Metamath Proof Explorer


Theorem lighneallem1

Description: Lemma 1 for lighneal . (Contributed by AV, 11-Aug-2021)

Ref Expression
Assertion lighneallem1 ( ( 𝑃 = 2 ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ) → ( ( 2 ↑ 𝑁 ) − 1 ) ≠ ( 𝑃𝑀 ) )

Proof

Step Hyp Ref Expression
1 2z 2 ∈ ℤ
2 simp2 ( ( 𝑃 = 2 ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ) → 𝑀 ∈ ℕ )
3 iddvdsexp ( ( 2 ∈ ℤ ∧ 𝑀 ∈ ℕ ) → 2 ∥ ( 2 ↑ 𝑀 ) )
4 1 2 3 sylancr ( ( 𝑃 = 2 ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ) → 2 ∥ ( 2 ↑ 𝑀 ) )
5 oveq1 ( 𝑃 = 2 → ( 𝑃𝑀 ) = ( 2 ↑ 𝑀 ) )
6 5 breq2d ( 𝑃 = 2 → ( 2 ∥ ( 𝑃𝑀 ) ↔ 2 ∥ ( 2 ↑ 𝑀 ) ) )
7 6 3ad2ant1 ( ( 𝑃 = 2 ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ) → ( 2 ∥ ( 𝑃𝑀 ) ↔ 2 ∥ ( 2 ↑ 𝑀 ) ) )
8 4 7 mpbird ( ( 𝑃 = 2 ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ) → 2 ∥ ( 𝑃𝑀 ) )
9 iddvdsexp ( ( 2 ∈ ℤ ∧ 𝑁 ∈ ℕ ) → 2 ∥ ( 2 ↑ 𝑁 ) )
10 1 9 mpan ( 𝑁 ∈ ℕ → 2 ∥ ( 2 ↑ 𝑁 ) )
11 10 notnotd ( 𝑁 ∈ ℕ → ¬ ¬ 2 ∥ ( 2 ↑ 𝑁 ) )
12 2nn 2 ∈ ℕ
13 12 a1i ( 𝑁 ∈ ℕ → 2 ∈ ℕ )
14 nnnn0 ( 𝑁 ∈ ℕ → 𝑁 ∈ ℕ0 )
15 13 14 nnexpcld ( 𝑁 ∈ ℕ → ( 2 ↑ 𝑁 ) ∈ ℕ )
16 15 nnzd ( 𝑁 ∈ ℕ → ( 2 ↑ 𝑁 ) ∈ ℤ )
17 oddm1even ( ( 2 ↑ 𝑁 ) ∈ ℤ → ( ¬ 2 ∥ ( 2 ↑ 𝑁 ) ↔ 2 ∥ ( ( 2 ↑ 𝑁 ) − 1 ) ) )
18 16 17 syl ( 𝑁 ∈ ℕ → ( ¬ 2 ∥ ( 2 ↑ 𝑁 ) ↔ 2 ∥ ( ( 2 ↑ 𝑁 ) − 1 ) ) )
19 11 18 mtbid ( 𝑁 ∈ ℕ → ¬ 2 ∥ ( ( 2 ↑ 𝑁 ) − 1 ) )
20 19 3ad2ant3 ( ( 𝑃 = 2 ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ) → ¬ 2 ∥ ( ( 2 ↑ 𝑁 ) − 1 ) )
21 nbrne1 ( ( 2 ∥ ( 𝑃𝑀 ) ∧ ¬ 2 ∥ ( ( 2 ↑ 𝑁 ) − 1 ) ) → ( 𝑃𝑀 ) ≠ ( ( 2 ↑ 𝑁 ) − 1 ) )
22 8 20 21 syl2anc ( ( 𝑃 = 2 ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ) → ( 𝑃𝑀 ) ≠ ( ( 2 ↑ 𝑁 ) − 1 ) )
23 22 necomd ( ( 𝑃 = 2 ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ) → ( ( 2 ↑ 𝑁 ) − 1 ) ≠ ( 𝑃𝑀 ) )