| Step | Hyp | Ref | Expression | 
						
							| 1 |  | evennn2n | ⊢ ( 𝑁  ∈  ℕ  →  ( 2  ∥  𝑁  ↔  ∃ 𝑘  ∈  ℕ ( 2  ·  𝑘 )  =  𝑁 ) ) | 
						
							| 2 | 1 | 3ad2ant3 | ⊢ ( ( 𝑃  ∈  ( ℙ  ∖  { 2 } )  ∧  𝑀  ∈  ℕ  ∧  𝑁  ∈  ℕ )  →  ( 2  ∥  𝑁  ↔  ∃ 𝑘  ∈  ℕ ( 2  ·  𝑘 )  =  𝑁 ) ) | 
						
							| 3 |  | oveq2 | ⊢ ( 𝑁  =  ( 2  ·  𝑘 )  →  ( 2 ↑ 𝑁 )  =  ( 2 ↑ ( 2  ·  𝑘 ) ) ) | 
						
							| 4 | 3 | eqcoms | ⊢ ( ( 2  ·  𝑘 )  =  𝑁  →  ( 2 ↑ 𝑁 )  =  ( 2 ↑ ( 2  ·  𝑘 ) ) ) | 
						
							| 5 |  | 2cnd | ⊢ ( 𝑘  ∈  ℕ  →  2  ∈  ℂ ) | 
						
							| 6 |  | nncn | ⊢ ( 𝑘  ∈  ℕ  →  𝑘  ∈  ℂ ) | 
						
							| 7 | 5 6 | mulcomd | ⊢ ( 𝑘  ∈  ℕ  →  ( 2  ·  𝑘 )  =  ( 𝑘  ·  2 ) ) | 
						
							| 8 | 7 | oveq2d | ⊢ ( 𝑘  ∈  ℕ  →  ( 2 ↑ ( 2  ·  𝑘 ) )  =  ( 2 ↑ ( 𝑘  ·  2 ) ) ) | 
						
							| 9 |  | 2nn0 | ⊢ 2  ∈  ℕ0 | 
						
							| 10 | 9 | a1i | ⊢ ( 𝑘  ∈  ℕ  →  2  ∈  ℕ0 ) | 
						
							| 11 |  | nnnn0 | ⊢ ( 𝑘  ∈  ℕ  →  𝑘  ∈  ℕ0 ) | 
						
							| 12 | 5 10 11 | expmuld | ⊢ ( 𝑘  ∈  ℕ  →  ( 2 ↑ ( 𝑘  ·  2 ) )  =  ( ( 2 ↑ 𝑘 ) ↑ 2 ) ) | 
						
							| 13 | 8 12 | eqtrd | ⊢ ( 𝑘  ∈  ℕ  →  ( 2 ↑ ( 2  ·  𝑘 ) )  =  ( ( 2 ↑ 𝑘 ) ↑ 2 ) ) | 
						
							| 14 | 13 | adantl | ⊢ ( ( ( 𝑃  ∈  ( ℙ  ∖  { 2 } )  ∧  𝑀  ∈  ℕ  ∧  𝑁  ∈  ℕ )  ∧  𝑘  ∈  ℕ )  →  ( 2 ↑ ( 2  ·  𝑘 ) )  =  ( ( 2 ↑ 𝑘 ) ↑ 2 ) ) | 
						
							| 15 | 4 14 | sylan9eqr | ⊢ ( ( ( ( 𝑃  ∈  ( ℙ  ∖  { 2 } )  ∧  𝑀  ∈  ℕ  ∧  𝑁  ∈  ℕ )  ∧  𝑘  ∈  ℕ )  ∧  ( 2  ·  𝑘 )  =  𝑁 )  →  ( 2 ↑ 𝑁 )  =  ( ( 2 ↑ 𝑘 ) ↑ 2 ) ) | 
						
							| 16 | 15 | oveq1d | ⊢ ( ( ( ( 𝑃  ∈  ( ℙ  ∖  { 2 } )  ∧  𝑀  ∈  ℕ  ∧  𝑁  ∈  ℕ )  ∧  𝑘  ∈  ℕ )  ∧  ( 2  ·  𝑘 )  =  𝑁 )  →  ( ( 2 ↑ 𝑁 )  −  1 )  =  ( ( ( 2 ↑ 𝑘 ) ↑ 2 )  −  1 ) ) | 
						
