Metamath Proof Explorer


Theorem perfect

Description: The Euclid-Euler theorem, or Perfect Number theorem. A positive even integer N is a perfect number (that is, its divisor sum is 2 N ) if and only if it is of the form 2 ^ ( p - 1 ) x. ( 2 ^ p - 1 ) , where 2 ^ p - 1 is prime (a Mersenne prime). (It follows from this that p is also prime.) This is Metamath 100 proof #70. (Contributed by Mario Carneiro, 17-May-2016)

Ref Expression
Assertion perfect N2N1σN=2 Np2p1N=2p12p1

Proof

Step Hyp Ref Expression
1 simplr N2N1σN=2 N2N
2 2prm 2
3 simpll N2N1σN=2 NN
4 pcelnn 2N2pCntN2N
5 2 3 4 sylancr N2N1σN=2 N2pCntN2N
6 1 5 mpbird N2N1σN=2 N2pCntN
7 6 nnzd N2N1σN=2 N2pCntN
8 7 peano2zd N2N1σN=2 N2pCntN+1
9 pcdvds 2N22pCntNN
10 2 3 9 sylancr N2N1σN=2 N22pCntNN
11 2nn 2
12 6 nnnn0d N2N1σN=2 N2pCntN0
13 nnexpcl 22pCntN022pCntN
14 11 12 13 sylancr N2N1σN=2 N22pCntN
15 nndivdvds N22pCntN22pCntNNN22pCntN
16 3 14 15 syl2anc N2N1σN=2 N22pCntNNN22pCntN
17 10 16 mpbid N2N1σN=2 NN22pCntN
18 pcndvds2 2N¬2N22pCntN
19 2 3 18 sylancr N2N1σN=2 N¬2N22pCntN
20 simpr N2N1σN=2 N1σN=2 N
21 nncn NN
22 21 ad2antrr N2N1σN=2 NN
23 14 nncnd N2N1σN=2 N22pCntN
24 14 nnne0d N2N1σN=2 N22pCntN0
25 22 23 24 divcan2d N2N1σN=2 N22pCntNN22pCntN=N
26 25 oveq2d N2N1σN=2 N1σ22pCntNN22pCntN=1σN
27 25 oveq2d N2N1σN=2 N222pCntNN22pCntN=2 N
28 20 26 27 3eqtr4d N2N1σN=2 N1σ22pCntNN22pCntN=222pCntNN22pCntN
29 6 17 19 28 perfectlem2 N2N1σN=2 NN22pCntNN22pCntN=22pCntN+11
30 29 simprd N2N1σN=2 NN22pCntN=22pCntN+11
31 29 simpld N2N1σN=2 NN22pCntN
32 30 31 eqeltrrd N2N1σN=2 N22pCntN+11
33 6 nncnd N2N1σN=2 N2pCntN
34 ax-1cn 1
35 pncan 2pCntN12pCntN+1-1=2pCntN
36 33 34 35 sylancl N2N1σN=2 N2pCntN+1-1=2pCntN
37 36 eqcomd N2N1σN=2 N2pCntN=2pCntN+1-1
38 37 oveq2d N2N1σN=2 N22pCntN=22pCntN+1-1
39 38 30 oveq12d N2N1σN=2 N22pCntNN22pCntN=22pCntN+1-122pCntN+11
40 25 39 eqtr3d N2N1σN=2 NN=22pCntN+1-122pCntN+11
41 oveq2 p=2pCntN+12p=22pCntN+1
42 41 oveq1d p=2pCntN+12p1=22pCntN+11
43 42 eleq1d p=2pCntN+12p122pCntN+11
44 oveq1 p=2pCntN+1p1=2pCntN+1-1
45 44 oveq2d p=2pCntN+12p1=22pCntN+1-1
46 45 42 oveq12d p=2pCntN+12p12p1=22pCntN+1-122pCntN+11
47 46 eqeq2d p=2pCntN+1N=2p12p1N=22pCntN+1-122pCntN+11
48 43 47 anbi12d p=2pCntN+12p1N=2p12p122pCntN+11N=22pCntN+1-122pCntN+11
49 48 rspcev 2pCntN+122pCntN+11N=22pCntN+1-122pCntN+11p2p1N=2p12p1
50 8 32 40 49 syl12anc N2N1σN=2 Np2p1N=2p12p1
51 50 ex N2N1σN=2 Np2p1N=2p12p1
52 perfect1 p2p11σ2p12p1=2p2p1
53 2cn 2
54 mersenne p2p1p
55 prmnn pp
56 54 55 syl p2p1p
57 expm1t 2p2p=2p12
58 53 56 57 sylancr p2p12p=2p12
59 nnm1nn0 pp10
60 56 59 syl p2p1p10
61 expcl 2p102p1
62 53 60 61 sylancr p2p12p1
63 mulcom 2p122p12=22p1
64 62 53 63 sylancl p2p12p12=22p1
65 58 64 eqtrd p2p12p=22p1
66 65 oveq1d p2p12p2p1=22p12p1
67 2cnd p2p12
68 prmnn 2p12p1
69 68 adantl p2p12p1
70 69 nncnd p2p12p1
71 67 62 70 mulassd p2p122p12p1=22p12p1
72 52 66 71 3eqtrd p2p11σ2p12p1=22p12p1
73 oveq2 N=2p12p11σN=1σ2p12p1
74 oveq2 N=2p12p12 N=22p12p1
75 73 74 eqeq12d N=2p12p11σN=2 N1σ2p12p1=22p12p1
76 72 75 syl5ibrcom p2p1N=2p12p11σN=2 N
77 76 impr p2p1N=2p12p11σN=2 N
78 77 rexlimiva p2p1N=2p12p11σN=2 N
79 51 78 impbid1 N2N1σN=2 Np2p1N=2p12p1