | 22 23 24 | divcan2d |  |-  ( ( ( N e. NN /\ 2 || N ) /\ ( 1 sigma N ) = ( 2 x. N ) ) -> ( ( 2 ^ ( 2 pCnt N ) ) x. ( N / ( 2 ^ ( 2 pCnt N ) ) ) ) = N ) | 
						
							| 26 | 25 | oveq2d |  |-  ( ( ( N e. NN /\ 2 || N ) /\ ( 1 sigma N ) = ( 2 x. N ) ) -> ( 1 sigma ( ( 2 ^ ( 2 pCnt N ) ) x. ( N / ( 2 ^ ( 2 pCnt N ) ) ) ) ) = ( 1 sigma N ) ) | 
						
							| 27 | 25 | oveq2d |  |-  ( ( ( N e. NN /\ 2 || N ) /\ ( 1 sigma N ) = ( 2 x. N ) ) -> ( 2 x. ( ( 2 ^ ( 2 pCnt N ) ) x. ( N / ( 2 ^ ( 2 pCnt N ) ) ) ) ) = ( 2 x. N ) ) | 
						
							| 28 | 20 26 27 | 3eqtr4d |  |-  ( ( ( N e. NN /\ 2 || N ) /\ ( 1 sigma N ) = ( 2 x. N ) ) -> ( 1 sigma ( ( 2 ^ ( 2 pCnt N ) ) x. ( N / ( 2 ^ ( 2 pCnt N ) ) ) ) ) = ( 2 x. ( ( 2 ^ ( 2 pCnt N ) ) x. ( N / ( 2 ^ ( 2 pCnt N ) ) ) ) ) ) | 
						
							| 29 | 6 17 19 28 | perfectlem2 |  |-  ( ( ( N e. NN /\ 2 || N ) /\ ( 1 sigma N ) = ( 2 x. N ) ) -> ( ( N / ( 2 ^ ( 2 pCnt N ) ) ) e. Prime /\ ( N / ( 2 ^ ( 2 pCnt N ) ) ) = ( ( 2 ^ ( ( 2 pCnt N ) + 1 ) ) - 1 ) ) ) | 
						
							| 30 | 29 | simprd |  |-  ( ( ( N e. NN /\ 2 || N ) /\ ( 1 sigma N ) = ( 2 x. N ) ) -> ( N / ( 2 ^ ( 2 pCnt N ) ) ) = ( ( 2 ^ ( ( 2 pCnt N ) + 1 ) ) - 1 ) ) | 
						
							| 31 | 29 | simpld |  |-  ( ( ( N e. NN /\ 2 || N ) /\ ( 1 sigma N ) = ( 2 x. N ) ) -> ( N / ( 2 ^ ( 2 pCnt N ) ) ) e. Prime ) | 
						
							| 32 | 30 31 | eqeltrrd |  |-  ( ( ( N e. NN /\ 2 || N ) /\ ( 1 sigma N ) = ( 2 x. N ) ) -> ( ( 2 ^ ( ( 2 pCnt N ) + 1 ) ) - 1 ) e. Prime ) | 
						
							| 33 | 6 | nncnd |  |-  ( ( ( N e. NN /\ 2 || N ) /\ ( 1 sigma N ) = ( 2 x. N ) ) -> ( 2 pCnt N ) e. CC ) | 
						
							| 34 |  | ax-1cn |  |-  1 e. CC | 
						
							| 35 |  | pncan |  |-  ( ( ( 2 pCnt N ) e. CC /\ 1 e. CC ) -> ( ( ( 2 pCnt N ) + 1 ) - 1 ) = ( 2 pCnt N ) ) | 
						
							| 36 | 33 34 35 | sylancl |  |-  ( ( ( N e. NN /\ 2 || N ) /\ ( 1 sigma N ) = ( 2 x. N ) ) -> ( ( ( 2 pCnt N ) + 1 ) - 1 ) = ( 2 pCnt N ) ) | 
						
							| 37 | 36 | eqcomd |  |-  ( ( ( N e. NN /\ 2 || N ) /\ ( 1 sigma N ) = ( 2 x. N ) ) -> ( 2 pCnt N ) = ( ( ( 2 pCnt N ) + 1 ) - 1 ) ) | 
						
							| 38 | 37 | oveq2d |  |-  ( ( ( N e. NN /\ 2 || N ) /\ ( 1 sigma N ) = ( 2 x. N ) ) -> ( 2 ^ ( 2 pCnt N ) ) = ( 2 ^ ( ( ( 2 pCnt N ) + 1 ) - 1 ) ) ) | 
						