							| 17 | 16 | eqeq1d | ⊢ ( ( ( ( 𝑃  ∈  ( ℙ  ∖  { 2 } )  ∧  𝑀  ∈  ℕ  ∧  𝑁  ∈  ℕ )  ∧  𝑘  ∈  ℕ )  ∧  ( 2  ·  𝑘 )  =  𝑁 )  →  ( ( ( 2 ↑ 𝑁 )  −  1 )  =  ( 𝑃 ↑ 𝑀 )  ↔  ( ( ( 2 ↑ 𝑘 ) ↑ 2 )  −  1 )  =  ( 𝑃 ↑ 𝑀 ) ) ) | 
						
							| 18 |  | elnn1uz2 | ⊢ ( 𝑘  ∈  ℕ  ↔  ( 𝑘  =  1  ∨  𝑘  ∈  ( ℤ≥ ‘ 2 ) ) ) | 
						
							| 19 |  | oveq2 | ⊢ ( 𝑘  =  1  →  ( 2 ↑ 𝑘 )  =  ( 2 ↑ 1 ) ) | 
						
							| 20 |  | 2cn | ⊢ 2  ∈  ℂ | 
						
							| 21 |  | exp1 | ⊢ ( 2  ∈  ℂ  →  ( 2 ↑ 1 )  =  2 ) | 
						
							| 22 | 20 21 | ax-mp | ⊢ ( 2 ↑ 1 )  =  2 | 
						
							| 23 | 19 22 | eqtrdi | ⊢ ( 𝑘  =  1  →  ( 2 ↑ 𝑘 )  =  2 ) | 
						
							| 24 | 23 | oveq1d | ⊢ ( 𝑘  =  1  →  ( ( 2 ↑ 𝑘 ) ↑ 2 )  =  ( 2 ↑ 2 ) ) | 
						
							| 25 | 24 | oveq1d | ⊢ ( 𝑘  =  1  →  ( ( ( 2 ↑ 𝑘 ) ↑ 2 )  −  1 )  =  ( ( 2 ↑ 2 )  −  1 ) ) | 
						
							| 26 |  | sq2 | ⊢ ( 2 ↑ 2 )  =  4 | 
						
							| 27 | 26 | oveq1i | ⊢ ( ( 2 ↑ 2 )  −  1 )  =  ( 4  −  1 ) | 
						
							| 28 |  | 4m1e3 | ⊢ ( 4  −  1 )  =  3 | 
						
							| 29 | 27 28 | eqtri | ⊢ ( ( 2 ↑ 2 )  −  1 )  =  3 | 
						
							| 30 | 25 29 | eqtrdi | ⊢ ( 𝑘  =  1  →  ( ( ( 2 ↑ 𝑘 ) ↑ 2 )  −  1 )  =  3 ) | 
						
							| 31 | 30 | eqeq1d | ⊢ ( 𝑘  =  1  →  ( ( ( ( 2 ↑ 𝑘 ) ↑ 2 )  −  1 )  =  ( 𝑃 ↑ 𝑀 )  ↔  3  =  ( 𝑃 ↑ 𝑀 ) ) ) | 
						
							| 32 | 31 | adantr | ⊢ ( ( 𝑘  =  1  ∧  ( 𝑃  ∈  ( ℙ  ∖  { 2 } )  ∧  𝑀  ∈  ℕ  ∧  𝑁  ∈  ℕ ) )  →  ( ( ( ( 2 ↑ 𝑘 ) ↑ 2 )  −  1 )  =  ( 𝑃 ↑ 𝑀 )  ↔  3  =  ( 𝑃 ↑ 𝑀 ) ) ) | 
						
