| Step |
Hyp |
Ref |
Expression |
| 1 |
|
lighneallem1 |
⊢ ( ( 𝑃 = 2 ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ) → ( ( 2 ↑ 𝑁 ) − 1 ) ≠ ( 𝑃 ↑ 𝑀 ) ) |
| 2 |
|
eqneqall |
⊢ ( ( ( 2 ↑ 𝑁 ) − 1 ) = ( 𝑃 ↑ 𝑀 ) → ( ( ( 2 ↑ 𝑁 ) − 1 ) ≠ ( 𝑃 ↑ 𝑀 ) → 𝑀 = 1 ) ) |
| 3 |
1 2
|
syl5com |
⊢ ( ( 𝑃 = 2 ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ) → ( ( ( 2 ↑ 𝑁 ) − 1 ) = ( 𝑃 ↑ 𝑀 ) → 𝑀 = 1 ) ) |
| 4 |
3
|
3exp |
⊢ ( 𝑃 = 2 → ( 𝑀 ∈ ℕ → ( 𝑁 ∈ ℕ → ( ( ( 2 ↑ 𝑁 ) − 1 ) = ( 𝑃 ↑ 𝑀 ) → 𝑀 = 1 ) ) ) ) |
| 5 |
4
|
a1d |
⊢ ( 𝑃 = 2 → ( 𝑃 ∈ ℙ → ( 𝑀 ∈ ℕ → ( 𝑁 ∈ ℕ → ( ( ( 2 ↑ 𝑁 ) − 1 ) = ( 𝑃 ↑ 𝑀 ) → 𝑀 = 1 ) ) ) ) ) |
| 6 |
|
eldifsn |
⊢ ( 𝑃 ∈ ( ℙ ∖ { 2 } ) ↔ ( 𝑃 ∈ ℙ ∧ 𝑃 ≠ 2 ) ) |
| 7 |
|
lighneallem2 |
⊢ ( ( ( 𝑃 ∈ ( ℙ ∖ { 2 } ) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ) ∧ 2 ∥ 𝑁 ∧ ( ( 2 ↑ 𝑁 ) − 1 ) = ( 𝑃 ↑ 𝑀 ) ) → 𝑀 = 1 ) |
| 8 |
7
|
3exp |
⊢ ( ( 𝑃 ∈ ( ℙ ∖ { 2 } ) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ) → ( 2 ∥ 𝑁 → ( ( ( 2 ↑ 𝑁 ) − 1 ) = ( 𝑃 ↑ 𝑀 ) → 𝑀 = 1 ) ) ) |
| 9 |
8
|
3exp |
⊢ ( 𝑃 ∈ ( ℙ ∖ { 2 } ) → ( 𝑀 ∈ ℕ → ( 𝑁 ∈ ℕ → ( 2 ∥ 𝑁 → ( ( ( 2 ↑ 𝑁 ) − 1 ) = ( 𝑃 ↑ 𝑀 ) → 𝑀 = 1 ) ) ) ) ) |
| 10 |
9
|
com3r |
⊢ ( 𝑁 ∈ ℕ → ( 𝑃 ∈ ( ℙ ∖ { 2 } ) → ( 𝑀 ∈ ℕ → ( 2 ∥ 𝑁 → ( ( ( 2 ↑ 𝑁 ) − 1 ) = ( 𝑃 ↑ 𝑀 ) → 𝑀 = 1 ) ) ) ) ) |
| 11 |
10
|
com24 |
⊢ ( 𝑁 ∈ ℕ → ( 2 ∥ 𝑁 → ( 𝑀 ∈ ℕ → ( 𝑃 ∈ ( ℙ ∖ { 2 } ) → ( ( ( 2 ↑ 𝑁 ) − 1 ) = ( 𝑃 ↑ 𝑀 ) → 𝑀 = 1 ) ) ) ) ) |
| 12 |
|
lighneallem3 |
⊢ ( ( ( 𝑃 ∈ ( ℙ ∖ { 2 } ) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ) ∧ ( ¬ 2 ∥ 𝑁 ∧ 2 ∥ 𝑀 ) ∧ ( ( 2 ↑ 𝑁 ) − 1 ) = ( 𝑃 ↑ 𝑀 ) ) → 𝑀 = 1 ) |
| 13 |
12
|
3exp |
⊢ ( ( 𝑃 ∈ ( ℙ ∖ { 2 } ) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ) → ( ( ¬ 2 ∥ 𝑁 ∧ 2 ∥ 𝑀 ) → ( ( ( 2 ↑ 𝑁 ) − 1 ) = ( 𝑃 ↑ 𝑀 ) → 𝑀 = 1 ) ) ) |
