| Step | Hyp | Ref | Expression | 
						
							| 1 |  | lighneallem1 | ⊢ ( ( 𝑃  =  2  ∧  𝑀  ∈  ℕ  ∧  𝑁  ∈  ℕ )  →  ( ( 2 ↑ 𝑁 )  −  1 )  ≠  ( 𝑃 ↑ 𝑀 ) ) | 
						
							| 2 |  | eqneqall | ⊢ ( ( ( 2 ↑ 𝑁 )  −  1 )  =  ( 𝑃 ↑ 𝑀 )  →  ( ( ( 2 ↑ 𝑁 )  −  1 )  ≠  ( 𝑃 ↑ 𝑀 )  →  𝑀  =  1 ) ) | 
						
							| 3 | 1 2 | syl5com | ⊢ ( ( 𝑃  =  2  ∧  𝑀  ∈  ℕ  ∧  𝑁  ∈  ℕ )  →  ( ( ( 2 ↑ 𝑁 )  −  1 )  =  ( 𝑃 ↑ 𝑀 )  →  𝑀  =  1 ) ) | 
						
							| 4 | 3 | 3exp | ⊢ ( 𝑃  =  2  →  ( 𝑀  ∈  ℕ  →  ( 𝑁  ∈  ℕ  →  ( ( ( 2 ↑ 𝑁 )  −  1 )  =  ( 𝑃 ↑ 𝑀 )  →  𝑀  =  1 ) ) ) ) | 
						
							| 5 | 4 | a1d | ⊢ ( 𝑃  =  2  →  ( 𝑃  ∈  ℙ  →  ( 𝑀  ∈  ℕ  →  ( 𝑁  ∈  ℕ  →  ( ( ( 2 ↑ 𝑁 )  −  1 )  =  ( 𝑃 ↑ 𝑀 )  →  𝑀  =  1 ) ) ) ) ) | 
						
							| 6 |  | eldifsn | ⊢ ( 𝑃  ∈  ( ℙ  ∖  { 2 } )  ↔  ( 𝑃  ∈  ℙ  ∧  𝑃  ≠  2 ) ) | 
						
							| 7 |  | lighneallem2 | ⊢ ( ( ( 𝑃  ∈  ( ℙ  ∖  { 2 } )  ∧  𝑀  ∈  ℕ  ∧  𝑁  ∈  ℕ )  ∧  2  ∥  𝑁  ∧  ( ( 2 ↑ 𝑁 )  −  1 )  =  ( 𝑃 ↑ 𝑀 ) )  →  𝑀  =  1 ) | 
						
							| 8 | 7 | 3exp | ⊢ ( ( 𝑃  ∈  ( ℙ  ∖  { 2 } )  ∧  𝑀  ∈  ℕ  ∧  𝑁  ∈  ℕ )  →  ( 2  ∥  𝑁  →  ( ( ( 2 ↑ 𝑁 )  −  1 )  =  ( 𝑃 ↑ 𝑀 )  →  𝑀  =  1 ) ) ) | 
						
							| 9 | 8 | 3exp | ⊢ ( 𝑃  ∈  ( ℙ  ∖  { 2 } )  →  ( 𝑀  ∈  ℕ  →  ( 𝑁  ∈  ℕ  →  ( 2  ∥  𝑁  →  ( ( ( 2 ↑ 𝑁 )  −  1 )  =  ( 𝑃 ↑ 𝑀 )  →  𝑀  =  1 ) ) ) ) ) | 
						
							| 10 | 9 | com3r | ⊢ ( 𝑁  ∈  ℕ  →  ( 𝑃  ∈  ( ℙ  ∖  { 2 } )  →  ( 𝑀  ∈  ℕ  →  ( 2  ∥  𝑁  →  ( ( ( 2 ↑ 𝑁 )  −  1 )  =  ( 𝑃 ↑ 𝑀 )  →  𝑀  =  1 ) ) ) ) ) | 
						
							| 11 | 10 | com24 | ⊢ ( 𝑁  ∈  ℕ  →  ( 2  ∥  𝑁  →  ( 𝑀  ∈  ℕ  →  ( 𝑃  ∈  ( ℙ  ∖  { 2 } )  →  ( ( ( 2 ↑ 𝑁 )  −  1 )  =  ( 𝑃 ↑ 𝑀 )  →  𝑀  =  1 ) ) ) ) ) | 
						