							| 33 |  | eqcom | ⊢ ( 3  =  ( 𝑃 ↑ 𝑀 )  ↔  ( 𝑃 ↑ 𝑀 )  =  3 ) | 
						
							| 34 |  | eldifi | ⊢ ( 𝑃  ∈  ( ℙ  ∖  { 2 } )  →  𝑃  ∈  ℙ ) | 
						
							| 35 |  | prmnn | ⊢ ( 𝑃  ∈  ℙ  →  𝑃  ∈  ℕ ) | 
						
							| 36 |  | nnre | ⊢ ( 𝑃  ∈  ℕ  →  𝑃  ∈  ℝ ) | 
						
							| 37 | 34 35 36 | 3syl | ⊢ ( 𝑃  ∈  ( ℙ  ∖  { 2 } )  →  𝑃  ∈  ℝ ) | 
						
							| 38 | 37 | 3ad2ant1 | ⊢ ( ( 𝑃  ∈  ( ℙ  ∖  { 2 } )  ∧  𝑀  ∈  ℕ  ∧  𝑁  ∈  ℕ )  →  𝑃  ∈  ℝ ) | 
						
							| 39 |  | nnnn0 | ⊢ ( 𝑀  ∈  ℕ  →  𝑀  ∈  ℕ0 ) | 
						
							| 40 | 39 | 3ad2ant2 | ⊢ ( ( 𝑃  ∈  ( ℙ  ∖  { 2 } )  ∧  𝑀  ∈  ℕ  ∧  𝑁  ∈  ℕ )  →  𝑀  ∈  ℕ0 ) | 
						
							| 41 | 38 40 | reexpcld | ⊢ ( ( 𝑃  ∈  ( ℙ  ∖  { 2 } )  ∧  𝑀  ∈  ℕ  ∧  𝑁  ∈  ℕ )  →  ( 𝑃 ↑ 𝑀 )  ∈  ℝ ) | 
						
							| 42 | 41 | adantr | ⊢ ( ( ( 𝑃  ∈  ( ℙ  ∖  { 2 } )  ∧  𝑀  ∈  ℕ  ∧  𝑁  ∈  ℕ )  ∧  ( 𝑃 ↑ 𝑀 )  =  3 )  →  ( 𝑃 ↑ 𝑀 )  ∈  ℝ ) | 
						
							| 43 |  | simpr | ⊢ ( ( ( 𝑃  ∈  ( ℙ  ∖  { 2 } )  ∧  𝑀  ∈  ℕ  ∧  𝑁  ∈  ℕ )  ∧  ( 𝑃 ↑ 𝑀 )  =  3 )  →  ( 𝑃 ↑ 𝑀 )  =  3 ) | 
						
							| 44 | 42 43 | eqled | ⊢ ( ( ( 𝑃  ∈  ( ℙ  ∖  { 2 } )  ∧  𝑀  ∈  ℕ  ∧  𝑁  ∈  ℕ )  ∧  ( 𝑃 ↑ 𝑀 )  =  3 )  →  ( 𝑃 ↑ 𝑀 )  ≤  3 ) | 
						
							| 45 | 44 | ex | ⊢ ( ( 𝑃  ∈  ( ℙ  ∖  { 2 } )  ∧  𝑀  ∈  ℕ  ∧  𝑁  ∈  ℕ )  →  ( ( 𝑃 ↑ 𝑀 )  =  3  →  ( 𝑃 ↑ 𝑀 )  ≤  3 ) ) | 
						
							| 46 | 33 45 | biimtrid | ⊢ ( ( 𝑃  ∈  ( ℙ  ∖  { 2 } )  ∧  𝑀  ∈  ℕ  ∧  𝑁  ∈  ℕ )  →  ( 3  =  ( 𝑃 ↑ 𝑀 )  →  ( 𝑃 ↑ 𝑀 )  ≤  3 ) ) | 
						
							| 47 | 35 | nnred | ⊢ ( 𝑃  ∈  ℙ  →  𝑃  ∈  ℝ ) | 
						
							| 48 |  | prmgt1 | ⊢ ( 𝑃  ∈  ℙ  →  1  <  𝑃 ) | 
						
							| 49 | 47 48 | jca | ⊢ ( 𝑃  ∈  ℙ  →  ( 𝑃  ∈  ℝ  ∧  1  <  𝑃 ) ) | 
						
							| 50 | 34 49 | syl | ⊢ ( 𝑃  ∈  ( ℙ  ∖  { 2 } )  →  ( 𝑃  ∈  ℝ  ∧  1  <  𝑃 ) ) | 
						
							| 51 | 50 | 3ad2ant1 | ⊢ ( ( 𝑃  ∈  ( ℙ  ∖  { 2 } )  ∧  𝑀  ∈  ℕ  ∧  𝑁  ∈  ℕ )  →  ( 𝑃  ∈  ℝ  ∧  1  <  𝑃 ) ) | 
						
