| Step | Hyp | Ref | Expression | 
						
							| 1 |  | 2z | ⊢ 2  ∈  ℤ | 
						
							| 2 |  | simp2 | ⊢ ( ( 𝑃  =  2  ∧  𝑀  ∈  ℕ  ∧  𝑁  ∈  ℕ )  →  𝑀  ∈  ℕ ) | 
						
							| 3 |  | iddvdsexp | ⊢ ( ( 2  ∈  ℤ  ∧  𝑀  ∈  ℕ )  →  2  ∥  ( 2 ↑ 𝑀 ) ) | 
						
							| 4 | 1 2 3 | sylancr | ⊢ ( ( 𝑃  =  2  ∧  𝑀  ∈  ℕ  ∧  𝑁  ∈  ℕ )  →  2  ∥  ( 2 ↑ 𝑀 ) ) | 
						
							| 5 |  | oveq1 | ⊢ ( 𝑃  =  2  →  ( 𝑃 ↑ 𝑀 )  =  ( 2 ↑ 𝑀 ) ) | 
						
							| 6 | 5 | breq2d | ⊢ ( 𝑃  =  2  →  ( 2  ∥  ( 𝑃 ↑ 𝑀 )  ↔  2  ∥  ( 2 ↑ 𝑀 ) ) ) | 
						
							| 7 | 6 | 3ad2ant1 | ⊢ ( ( 𝑃  =  2  ∧  𝑀  ∈  ℕ  ∧  𝑁  ∈  ℕ )  →  ( 2  ∥  ( 𝑃 ↑ 𝑀 )  ↔  2  ∥  ( 2 ↑ 𝑀 ) ) ) | 
						
							| 8 | 4 7 | mpbird | ⊢ ( ( 𝑃  =  2  ∧  𝑀  ∈  ℕ  ∧  𝑁  ∈  ℕ )  →  2  ∥  ( 𝑃 ↑ 𝑀 ) ) | 
						
							| 9 |  | iddvdsexp | ⊢ ( ( 2  ∈  ℤ  ∧  𝑁  ∈  ℕ )  →  2  ∥  ( 2 ↑ 𝑁 ) ) | 
						
							| 10 | 1 9 | mpan | ⊢ ( 𝑁  ∈  ℕ  →  2  ∥  ( 2 ↑ 𝑁 ) ) | 
						
							| 11 | 10 | notnotd | ⊢ ( 𝑁  ∈  ℕ  →  ¬  ¬  2  ∥  ( 2 ↑ 𝑁 ) ) | 
						
							| 12 |  | 2nn | ⊢ 2  ∈  ℕ | 
						
							| 13 | 12 | a1i | ⊢ ( 𝑁  ∈  ℕ  →  2  ∈  ℕ ) | 
						
							| 14 |  | nnnn0 | ⊢ ( 𝑁  ∈  ℕ  →  𝑁  ∈  ℕ0 ) | 
						
							| 15 | 13 14 | nnexpcld | ⊢ ( 𝑁  ∈  ℕ  →  ( 2 ↑ 𝑁 )  ∈  ℕ ) | 
						
							| 16 | 15 | nnzd | ⊢ ( 𝑁  ∈  ℕ  →  ( 2 ↑ 𝑁 )  ∈  ℤ ) | 
						
							| 17 |  | oddm1even | ⊢ ( ( 2 ↑ 𝑁 )  ∈  ℤ  →  ( ¬  2  ∥  ( 2 ↑ 𝑁 )  ↔  2  ∥  ( ( 2 ↑ 𝑁 )  −  1 ) ) ) | 
						
							| 18 | 16 17 | syl | ⊢ ( 𝑁  ∈  ℕ  →  ( ¬  2  ∥  ( 2 ↑ 𝑁 )  ↔  2  ∥  ( ( 2 ↑ 𝑁 )  −  1 ) ) ) | 
						
							| 19 | 11 18 | mtbid | ⊢ ( 𝑁  ∈  ℕ  →  ¬  2  ∥  ( ( 2 ↑ 𝑁 )  −  1 ) ) | 
						
							| 20 | 19 | 3ad2ant3 | ⊢ ( ( 𝑃  =  2  ∧  𝑀  ∈  ℕ  ∧  𝑁  ∈  ℕ )  →  ¬  2  ∥  ( ( 2 ↑ 𝑁 )  −  1 ) ) | 
						
							| 21 |  | nbrne1 | ⊢ ( ( 2  ∥  ( 𝑃 ↑ 𝑀 )  ∧  ¬  2  ∥  ( ( 2 ↑ 𝑁 )  −  1 ) )  →  ( 𝑃 ↑ 𝑀 )  ≠  ( ( 2 ↑ 𝑁 )  −  1 ) ) | 
						
							| 22 | 8 20 21 | syl2anc | ⊢ ( ( 𝑃  =  2  ∧  𝑀  ∈  ℕ  ∧  𝑁  ∈  ℕ )  →  ( 𝑃 ↑ 𝑀 )  ≠  ( ( 2 ↑ 𝑁 )  −  1 ) ) | 
						
							| 23 | 22 | necomd | ⊢ ( ( 𝑃  =  2  ∧  𝑀  ∈  ℕ  ∧  𝑁  ∈  ℕ )  →  ( ( 2 ↑ 𝑁 )  −  1 )  ≠  ( 𝑃 ↑ 𝑀 ) ) |