							| 12 |  | lighneallem3 | ⊢ ( ( ( 𝑃  ∈  ( ℙ  ∖  { 2 } )  ∧  𝑀  ∈  ℕ  ∧  𝑁  ∈  ℕ )  ∧  ( ¬  2  ∥  𝑁  ∧  2  ∥  𝑀 )  ∧  ( ( 2 ↑ 𝑁 )  −  1 )  =  ( 𝑃 ↑ 𝑀 ) )  →  𝑀  =  1 ) | 
						
							| 13 | 12 | 3exp | ⊢ ( ( 𝑃  ∈  ( ℙ  ∖  { 2 } )  ∧  𝑀  ∈  ℕ  ∧  𝑁  ∈  ℕ )  →  ( ( ¬  2  ∥  𝑁  ∧  2  ∥  𝑀 )  →  ( ( ( 2 ↑ 𝑁 )  −  1 )  =  ( 𝑃 ↑ 𝑀 )  →  𝑀  =  1 ) ) ) | 
						
							| 14 | 13 | 3exp | ⊢ ( 𝑃  ∈  ( ℙ  ∖  { 2 } )  →  ( 𝑀  ∈  ℕ  →  ( 𝑁  ∈  ℕ  →  ( ( ¬  2  ∥  𝑁  ∧  2  ∥  𝑀 )  →  ( ( ( 2 ↑ 𝑁 )  −  1 )  =  ( 𝑃 ↑ 𝑀 )  →  𝑀  =  1 ) ) ) ) ) | 
						
							| 15 | 14 | com24 | ⊢ ( 𝑃  ∈  ( ℙ  ∖  { 2 } )  →  ( ( ¬  2  ∥  𝑁  ∧  2  ∥  𝑀 )  →  ( 𝑁  ∈  ℕ  →  ( 𝑀  ∈  ℕ  →  ( ( ( 2 ↑ 𝑁 )  −  1 )  =  ( 𝑃 ↑ 𝑀 )  →  𝑀  =  1 ) ) ) ) ) | 
						
							| 16 | 15 | com14 | ⊢ ( 𝑀  ∈  ℕ  →  ( ( ¬  2  ∥  𝑁  ∧  2  ∥  𝑀 )  →  ( 𝑁  ∈  ℕ  →  ( 𝑃  ∈  ( ℙ  ∖  { 2 } )  →  ( ( ( 2 ↑ 𝑁 )  −  1 )  =  ( 𝑃 ↑ 𝑀 )  →  𝑀  =  1 ) ) ) ) ) | 
						
							| 17 | 16 | expcomd | ⊢ ( 𝑀  ∈  ℕ  →  ( 2  ∥  𝑀  →  ( ¬  2  ∥  𝑁  →  ( 𝑁  ∈  ℕ  →  ( 𝑃  ∈  ( ℙ  ∖  { 2 } )  →  ( ( ( 2 ↑ 𝑁 )  −  1 )  =  ( 𝑃 ↑ 𝑀 )  →  𝑀  =  1 ) ) ) ) ) ) | 
						
							| 18 |  | lighneallem4 | ⊢ ( ( ( 𝑃  ∈  ( ℙ  ∖  { 2 } )  ∧  𝑀  ∈  ℕ  ∧  𝑁  ∈  ℕ )  ∧  ( ¬  2  ∥  𝑁  ∧  ¬  2  ∥  𝑀 )  ∧  ( ( 2 ↑ 𝑁 )  −  1 )  =  ( 𝑃 ↑ 𝑀 ) )  →  𝑀  =  1 ) | 
						
							| 19 | 18 | 3exp | ⊢ ( ( 𝑃  ∈  ( ℙ  ∖  { 2 } )  ∧  𝑀  ∈  ℕ  ∧  𝑁  ∈  ℕ )  →  ( ( ¬  2  ∥  𝑁  ∧  ¬  2  ∥  𝑀 )  →  ( ( ( 2 ↑ 𝑁 )  −  1 )  =  ( 𝑃 ↑ 𝑀 )  →  𝑀  =  1 ) ) ) | 
						