							| 52 |  | nnz | ⊢ ( 𝑀  ∈  ℕ  →  𝑀  ∈  ℤ ) | 
						
							| 53 | 52 | 3ad2ant2 | ⊢ ( ( 𝑃  ∈  ( ℙ  ∖  { 2 } )  ∧  𝑀  ∈  ℕ  ∧  𝑁  ∈  ℕ )  →  𝑀  ∈  ℤ ) | 
						
							| 54 |  | 3rp | ⊢ 3  ∈  ℝ+ | 
						
							| 55 | 54 | a1i | ⊢ ( ( 𝑃  ∈  ( ℙ  ∖  { 2 } )  ∧  𝑀  ∈  ℕ  ∧  𝑁  ∈  ℕ )  →  3  ∈  ℝ+ ) | 
						
							| 56 |  | efexple | ⊢ ( ( ( 𝑃  ∈  ℝ  ∧  1  <  𝑃 )  ∧  𝑀  ∈  ℤ  ∧  3  ∈  ℝ+ )  →  ( ( 𝑃 ↑ 𝑀 )  ≤  3  ↔  𝑀  ≤  ( ⌊ ‘ ( ( log ‘ 3 )  /  ( log ‘ 𝑃 ) ) ) ) ) | 
						
							| 57 | 51 53 55 56 | syl3anc | ⊢ ( ( 𝑃  ∈  ( ℙ  ∖  { 2 } )  ∧  𝑀  ∈  ℕ  ∧  𝑁  ∈  ℕ )  →  ( ( 𝑃 ↑ 𝑀 )  ≤  3  ↔  𝑀  ≤  ( ⌊ ‘ ( ( log ‘ 3 )  /  ( log ‘ 𝑃 ) ) ) ) ) | 
						
							| 58 |  | oddprmge3 | ⊢ ( 𝑃  ∈  ( ℙ  ∖  { 2 } )  →  𝑃  ∈  ( ℤ≥ ‘ 3 ) ) | 
						
							| 59 |  | eluzle | ⊢ ( 𝑃  ∈  ( ℤ≥ ‘ 3 )  →  3  ≤  𝑃 ) | 
						
							| 60 | 58 59 | syl | ⊢ ( 𝑃  ∈  ( ℙ  ∖  { 2 } )  →  3  ≤  𝑃 ) | 
						
							| 61 | 54 | a1i | ⊢ ( 𝑃  ∈  ( ℙ  ∖  { 2 } )  →  3  ∈  ℝ+ ) | 
						
							| 62 |  | nnrp | ⊢ ( 𝑃  ∈  ℕ  →  𝑃  ∈  ℝ+ ) | 
						
							| 63 | 34 35 62 | 3syl | ⊢ ( 𝑃  ∈  ( ℙ  ∖  { 2 } )  →  𝑃  ∈  ℝ+ ) | 
						
							| 64 | 61 63 | logled | ⊢ ( 𝑃  ∈  ( ℙ  ∖  { 2 } )  →  ( 3  ≤  𝑃  ↔  ( log ‘ 3 )  ≤  ( log ‘ 𝑃 ) ) ) | 
						
							| 65 | 60 64 | mpbid | ⊢ ( 𝑃  ∈  ( ℙ  ∖  { 2 } )  →  ( log ‘ 3 )  ≤  ( log ‘ 𝑃 ) ) | 
						
							| 66 | 65 | 3ad2ant1 | ⊢ ( ( 𝑃  ∈  ( ℙ  ∖  { 2 } )  ∧  𝑀  ∈  ℕ  ∧  𝑁  ∈  ℕ )  →  ( log ‘ 3 )  ≤  ( log ‘ 𝑃 ) ) | 
						