							| 39 | 38 30 | oveq12d |  |-  ( ( ( N e. NN /\ 2 || N ) /\ ( 1 sigma N ) = ( 2 x. N ) ) -> ( ( 2 ^ ( 2 pCnt N ) ) x. ( N / ( 2 ^ ( 2 pCnt N ) ) ) ) = ( ( 2 ^ ( ( ( 2 pCnt N ) + 1 ) - 1 ) ) x. ( ( 2 ^ ( ( 2 pCnt N ) + 1 ) ) - 1 ) ) ) | 
						
							| 40 | 25 39 | eqtr3d |  |-  ( ( ( N e. NN /\ 2 || N ) /\ ( 1 sigma N ) = ( 2 x. N ) ) -> N = ( ( 2 ^ ( ( ( 2 pCnt N ) + 1 ) - 1 ) ) x. ( ( 2 ^ ( ( 2 pCnt N ) + 1 ) ) - 1 ) ) ) | 
						
							| 41 |  | oveq2 |  |-  ( p = ( ( 2 pCnt N ) + 1 ) -> ( 2 ^ p ) = ( 2 ^ ( ( 2 pCnt N ) + 1 ) ) ) | 
						
							| 42 | 41 | oveq1d |  |-  ( p = ( ( 2 pCnt N ) + 1 ) -> ( ( 2 ^ p ) - 1 ) = ( ( 2 ^ ( ( 2 pCnt N ) + 1 ) ) - 1 ) ) | 
						
							| 43 | 42 | eleq1d |  |-  ( p = ( ( 2 pCnt N ) + 1 ) -> ( ( ( 2 ^ p ) - 1 ) e. Prime <-> ( ( 2 ^ ( ( 2 pCnt N ) + 1 ) ) - 1 ) e. Prime ) ) | 
						
							| 44 |  | oveq1 |  |-  ( p = ( ( 2 pCnt N ) + 1 ) -> ( p - 1 ) = ( ( ( 2 pCnt N ) + 1 ) - 1 ) ) | 
						
							| 45 | 44 | oveq2d |  |-  ( p = ( ( 2 pCnt N ) + 1 ) -> ( 2 ^ ( p - 1 ) ) = ( 2 ^ ( ( ( 2 pCnt N ) + 1 ) - 1 ) ) ) | 
						
							| 46 | 45 42 | oveq12d |  |-  ( p = ( ( 2 pCnt N ) + 1 ) -> ( ( 2 ^ ( p - 1 ) ) x. ( ( 2 ^ p ) - 1 ) ) = ( ( 2 ^ ( ( ( 2 pCnt N ) + 1 ) - 1 ) ) x. ( ( 2 ^ ( ( 2 pCnt N ) + 1 ) ) - 1 ) ) ) | 
						
							| 47 | 46 | eqeq2d |  |-  ( p = ( ( 2 pCnt N ) + 1 ) -> ( N = ( ( 2 ^ ( p - 1 ) ) x. ( ( 2 ^ p ) - 1 ) ) <-> N = ( ( 2 ^ ( ( ( 2 pCnt N ) + 1 ) - 1 ) ) x. ( ( 2 ^ ( ( 2 pCnt N ) + 1 ) ) - 1 ) ) ) ) | 
						
							| 48 | 43 47 | anbi12d |  |-  ( p = ( ( 2 pCnt N ) + 1 ) -> ( ( ( ( 2 ^ p ) - 1 ) e. Prime /\ N = ( ( 2 ^ ( p - 1 ) ) x. ( ( 2 ^ p ) - 1 ) ) ) <-> ( ( ( 2 ^ ( ( 2 pCnt N ) + 1 ) ) - 1 ) e. Prime /\ N = ( ( 2 ^ ( ( ( 2 pCnt N ) + 1 ) - 1 ) ) x. ( ( 2 ^ ( ( 2 pCnt N ) + 1 ) ) - 1 ) ) ) ) ) | 
						
							| 49 | 48 | rspcev |  |-  ( ( ( ( 2 pCnt N ) + 1 ) e. ZZ /\ ( ( ( 2 ^ ( ( 2 pCnt N ) + 1 ) ) - 1 ) e. Prime /\ N = ( ( 2 ^ ( ( ( 2 pCnt N ) + 1 ) - 1 ) ) x. ( ( 2 ^ ( ( 2 pCnt N ) + 1 ) ) - 1 ) ) ) ) -> E. p e. ZZ ( ( ( 2 ^ p ) - 1 ) e. Prime /\ N = ( ( 2 ^ ( p - 1 ) ) x. ( ( 2 ^ p ) - 1 ) ) ) ) | 
						