| 14 |
13
|
3exp |
⊢ ( 𝑃 ∈ ( ℙ ∖ { 2 } ) → ( 𝑀 ∈ ℕ → ( 𝑁 ∈ ℕ → ( ( ¬ 2 ∥ 𝑁 ∧ 2 ∥ 𝑀 ) → ( ( ( 2 ↑ 𝑁 ) − 1 ) = ( 𝑃 ↑ 𝑀 ) → 𝑀 = 1 ) ) ) ) ) |
| 15 |
14
|
com24 |
⊢ ( 𝑃 ∈ ( ℙ ∖ { 2 } ) → ( ( ¬ 2 ∥ 𝑁 ∧ 2 ∥ 𝑀 ) → ( 𝑁 ∈ ℕ → ( 𝑀 ∈ ℕ → ( ( ( 2 ↑ 𝑁 ) − 1 ) = ( 𝑃 ↑ 𝑀 ) → 𝑀 = 1 ) ) ) ) ) |
| 16 |
15
|
com14 |
⊢ ( 𝑀 ∈ ℕ → ( ( ¬ 2 ∥ 𝑁 ∧ 2 ∥ 𝑀 ) → ( 𝑁 ∈ ℕ → ( 𝑃 ∈ ( ℙ ∖ { 2 } ) → ( ( ( 2 ↑ 𝑁 ) − 1 ) = ( 𝑃 ↑ 𝑀 ) → 𝑀 = 1 ) ) ) ) ) |
| 17 |
16
|
expcomd |
⊢ ( 𝑀 ∈ ℕ → ( 2 ∥ 𝑀 → ( ¬ 2 ∥ 𝑁 → ( 𝑁 ∈ ℕ → ( 𝑃 ∈ ( ℙ ∖ { 2 } ) → ( ( ( 2 ↑ 𝑁 ) − 1 ) = ( 𝑃 ↑ 𝑀 ) → 𝑀 = 1 ) ) ) ) ) ) |
| 18 |
|
lighneallem4 |
⊢ ( ( ( 𝑃 ∈ ( ℙ ∖ { 2 } ) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ) ∧ ( ¬ 2 ∥ 𝑁 ∧ ¬ 2 ∥ 𝑀 ) ∧ ( ( 2 ↑ 𝑁 ) − 1 ) = ( 𝑃 ↑ 𝑀 ) ) → 𝑀 = 1 ) |
| 19 |
18
|
3exp |
⊢ ( ( 𝑃 ∈ ( ℙ ∖ { 2 } ) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ) → ( ( ¬ 2 ∥ 𝑁 ∧ ¬ 2 ∥ 𝑀 ) → ( ( ( 2 ↑ 𝑁 ) − 1 ) = ( 𝑃 ↑ 𝑀 ) → 𝑀 = 1 ) ) ) |
| 20 |
19
|
3exp |
⊢ ( 𝑃 ∈ ( ℙ ∖ { 2 } ) → ( 𝑀 ∈ ℕ → ( 𝑁 ∈ ℕ → ( ( ¬ 2 ∥ 𝑁 ∧ ¬ 2 ∥ 𝑀 ) → ( ( ( 2 ↑ 𝑁 ) − 1 ) = ( 𝑃 ↑ 𝑀 ) → 𝑀 = 1 ) ) ) ) ) |
| 21 |
20
|
com24 |
⊢ ( 𝑃 ∈ ( ℙ ∖ { 2 } ) → ( ( ¬ 2 ∥ 𝑁 ∧ ¬ 2 ∥ 𝑀 ) → ( 𝑁 ∈ ℕ → ( 𝑀 ∈ ℕ → ( ( ( 2 ↑ 𝑁 ) − 1 ) = ( 𝑃 ↑ 𝑀 ) → 𝑀 = 1 ) ) ) ) ) |
| 22 |
21
|
com14 |
⊢ ( 𝑀 ∈ ℕ → ( ( ¬ 2 ∥ 𝑁 ∧ ¬ 2 ∥ 𝑀 ) → ( 𝑁 ∈ ℕ → ( 𝑃 ∈ ( ℙ ∖ { 2 } ) → ( ( ( 2 ↑ 𝑁 ) − 1 ) = ( 𝑃 ↑ 𝑀 ) → 𝑀 = 1 ) ) ) ) ) |
| 23 |
22
|
expcomd |
⊢ ( 𝑀 ∈ ℕ → ( ¬ 2 ∥ 𝑀 → ( ¬ 2 ∥ 𝑁 → ( 𝑁 ∈ ℕ → ( 𝑃 ∈ ( ℙ ∖ { 2 } ) → ( ( ( 2 ↑ 𝑁 ) − 1 ) = ( 𝑃 ↑ 𝑀 ) → 𝑀 = 1 ) ) ) ) ) ) |
| 24 |
17 23
|
pm2.61d |
⊢ ( 𝑀 ∈ ℕ → ( ¬ 2 ∥ 𝑁 → ( 𝑁 ∈ ℕ → ( 𝑃 ∈ ( ℙ ∖ { 2 } ) → ( ( ( 2 ↑ 𝑁 ) − 1 ) = ( 𝑃 ↑ 𝑀 ) → 𝑀 = 1 ) ) ) ) ) |
| 25 |