							| 67 |  | relogcl | ⊢ ( 3  ∈  ℝ+  →  ( log ‘ 3 )  ∈  ℝ ) | 
						
							| 68 | 54 67 | ax-mp | ⊢ ( log ‘ 3 )  ∈  ℝ | 
						
							| 69 |  | rplogcl | ⊢ ( ( 𝑃  ∈  ℝ  ∧  1  <  𝑃 )  →  ( log ‘ 𝑃 )  ∈  ℝ+ ) | 
						
							| 70 | 34 49 69 | 3syl | ⊢ ( 𝑃  ∈  ( ℙ  ∖  { 2 } )  →  ( log ‘ 𝑃 )  ∈  ℝ+ ) | 
						
							| 71 | 70 | 3ad2ant1 | ⊢ ( ( 𝑃  ∈  ( ℙ  ∖  { 2 } )  ∧  𝑀  ∈  ℕ  ∧  𝑁  ∈  ℕ )  →  ( log ‘ 𝑃 )  ∈  ℝ+ ) | 
						
							| 72 |  | divle1le | ⊢ ( ( ( log ‘ 3 )  ∈  ℝ  ∧  ( log ‘ 𝑃 )  ∈  ℝ+ )  →  ( ( ( log ‘ 3 )  /  ( log ‘ 𝑃 ) )  ≤  1  ↔  ( log ‘ 3 )  ≤  ( log ‘ 𝑃 ) ) ) | 
						
							| 73 | 68 71 72 | sylancr | ⊢ ( ( 𝑃  ∈  ( ℙ  ∖  { 2 } )  ∧  𝑀  ∈  ℕ  ∧  𝑁  ∈  ℕ )  →  ( ( ( log ‘ 3 )  /  ( log ‘ 𝑃 ) )  ≤  1  ↔  ( log ‘ 3 )  ≤  ( log ‘ 𝑃 ) ) ) | 
						
							| 74 | 66 73 | mpbird | ⊢ ( ( 𝑃  ∈  ( ℙ  ∖  { 2 } )  ∧  𝑀  ∈  ℕ  ∧  𝑁  ∈  ℕ )  →  ( ( log ‘ 3 )  /  ( log ‘ 𝑃 ) )  ≤  1 ) | 
						
							| 75 |  | fldivle | ⊢ ( ( ( log ‘ 3 )  ∈  ℝ  ∧  ( log ‘ 𝑃 )  ∈  ℝ+ )  →  ( ⌊ ‘ ( ( log ‘ 3 )  /  ( log ‘ 𝑃 ) ) )  ≤  ( ( log ‘ 3 )  /  ( log ‘ 𝑃 ) ) ) | 
						
							| 76 | 68 71 75 | sylancr | ⊢ ( ( 𝑃  ∈  ( ℙ  ∖  { 2 } )  ∧  𝑀  ∈  ℕ  ∧  𝑁  ∈  ℕ )  →  ( ⌊ ‘ ( ( log ‘ 3 )  /  ( log ‘ 𝑃 ) ) )  ≤  ( ( log ‘ 3 )  /  ( log ‘ 𝑃 ) ) ) | 
						
							| 77 |  | nnre | ⊢ ( 𝑀  ∈  ℕ  →  𝑀  ∈  ℝ ) | 
						
							| 78 | 77 | 3ad2ant2 | ⊢ ( ( 𝑃  ∈  ( ℙ  ∖  { 2 } )  ∧  𝑀  ∈  ℕ  ∧  𝑁  ∈  ℕ )  →  𝑀  ∈  ℝ ) | 
						