							| 20 | 19 | 3exp | ⊢ ( 𝑃  ∈  ( ℙ  ∖  { 2 } )  →  ( 𝑀  ∈  ℕ  →  ( 𝑁  ∈  ℕ  →  ( ( ¬  2  ∥  𝑁  ∧  ¬  2  ∥  𝑀 )  →  ( ( ( 2 ↑ 𝑁 )  −  1 )  =  ( 𝑃 ↑ 𝑀 )  →  𝑀  =  1 ) ) ) ) ) | 
						
							| 21 | 20 | com24 | ⊢ ( 𝑃  ∈  ( ℙ  ∖  { 2 } )  →  ( ( ¬  2  ∥  𝑁  ∧  ¬  2  ∥  𝑀 )  →  ( 𝑁  ∈  ℕ  →  ( 𝑀  ∈  ℕ  →  ( ( ( 2 ↑ 𝑁 )  −  1 )  =  ( 𝑃 ↑ 𝑀 )  →  𝑀  =  1 ) ) ) ) ) | 
						
							| 22 | 21 | com14 | ⊢ ( 𝑀  ∈  ℕ  →  ( ( ¬  2  ∥  𝑁  ∧  ¬  2  ∥  𝑀 )  →  ( 𝑁  ∈  ℕ  →  ( 𝑃  ∈  ( ℙ  ∖  { 2 } )  →  ( ( ( 2 ↑ 𝑁 )  −  1 )  =  ( 𝑃 ↑ 𝑀 )  →  𝑀  =  1 ) ) ) ) ) | 
						
							| 23 | 22 | expcomd | ⊢ ( 𝑀  ∈  ℕ  →  ( ¬  2  ∥  𝑀  →  ( ¬  2  ∥  𝑁  →  ( 𝑁  ∈  ℕ  →  ( 𝑃  ∈  ( ℙ  ∖  { 2 } )  →  ( ( ( 2 ↑ 𝑁 )  −  1 )  =  ( 𝑃 ↑ 𝑀 )  →  𝑀  =  1 ) ) ) ) ) ) | 
						
							| 24 | 17 23 | pm2.61d | ⊢ ( 𝑀  ∈  ℕ  →  ( ¬  2  ∥  𝑁  →  ( 𝑁  ∈  ℕ  →  ( 𝑃  ∈  ( ℙ  ∖  { 2 } )  →  ( ( ( 2 ↑ 𝑁 )  −  1 )  =  ( 𝑃 ↑ 𝑀 )  →  𝑀  =  1 ) ) ) ) ) | 
						
							| 25 | 24 | com13 | ⊢ ( 𝑁  ∈  ℕ  →  ( ¬  2  ∥  𝑁  →  ( 𝑀  ∈  ℕ  →  ( 𝑃  ∈  ( ℙ  ∖  { 2 } )  →  ( ( ( 2 ↑ 𝑁 )  −  1 )  =  ( 𝑃 ↑ 𝑀 )  →  𝑀  =  1 ) ) ) ) ) | 
						
							| 26 | 11 25 | pm2.61d | ⊢ ( 𝑁  ∈  ℕ  →  ( 𝑀  ∈  ℕ  →  ( 𝑃  ∈  ( ℙ  ∖  { 2 } )  →  ( ( ( 2 ↑ 𝑁 )  −  1 )  =  ( 𝑃 ↑ 𝑀 )  →  𝑀  =  1 ) ) ) ) | 
						
							| 27 | 26 | com13 | ⊢ ( 𝑃  ∈  ( ℙ  ∖  { 2 } )  →  ( 𝑀  ∈  ℕ  →  ( 𝑁  ∈  ℕ  →  ( ( ( 2 ↑ 𝑁 )  −  1 )  =  ( 𝑃 ↑ 𝑀 )  →  𝑀  =  1 ) ) ) ) | 
						
							| 28 | 6 27 | sylbir | ⊢ ( ( 𝑃  ∈  ℙ  ∧  𝑃  ≠  2 )  →  ( 𝑀  ∈  ℕ  →  ( 𝑁  ∈  ℕ  →  ( ( ( 2 ↑ 𝑁 )  −  1 )  =  ( 𝑃 ↑ 𝑀 )  →  𝑀  =  1 ) ) ) ) | 
						