24
|
com13 |
⊢ ( 𝑁 ∈ ℕ → ( ¬ 2 ∥ 𝑁 → ( 𝑀 ∈ ℕ → ( 𝑃 ∈ ( ℙ ∖ { 2 } ) → ( ( ( 2 ↑ 𝑁 ) − 1 ) = ( 𝑃 ↑ 𝑀 ) → 𝑀 = 1 ) ) ) ) ) |
| 26 |
11 25
|
pm2.61d |
⊢ ( 𝑁 ∈ ℕ → ( 𝑀 ∈ ℕ → ( 𝑃 ∈ ( ℙ ∖ { 2 } ) → ( ( ( 2 ↑ 𝑁 ) − 1 ) = ( 𝑃 ↑ 𝑀 ) → 𝑀 = 1 ) ) ) ) |
| 27 |
26
|
com13 |
⊢ ( 𝑃 ∈ ( ℙ ∖ { 2 } ) → ( 𝑀 ∈ ℕ → ( 𝑁 ∈ ℕ → ( ( ( 2 ↑ 𝑁 ) − 1 ) = ( 𝑃 ↑ 𝑀 ) → 𝑀 = 1 ) ) ) ) |
| 28 |
6 27
|
sylbir |
⊢ ( ( 𝑃 ∈ ℙ ∧ 𝑃 ≠ 2 ) → ( 𝑀 ∈ ℕ → ( 𝑁 ∈ ℕ → ( ( ( 2 ↑ 𝑁 ) − 1 ) = ( 𝑃 ↑ 𝑀 ) → 𝑀 = 1 ) ) ) ) |
| 29 |
28
|
expcom |
⊢ ( 𝑃 ≠ 2 → ( 𝑃 ∈ ℙ → ( 𝑀 ∈ ℕ → ( 𝑁 ∈ ℕ → ( ( ( 2 ↑ 𝑁 ) − 1 ) = ( 𝑃 ↑ 𝑀 ) → 𝑀 = 1 ) ) ) ) ) |
| 30 |
5 29
|
pm2.61ine |
⊢ ( 𝑃 ∈ ℙ → ( 𝑀 ∈ ℕ → ( 𝑁 ∈ ℕ → ( ( ( 2 ↑ 𝑁 ) − 1 ) = ( 𝑃 ↑ 𝑀 ) → 𝑀 = 1 ) ) ) ) |
| 31 |
30
|
3imp1 |
⊢ ( ( ( 𝑃 ∈ ℙ ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ) ∧ ( ( 2 ↑ 𝑁 ) − 1 ) = ( 𝑃 ↑ 𝑀 ) ) → 𝑀 = 1 ) |
| 32 |
|
oveq2 |
⊢ ( 𝑀 = 1 → ( 𝑃 ↑ 𝑀 ) = ( 𝑃 ↑ 1 ) ) |
| 33 |
32
|
eqeq2d |
⊢ ( 𝑀 = 1 → ( ( ( 2 ↑ 𝑁 ) − 1 ) = ( 𝑃 ↑ 𝑀 ) ↔ ( ( 2 ↑ 𝑁 ) − 1 ) = ( 𝑃 ↑ 1 ) ) ) |
| 34 |
33
|
adantl |
⊢ ( ( ( 𝑃 ∈ ℙ ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ) ∧ 𝑀 = 1 ) → ( ( ( 2 ↑ 𝑁 ) − 1 ) = ( 𝑃 ↑ 𝑀 ) ↔ ( ( 2 ↑ 𝑁 ) − 1 ) = ( 𝑃 ↑ 1 ) ) ) |
| 35 |
|
prmnn |
⊢ ( 𝑃 ∈ ℙ → 𝑃 ∈ ℕ ) |
| 36 |
35
|
nncnd |
⊢ ( 𝑃 ∈ ℙ → 𝑃 ∈ ℂ ) |
| 37 |
36
|
3ad2ant1 |
⊢ ( ( 𝑃 ∈ ℙ ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ) → 𝑃 ∈ ℂ ) |
| 38 |
37
|
exp1d |
⊢ ( ( 𝑃 ∈ ℙ ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ) → ( 𝑃 ↑ 1 ) = 𝑃 ) |
| 39 |
38
|
eqeq2d |
⊢ ( ( 𝑃 ∈ ℙ ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ) → ( ( ( 2 ↑ 𝑁 ) − 1 ) = ( 𝑃 ↑ 1 ) ↔ ( ( 2 ↑ 𝑁 ) − 1 ) = 𝑃 ) ) |
| 40 |
|
nnz |
⊢ ( 𝑁 ∈ ℕ → 𝑁 ∈ ℤ ) |
| 41 |
40
|
3ad2ant3 |