							| 79 | 68 | a1i | ⊢ ( 𝑃  ∈  ( ℙ  ∖  { 2 } )  →  ( log ‘ 3 )  ∈  ℝ ) | 
						
							| 80 | 62 | relogcld | ⊢ ( 𝑃  ∈  ℕ  →  ( log ‘ 𝑃 )  ∈  ℝ ) | 
						
							| 81 | 34 35 80 | 3syl | ⊢ ( 𝑃  ∈  ( ℙ  ∖  { 2 } )  →  ( log ‘ 𝑃 )  ∈  ℝ ) | 
						
							| 82 | 35 | nnrpd | ⊢ ( 𝑃  ∈  ℙ  →  𝑃  ∈  ℝ+ ) | 
						
							| 83 |  | 1red | ⊢ ( 𝑃  ∈  ℙ  →  1  ∈  ℝ ) | 
						
							| 84 | 83 48 | gtned | ⊢ ( 𝑃  ∈  ℙ  →  𝑃  ≠  1 ) | 
						
							| 85 | 82 84 | jca | ⊢ ( 𝑃  ∈  ℙ  →  ( 𝑃  ∈  ℝ+  ∧  𝑃  ≠  1 ) ) | 
						
							| 86 |  | logne0 | ⊢ ( ( 𝑃  ∈  ℝ+  ∧  𝑃  ≠  1 )  →  ( log ‘ 𝑃 )  ≠  0 ) | 
						
							| 87 | 34 85 86 | 3syl | ⊢ ( 𝑃  ∈  ( ℙ  ∖  { 2 } )  →  ( log ‘ 𝑃 )  ≠  0 ) | 
						
							| 88 | 79 81 87 | redivcld | ⊢ ( 𝑃  ∈  ( ℙ  ∖  { 2 } )  →  ( ( log ‘ 3 )  /  ( log ‘ 𝑃 ) )  ∈  ℝ ) | 
						
							| 89 | 88 | flcld | ⊢ ( 𝑃  ∈  ( ℙ  ∖  { 2 } )  →  ( ⌊ ‘ ( ( log ‘ 3 )  /  ( log ‘ 𝑃 ) ) )  ∈  ℤ ) | 
						
							| 90 | 89 | zred | ⊢ ( 𝑃  ∈  ( ℙ  ∖  { 2 } )  →  ( ⌊ ‘ ( ( log ‘ 3 )  /  ( log ‘ 𝑃 ) ) )  ∈  ℝ ) | 
						
							| 91 | 90 | 3ad2ant1 | ⊢ ( ( 𝑃  ∈  ( ℙ  ∖  { 2 } )  ∧  𝑀  ∈  ℕ  ∧  𝑁  ∈  ℕ )  →  ( ⌊ ‘ ( ( log ‘ 3 )  /  ( log ‘ 𝑃 ) ) )  ∈  ℝ ) | 
						
							| 92 | 88 | 3ad2ant1 | ⊢ ( ( 𝑃  ∈  ( ℙ  ∖  { 2 } )  ∧  𝑀  ∈  ℕ  ∧  𝑁  ∈  ℕ )  →  ( ( log ‘ 3 )  /  ( log ‘ 𝑃 ) )  ∈  ℝ ) | 
						
							| 93 |  | letr | ⊢ ( ( 𝑀  ∈  ℝ  ∧  ( ⌊ ‘ ( ( log ‘ 3 )  /  ( log ‘ 𝑃 ) ) )  ∈  ℝ  ∧  ( ( log ‘ 3 )  /  ( log ‘ 𝑃 ) )  ∈  ℝ )  →  ( ( 𝑀  ≤  ( ⌊ ‘ ( ( log ‘ 3 )  /  ( log ‘ 𝑃 ) ) )  ∧  ( ⌊ ‘ ( ( log ‘ 3 )  /  ( log ‘ 𝑃 ) ) )  ≤  ( ( log ‘ 3 )  /  ( log ‘ 𝑃 ) ) )  →  𝑀  ≤  ( ( log ‘ 3 )  /  ( log ‘ 𝑃 ) ) ) ) | 
						
							| 94 | 78 91 92 93 | syl3anc | ⊢ ( ( 𝑃  ∈  ( ℙ  ∖  { 2 } )  ∧  𝑀  ∈  ℕ  ∧  𝑁  ∈  ℕ )  →  ( ( 𝑀  ≤  ( ⌊ ‘ ( ( log ‘ 3 )  /  ( log ‘ 𝑃 ) ) )  ∧  ( ⌊ ‘ ( ( log ‘ 3 )  /  ( log ‘ 𝑃 ) ) )  ≤  ( ( log ‘ 3 )  /  ( log ‘ 𝑃 ) ) )  →  𝑀  ≤  ( ( log ‘ 3 )  /  ( log ‘ 𝑃 ) ) ) ) | 
						
							| 95 |  | 1red | ⊢ ( ( 𝑃  ∈  ( ℙ  ∖  { 2 } )  ∧  𝑀  ∈  ℕ  ∧  𝑁  ∈  ℕ )  →  1  ∈  ℝ ) | 
						