							| 29 | 28 | expcom | ⊢ ( 𝑃  ≠  2  →  ( 𝑃  ∈  ℙ  →  ( 𝑀  ∈  ℕ  →  ( 𝑁  ∈  ℕ  →  ( ( ( 2 ↑ 𝑁 )  −  1 )  =  ( 𝑃 ↑ 𝑀 )  →  𝑀  =  1 ) ) ) ) ) | 
						
							| 30 | 5 29 | pm2.61ine | ⊢ ( 𝑃  ∈  ℙ  →  ( 𝑀  ∈  ℕ  →  ( 𝑁  ∈  ℕ  →  ( ( ( 2 ↑ 𝑁 )  −  1 )  =  ( 𝑃 ↑ 𝑀 )  →  𝑀  =  1 ) ) ) ) | 
						
							| 31 | 30 | 3imp1 | ⊢ ( ( ( 𝑃  ∈  ℙ  ∧  𝑀  ∈  ℕ  ∧  𝑁  ∈  ℕ )  ∧  ( ( 2 ↑ 𝑁 )  −  1 )  =  ( 𝑃 ↑ 𝑀 ) )  →  𝑀  =  1 ) | 
						
							| 32 |  | oveq2 | ⊢ ( 𝑀  =  1  →  ( 𝑃 ↑ 𝑀 )  =  ( 𝑃 ↑ 1 ) ) | 
						
							| 33 | 32 | eqeq2d | ⊢ ( 𝑀  =  1  →  ( ( ( 2 ↑ 𝑁 )  −  1 )  =  ( 𝑃 ↑ 𝑀 )  ↔  ( ( 2 ↑ 𝑁 )  −  1 )  =  ( 𝑃 ↑ 1 ) ) ) | 
						
							| 34 | 33 | adantl | ⊢ ( ( ( 𝑃  ∈  ℙ  ∧  𝑀  ∈  ℕ  ∧  𝑁  ∈  ℕ )  ∧  𝑀  =  1 )  →  ( ( ( 2 ↑ 𝑁 )  −  1 )  =  ( 𝑃 ↑ 𝑀 )  ↔  ( ( 2 ↑ 𝑁 )  −  1 )  =  ( 𝑃 ↑ 1 ) ) ) | 
						
							| 35 |  | prmnn | ⊢ ( 𝑃  ∈  ℙ  →  𝑃  ∈  ℕ ) | 
						
							| 36 | 35 | nncnd | ⊢ ( 𝑃  ∈  ℙ  →  𝑃  ∈  ℂ ) | 
						
							| 37 | 36 | 3ad2ant1 | ⊢ ( ( 𝑃  ∈  ℙ  ∧  𝑀  ∈  ℕ  ∧  𝑁  ∈  ℕ )  →  𝑃  ∈  ℂ ) | 
						
							| 38 | 37 | exp1d | ⊢ ( ( 𝑃  ∈  ℙ  ∧  𝑀  ∈  ℕ  ∧  𝑁  ∈  ℕ )  →  ( 𝑃 ↑ 1 )  =  𝑃 ) | 
						
							| 39 | 38 | eqeq2d | ⊢ ( ( 𝑃  ∈  ℙ  ∧  𝑀  ∈  ℕ  ∧  𝑁  ∈  ℕ )  →  ( ( ( 2 ↑ 𝑁 )  −  1 )  =  ( 𝑃 ↑ 1 )  ↔  ( ( 2 ↑ 𝑁 )  −  1 )  =  𝑃 ) ) | 
						
							| 40 |  | nnz | ⊢ ( 𝑁  ∈  ℕ  →  𝑁  ∈  ℤ ) | 
						
							| 41 | 40 | 3ad2ant3 | ⊢ ( ( 𝑃  ∈  ℙ  ∧  𝑀  ∈  ℕ  ∧  𝑁  ∈  ℕ )  →  𝑁  ∈  ℤ ) | 
						
							| 42 |  | simpl1 | ⊢ ( ( ( 𝑃  ∈  ℙ  ∧  𝑀  ∈  ℕ  ∧  𝑁  ∈  ℕ )  ∧  ( ( 2 ↑ 𝑁 )  −  1 )  =  𝑃 )  →  𝑃  ∈  ℙ ) | 
						
