Step |
Hyp |
Ref |
Expression |
1 |
|
2z |
⊢ 2 ∈ ℤ |
2 |
|
simp2 |
⊢ ( ( 𝑃 = 2 ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ) → 𝑀 ∈ ℕ ) |
3 |
|
iddvdsexp |
⊢ ( ( 2 ∈ ℤ ∧ 𝑀 ∈ ℕ ) → 2 ∥ ( 2 ↑ 𝑀 ) ) |
4 |
1 2 3
|
sylancr |
⊢ ( ( 𝑃 = 2 ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ) → 2 ∥ ( 2 ↑ 𝑀 ) ) |
5 |
|
oveq1 |
⊢ ( 𝑃 = 2 → ( 𝑃 ↑ 𝑀 ) = ( 2 ↑ 𝑀 ) ) |
6 |
5
|
breq2d |
⊢ ( 𝑃 = 2 → ( 2 ∥ ( 𝑃 ↑ 𝑀 ) ↔ 2 ∥ ( 2 ↑ 𝑀 ) ) ) |
7 |
6
|
3ad2ant1 |
⊢ ( ( 𝑃 = 2 ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ) → ( 2 ∥ ( 𝑃 ↑ 𝑀 ) ↔ 2 ∥ ( 2 ↑ 𝑀 ) ) ) |
8 |
4 7
|
mpbird |
⊢ ( ( 𝑃 = 2 ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ) → 2 ∥ ( 𝑃 ↑ 𝑀 ) ) |
9 |
|
iddvdsexp |
⊢ ( ( 2 ∈ ℤ ∧ 𝑁 ∈ ℕ ) → 2 ∥ ( 2 ↑ 𝑁 ) ) |
10 |
1 9
|
mpan |
⊢ ( 𝑁 ∈ ℕ → 2 ∥ ( 2 ↑ 𝑁 ) ) |
11 |
10
|
notnotd |
⊢ ( 𝑁 ∈ ℕ → ¬ ¬ 2 ∥ ( 2 ↑ 𝑁 ) ) |
12 |
|
2nn |
⊢ 2 ∈ ℕ |
13 |
12
|
a1i |
⊢ ( 𝑁 ∈ ℕ → 2 ∈ ℕ ) |
14 |
|
nnnn0 |
⊢ ( 𝑁 ∈ ℕ → 𝑁 ∈ ℕ0 ) |
15 |
13 14
|
nnexpcld |
⊢ ( 𝑁 ∈ ℕ → ( 2 ↑ 𝑁 ) ∈ ℕ ) |
16 |
15
|
nnzd |
⊢ ( 𝑁 ∈ ℕ → ( 2 ↑ 𝑁 ) ∈ ℤ ) |
17 |
|
oddm1even |
⊢ ( ( 2 ↑ 𝑁 ) ∈ ℤ → ( ¬ 2 ∥ ( 2 ↑ 𝑁 ) ↔ 2 ∥ ( ( 2 ↑ 𝑁 ) − 1 ) ) ) |
18 |
16 17
|
syl |
⊢ ( 𝑁 ∈ ℕ → ( ¬ 2 ∥ ( 2 ↑ 𝑁 ) ↔ 2 ∥ ( ( 2 ↑ 𝑁 ) − 1 ) ) ) |
19 |
11 18
|
mtbid |
⊢ ( 𝑁 ∈ ℕ → ¬ 2 ∥ ( ( 2 ↑ 𝑁 ) − 1 ) ) |
20 |
19
|
3ad2ant3 |
⊢ ( ( 𝑃 = 2 ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ) → ¬ 2 ∥ ( ( 2 ↑ 𝑁 ) − 1 ) ) |
21 |
|
nbrne1 |
⊢ ( ( 2 ∥ ( 𝑃 ↑ 𝑀 ) ∧ ¬ 2 ∥ ( ( 2 ↑ 𝑁 ) − 1 ) ) → ( 𝑃 ↑ 𝑀 ) ≠ ( ( 2 ↑ 𝑁 ) − 1 ) ) |
22 |
8 20 21
|
syl2anc |
⊢ ( ( 𝑃 = 2 ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ) → ( 𝑃 ↑ 𝑀 ) ≠ ( ( 2 ↑ 𝑁 ) − 1 ) ) |
23 |
22
|
necomd |
⊢ ( ( 𝑃 = 2 ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ) → ( ( 2 ↑ 𝑁 ) − 1 ) ≠ ( 𝑃 ↑ 𝑀 ) ) |