⊢ ( ( 𝑃 ∈ ℙ ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ) → 𝑁 ∈ ℤ ) |
| 42 |
|
simpl1 |
⊢ ( ( ( 𝑃 ∈ ℙ ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ) ∧ ( ( 2 ↑ 𝑁 ) − 1 ) = 𝑃 ) → 𝑃 ∈ ℙ ) |
| 43 |
|
eleq1 |
⊢ ( ( ( 2 ↑ 𝑁 ) − 1 ) = 𝑃 → ( ( ( 2 ↑ 𝑁 ) − 1 ) ∈ ℙ ↔ 𝑃 ∈ ℙ ) ) |
| 44 |
43
|
adantl |
⊢ ( ( ( 𝑃 ∈ ℙ ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ) ∧ ( ( 2 ↑ 𝑁 ) − 1 ) = 𝑃 ) → ( ( ( 2 ↑ 𝑁 ) − 1 ) ∈ ℙ ↔ 𝑃 ∈ ℙ ) ) |
| 45 |
42 44
|
mpbird |
⊢ ( ( ( 𝑃 ∈ ℙ ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ) ∧ ( ( 2 ↑ 𝑁 ) − 1 ) = 𝑃 ) → ( ( 2 ↑ 𝑁 ) − 1 ) ∈ ℙ ) |
| 46 |
|
mersenne |
⊢ ( ( 𝑁 ∈ ℤ ∧ ( ( 2 ↑ 𝑁 ) − 1 ) ∈ ℙ ) → 𝑁 ∈ ℙ ) |
| 47 |
41 45 46
|
syl2an2r |
⊢ ( ( ( 𝑃 ∈ ℙ ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ) ∧ ( ( 2 ↑ 𝑁 ) − 1 ) = 𝑃 ) → 𝑁 ∈ ℙ ) |
| 48 |
47
|
ex |
⊢ ( ( 𝑃 ∈ ℙ ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ) → ( ( ( 2 ↑ 𝑁 ) − 1 ) = 𝑃 → 𝑁 ∈ ℙ ) ) |
| 49 |
39 48
|
sylbid |
⊢ ( ( 𝑃 ∈ ℙ ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ) → ( ( ( 2 ↑ 𝑁 ) − 1 ) = ( 𝑃 ↑ 1 ) → 𝑁 ∈ ℙ ) ) |
| 50 |
49
|
adantr |
⊢ ( ( ( 𝑃 ∈ ℙ ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ) ∧ 𝑀 = 1 ) → ( ( ( 2 ↑ 𝑁 ) − 1 ) = ( 𝑃 ↑ 1 ) → 𝑁 ∈ ℙ ) ) |
| 51 |
34 50
|
sylbid |
⊢ ( ( ( 𝑃 ∈ ℙ ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ) ∧ 𝑀 = 1 ) → ( ( ( 2 ↑ 𝑁 ) − 1 ) = ( 𝑃 ↑ 𝑀 ) → 𝑁 ∈ ℙ ) ) |
| 52 |
51
|
impancom |
⊢ ( ( ( 𝑃 ∈ ℙ ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ) ∧ ( ( 2 ↑ 𝑁 ) − 1 ) = ( 𝑃 ↑ 𝑀 ) ) → ( 𝑀 = 1 → 𝑁 ∈ ℙ ) ) |
| 53 |
31 52
|
jcai |
⊢ ( ( ( 𝑃 ∈ ℙ ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ) ∧ ( ( 2 ↑ 𝑁 ) − 1 ) = ( 𝑃 ↑ 𝑀 ) ) → ( 𝑀 = 1 ∧ 𝑁 ∈ ℙ ) ) |