							| 43 |  | eleq1 | ⊢ ( ( ( 2 ↑ 𝑁 )  −  1 )  =  𝑃  →  ( ( ( 2 ↑ 𝑁 )  −  1 )  ∈  ℙ  ↔  𝑃  ∈  ℙ ) ) | 
						
							| 44 | 43 | adantl | ⊢ ( ( ( 𝑃  ∈  ℙ  ∧  𝑀  ∈  ℕ  ∧  𝑁  ∈  ℕ )  ∧  ( ( 2 ↑ 𝑁 )  −  1 )  =  𝑃 )  →  ( ( ( 2 ↑ 𝑁 )  −  1 )  ∈  ℙ  ↔  𝑃  ∈  ℙ ) ) | 
						
							| 45 | 42 44 | mpbird | ⊢ ( ( ( 𝑃  ∈  ℙ  ∧  𝑀  ∈  ℕ  ∧  𝑁  ∈  ℕ )  ∧  ( ( 2 ↑ 𝑁 )  −  1 )  =  𝑃 )  →  ( ( 2 ↑ 𝑁 )  −  1 )  ∈  ℙ ) | 
						
							| 46 |  | mersenne | ⊢ ( ( 𝑁  ∈  ℤ  ∧  ( ( 2 ↑ 𝑁 )  −  1 )  ∈  ℙ )  →  𝑁  ∈  ℙ ) | 
						
							| 47 | 41 45 46 | syl2an2r | ⊢ ( ( ( 𝑃  ∈  ℙ  ∧  𝑀  ∈  ℕ  ∧  𝑁  ∈  ℕ )  ∧  ( ( 2 ↑ 𝑁 )  −  1 )  =  𝑃 )  →  𝑁  ∈  ℙ ) | 
						
							| 48 | 47 | ex | ⊢ ( ( 𝑃  ∈  ℙ  ∧  𝑀  ∈  ℕ  ∧  𝑁  ∈  ℕ )  →  ( ( ( 2 ↑ 𝑁 )  −  1 )  =  𝑃  →  𝑁  ∈  ℙ ) ) | 
						
							| 49 | 39 48 | sylbid | ⊢ ( ( 𝑃  ∈  ℙ  ∧  𝑀  ∈  ℕ  ∧  𝑁  ∈  ℕ )  →  ( ( ( 2 ↑ 𝑁 )  −  1 )  =  ( 𝑃 ↑ 1 )  →  𝑁  ∈  ℙ ) ) | 
						
							| 50 | 49 | adantr | ⊢ ( ( ( 𝑃  ∈  ℙ  ∧  𝑀  ∈  ℕ  ∧  𝑁  ∈  ℕ )  ∧  𝑀  =  1 )  →  ( ( ( 2 ↑ 𝑁 )  −  1 )  =  ( 𝑃 ↑ 1 )  →  𝑁  ∈  ℙ ) ) | 
						
							| 51 | 34 50 | sylbid | ⊢ ( ( ( 𝑃  ∈  ℙ  ∧  𝑀  ∈  ℕ  ∧  𝑁  ∈  ℕ )  ∧  𝑀  =  1 )  →  ( ( ( 2 ↑ 𝑁 )  −  1 )  =  ( 𝑃 ↑ 𝑀 )  →  𝑁  ∈  ℙ ) ) | 
						
							| 52 | 51 | impancom | ⊢ ( ( ( 𝑃  ∈  ℙ  ∧  𝑀  ∈  ℕ  ∧  𝑁  ∈  ℕ )  ∧  ( ( 2 ↑ 𝑁 )  −  1 )  =  ( 𝑃 ↑ 𝑀 ) )  →  ( 𝑀  =  1  →  𝑁  ∈  ℙ ) ) | 
						
							| 53 | 31 52 | jcai | ⊢ ( ( ( 𝑃  ∈  ℙ  ∧  𝑀  ∈  ℕ  ∧  𝑁  ∈  ℕ )  ∧  ( ( 2 ↑ 𝑁 )  −  1 )  =  ( 𝑃 ↑ 𝑀 ) )  →  ( 𝑀  =  1  ∧  𝑁  ∈  ℙ ) ) |