							| 96 |  | letr | ⊢ ( ( 𝑀  ∈  ℝ  ∧  ( ( log ‘ 3 )  /  ( log ‘ 𝑃 ) )  ∈  ℝ  ∧  1  ∈  ℝ )  →  ( ( 𝑀  ≤  ( ( log ‘ 3 )  /  ( log ‘ 𝑃 ) )  ∧  ( ( log ‘ 3 )  /  ( log ‘ 𝑃 ) )  ≤  1 )  →  𝑀  ≤  1 ) ) | 
						
							| 97 | 78 92 95 96 | syl3anc | ⊢ ( ( 𝑃  ∈  ( ℙ  ∖  { 2 } )  ∧  𝑀  ∈  ℕ  ∧  𝑁  ∈  ℕ )  →  ( ( 𝑀  ≤  ( ( log ‘ 3 )  /  ( log ‘ 𝑃 ) )  ∧  ( ( log ‘ 3 )  /  ( log ‘ 𝑃 ) )  ≤  1 )  →  𝑀  ≤  1 ) ) | 
						
							| 98 |  | nnge1 | ⊢ ( 𝑀  ∈  ℕ  →  1  ≤  𝑀 ) | 
						
							| 99 |  | eqcom | ⊢ ( 𝑀  =  1  ↔  1  =  𝑀 ) | 
						
							| 100 |  | 1red | ⊢ ( 𝑀  ∈  ℕ  →  1  ∈  ℝ ) | 
						
							| 101 | 100 77 | letri3d | ⊢ ( 𝑀  ∈  ℕ  →  ( 1  =  𝑀  ↔  ( 1  ≤  𝑀  ∧  𝑀  ≤  1 ) ) ) | 
						
							| 102 | 99 101 | bitr2id | ⊢ ( 𝑀  ∈  ℕ  →  ( ( 1  ≤  𝑀  ∧  𝑀  ≤  1 )  ↔  𝑀  =  1 ) ) | 
						
							| 103 | 102 | biimpd | ⊢ ( 𝑀  ∈  ℕ  →  ( ( 1  ≤  𝑀  ∧  𝑀  ≤  1 )  →  𝑀  =  1 ) ) | 
						
							| 104 | 98 103 | mpand | ⊢ ( 𝑀  ∈  ℕ  →  ( 𝑀  ≤  1  →  𝑀  =  1 ) ) | 
						
							| 105 | 104 | 3ad2ant2 | ⊢ ( ( 𝑃  ∈  ( ℙ  ∖  { 2 } )  ∧  𝑀  ∈  ℕ  ∧  𝑁  ∈  ℕ )  →  ( 𝑀  ≤  1  →  𝑀  =  1 ) ) | 
						
							| 106 | 97 105 | syld | ⊢ ( ( 𝑃  ∈  ( ℙ  ∖  { 2 } )  ∧  𝑀  ∈  ℕ  ∧  𝑁  ∈  ℕ )  →  ( ( 𝑀  ≤  ( ( log ‘ 3 )  /  ( log ‘ 𝑃 ) )  ∧  ( ( log ‘ 3 )  /  ( log ‘ 𝑃 ) )  ≤  1 )  →  𝑀  =  1 ) ) | 
						
							| 107 | 106 | expd | ⊢ ( ( 𝑃  ∈  ( ℙ  ∖  { 2 } )  ∧  𝑀  ∈  ℕ  ∧  𝑁  ∈  ℕ )  →  ( 𝑀  ≤  ( ( log ‘ 3 )  /  ( log ‘ 𝑃 ) )  →  ( ( ( log ‘ 3 )  /  ( log ‘ 𝑃 ) )  ≤  1  →  𝑀  =  1 ) ) ) | 
						