							| 50 | 8 32 40 49 | syl12anc |  |-  ( ( ( N e. NN /\ 2 || N ) /\ ( 1 sigma N ) = ( 2 x. N ) ) -> E. p e. ZZ ( ( ( 2 ^ p ) - 1 ) e. Prime /\ N = ( ( 2 ^ ( p - 1 ) ) x. ( ( 2 ^ p ) - 1 ) ) ) ) | 
						
							| 51 | 50 | ex |  |-  ( ( N e. NN /\ 2 || N ) -> ( ( 1 sigma N ) = ( 2 x. N ) -> E. p e. ZZ ( ( ( 2 ^ p ) - 1 ) e. Prime /\ N = ( ( 2 ^ ( p - 1 ) ) x. ( ( 2 ^ p ) - 1 ) ) ) ) ) | 
						
							| 52 |  | perfect1 |  |-  ( ( p e. ZZ /\ ( ( 2 ^ p ) - 1 ) e. Prime ) -> ( 1 sigma ( ( 2 ^ ( p - 1 ) ) x. ( ( 2 ^ p ) - 1 ) ) ) = ( ( 2 ^ p ) x. ( ( 2 ^ p ) - 1 ) ) ) | 
						
							| 53 |  | 2cn |  |-  2 e. CC | 
						
							| 54 |  | mersenne |  |-  ( ( p e. ZZ /\ ( ( 2 ^ p ) - 1 ) e. Prime ) -> p e. Prime ) | 
						
							| 55 |  | prmnn |  |-  ( p e. Prime -> p e. NN ) | 
						
							| 56 | 54 55 | syl |  |-  ( ( p e. ZZ /\ ( ( 2 ^ p ) - 1 ) e. Prime ) -> p e. NN ) | 
						
							| 57 |  | expm1t |  |-  ( ( 2 e. CC /\ p e. NN ) -> ( 2 ^ p ) = ( ( 2 ^ ( p - 1 ) ) x. 2 ) ) | 
						
							| 58 | 53 56 57 | sylancr |  |-  ( ( p e. ZZ /\ ( ( 2 ^ p ) - 1 ) e. Prime ) -> ( 2 ^ p ) = ( ( 2 ^ ( p - 1 ) ) x. 2 ) ) | 
						
							| 59 |  | nnm1nn0 |  |-  ( p e. NN -> ( p - 1 ) e. NN0 ) | 
						
							| 60 | 56 59 | syl |  |-  ( ( p e. ZZ /\ ( ( 2 ^ p ) - 1 ) e. Prime ) -> ( p - 1 ) e. NN0 ) | 
						
							| 61 |  | expcl |  |-  ( ( 2 e. CC /\ ( p - 1 ) e. NN0 ) -> ( 2 ^ ( p - 1 ) ) e. CC ) | 
						
							| 62 | 53 60 61 | sylancr |  |-  ( ( p e. ZZ /\ ( ( 2 ^ p ) - 1 ) e. Prime ) -> ( 2 ^ ( p - 1 ) ) e. CC ) | 
						
							| 63 |  | mulcom |  |-  ( ( ( 2 ^ ( p - 1 ) ) e. CC /\ 2 e. CC ) -> ( ( 2 ^ ( p - 1 ) ) x. 2 ) = ( 2 x. ( 2 ^ ( p - 1 ) ) ) ) | 
						
							| 64 | 62 53 63 | sylancl |  |-  ( ( p e. ZZ /\ ( ( 2 ^ p ) - 1 ) e. Prime ) -> ( ( 2 ^ ( p - 1 ) ) x. 2 ) = ( 2 x. ( 2 ^ ( p - 1 ) ) ) ) | 
						
							| 65 | 58 64 | eqtrd |  |-  ( ( p e. ZZ /\ ( ( 2 ^ p ) - 1 ) e. Prime ) -> ( 2 ^ p ) = ( 2 x. ( 2 ^ ( p - 1 ) ) ) ) | 
						
							| 66 | 65 | oveq1d |  |-  ( ( p e. ZZ /\ ( ( 2 ^ p ) - 1 ) e. Prime ) -> ( ( 2 ^ p ) x. ( ( 2 ^ p ) - 1 ) ) = ( ( 2 x. ( 2 ^ ( p - 1 ) ) ) x. ( ( 2 ^ p ) - 1 ) ) ) | 
						
							| 67 |  | 2cnd |  |-  ( ( p e. ZZ /\ ( ( 2 ^ p ) - 1 ) e. Prime ) -> 2 e. CC ) | 
						
							| 68 |  | prmnn |  |-  ( ( ( 2 ^ p ) - 1 ) e. Prime -> ( ( 2 ^ p ) - 1 ) e. NN ) | 
						
							| 69 | 68 | adantl |  |-  ( ( p e. ZZ /\ ( ( 2 ^ p ) - 1 ) e. Prime ) -> ( ( 2 ^ p ) - 1 ) e. NN ) | 
						
							| 70 | 69 | nncnd |  |-  ( ( p e. ZZ /\ ( ( 2 ^ p ) - 1 ) e. Prime ) -> ( ( 2 ^ p ) - 1 ) e. CC ) | 
						
							| 71 | 67 62 70 | mulassd |  |-  ( ( p e. ZZ /\ ( ( 2 ^ p ) - 1 ) e. Prime ) -> ( ( 2 x. ( 2 ^ ( p - 1 ) ) ) x. ( ( 2 ^ p ) - 1 ) ) = ( 2 x. ( ( 2 ^ ( p - 1 ) ) x. ( ( 2 ^ p ) - 1 ) ) ) ) | 
						
							| 72 | 52 66 71 | 3eqtrd |  |-  ( ( p e. ZZ /\ ( ( 2 ^ p ) - 1 ) e. Prime ) -> ( 1 sigma ( ( 2 ^ ( p - 1 ) ) x. ( ( 2 ^ p ) - 1 ) ) ) = ( 2 x. ( ( 2 ^ ( p - 1 ) ) x. ( ( 2 ^ p ) - 1 ) ) ) ) | 
						
							| 73 |  | oveq2 |  |-  ( N = ( ( 2 ^ ( p - 1 ) ) x. ( ( 2 ^ p ) - 1 ) ) -> ( 1 sigma N ) = ( 1 sigma ( ( 2 ^ ( p - 1 ) ) x. ( ( 2 ^ p ) - 1 ) ) ) ) | 
						
							| 74 |  | oveq2 |  |-  ( N = ( ( 2 ^ ( p - 1 ) ) x. ( ( 2 ^ p ) - 1 ) ) -> ( 2 x. N ) = ( 2 x. ( ( 2 ^ ( p - 1 ) ) x. ( ( 2 ^ p ) - 1 ) ) ) ) | 
						
							| 75 | 73 74 | eqeq12d |  |-  ( N = ( ( 2 ^ ( p - 1 ) ) x. ( ( 2 ^ p ) - 1 ) ) -> ( ( 1 sigma N ) = ( 2 x. N ) <-> ( 1 sigma ( ( 2 ^ ( p - 1 ) ) x. ( ( 2 ^ p ) - 1 ) ) ) = ( 2 x. ( ( 2 ^ ( p - 1 ) ) x. ( ( 2 ^ p ) - 1 ) ) ) ) ) | 
						
							| 76 | 72 75 | syl5ibrcom |  |-  ( ( p e. ZZ /\ ( ( 2 ^ p ) - 1 ) e. Prime ) -> ( N = ( ( 2 ^ ( p - 1 ) ) x. ( ( 2 ^ p ) - 1 ) ) -> ( 1 sigma N ) = ( 2 x. N ) ) ) | 
						
							| 77 | 76 | impr |  |-  ( ( p e. ZZ /\ ( ( ( 2 ^ p ) - 1 ) e. Prime /\ N = ( ( 2 ^ ( p - 1 ) ) x. ( ( 2 ^ p ) - 1 ) ) ) ) -> ( 1 sigma N ) = ( 2 x. N ) ) | 
						
							| 78 | 77 | rexlimiva |  |-  ( E. p e. ZZ ( ( ( 2 ^ p ) - 1 ) e. Prime /\ N = ( ( 2 ^ ( p - 1 ) ) x. ( ( 2 ^ p ) - 1 ) ) ) -> ( 1 sigma N ) = ( 2 x. N ) ) | 
						
							| 79 | 51 78 | impbid1 |  |-  ( ( N e. NN /\ 2 || N ) -> ( ( 1 sigma N ) = ( 2 x. N ) <-> E. p e. ZZ ( ( ( 2 ^ p ) - 1 ) e. Prime /\ N = ( ( 2 ^ ( p - 1 ) ) x. ( ( 2 ^ p ) - 1 ) ) ) ) ) |