							| 108 | 94 107 | syld | ⊢ ( ( 𝑃  ∈  ( ℙ  ∖  { 2 } )  ∧  𝑀  ∈  ℕ  ∧  𝑁  ∈  ℕ )  →  ( ( 𝑀  ≤  ( ⌊ ‘ ( ( log ‘ 3 )  /  ( log ‘ 𝑃 ) ) )  ∧  ( ⌊ ‘ ( ( log ‘ 3 )  /  ( log ‘ 𝑃 ) ) )  ≤  ( ( log ‘ 3 )  /  ( log ‘ 𝑃 ) ) )  →  ( ( ( log ‘ 3 )  /  ( log ‘ 𝑃 ) )  ≤  1  →  𝑀  =  1 ) ) ) | 
						
							| 109 | 76 108 | mpan2d | ⊢ ( ( 𝑃  ∈  ( ℙ  ∖  { 2 } )  ∧  𝑀  ∈  ℕ  ∧  𝑁  ∈  ℕ )  →  ( 𝑀  ≤  ( ⌊ ‘ ( ( log ‘ 3 )  /  ( log ‘ 𝑃 ) ) )  →  ( ( ( log ‘ 3 )  /  ( log ‘ 𝑃 ) )  ≤  1  →  𝑀  =  1 ) ) ) | 
						
							| 110 | 74 109 | mpid | ⊢ ( ( 𝑃  ∈  ( ℙ  ∖  { 2 } )  ∧  𝑀  ∈  ℕ  ∧  𝑁  ∈  ℕ )  →  ( 𝑀  ≤  ( ⌊ ‘ ( ( log ‘ 3 )  /  ( log ‘ 𝑃 ) ) )  →  𝑀  =  1 ) ) | 
						
							| 111 | 57 110 | sylbid | ⊢ ( ( 𝑃  ∈  ( ℙ  ∖  { 2 } )  ∧  𝑀  ∈  ℕ  ∧  𝑁  ∈  ℕ )  →  ( ( 𝑃 ↑ 𝑀 )  ≤  3  →  𝑀  =  1 ) ) | 
						
							| 112 | 46 111 | syld | ⊢ ( ( 𝑃  ∈  ( ℙ  ∖  { 2 } )  ∧  𝑀  ∈  ℕ  ∧  𝑁  ∈  ℕ )  →  ( 3  =  ( 𝑃 ↑ 𝑀 )  →  𝑀  =  1 ) ) | 
						
							| 113 | 112 | adantl | ⊢ ( ( 𝑘  =  1  ∧  ( 𝑃  ∈  ( ℙ  ∖  { 2 } )  ∧  𝑀  ∈  ℕ  ∧  𝑁  ∈  ℕ ) )  →  ( 3  =  ( 𝑃 ↑ 𝑀 )  →  𝑀  =  1 ) ) | 
						
							| 114 | 32 113 | sylbid | ⊢ ( ( 𝑘  =  1  ∧  ( 𝑃  ∈  ( ℙ  ∖  { 2 } )  ∧  𝑀  ∈  ℕ  ∧  𝑁  ∈  ℕ ) )  →  ( ( ( ( 2 ↑ 𝑘 ) ↑ 2 )  −  1 )  =  ( 𝑃 ↑ 𝑀 )  →  𝑀  =  1 ) ) | 
						
							| 115 | 114 | ex | ⊢ ( 𝑘  =  1  →  ( ( 𝑃  ∈  ( ℙ  ∖  { 2 } )  ∧  𝑀  ∈  ℕ  ∧  𝑁  ∈  ℕ )  →  ( ( ( ( 2 ↑ 𝑘 ) ↑ 2 )  −  1 )  =  ( 𝑃 ↑ 𝑀 )  →  𝑀  =  1 ) ) ) | 
						
							| 116 |  | sq1 | ⊢ ( 1 ↑ 2 )  =  1 | 
						
							| 117 | 116 | eqcomi | ⊢ 1  =  ( 1 ↑ 2 ) | 
						
							| 118 | 117 | oveq2i | ⊢ ( ( ( 2 ↑ 𝑘 ) ↑ 2 )  −  1 )  =  ( ( ( 2 ↑ 𝑘 ) ↑ 2 )  −  ( 1 ↑ 2 ) ) | 
						
							| 119 | 118 | eqeq1i | ⊢ ( ( ( ( 2 ↑ 𝑘 ) ↑ 2 )  −  1 )  =  ( 𝑃 ↑ 𝑀 )  ↔  ( ( ( 2 ↑ 𝑘 ) ↑ 2 )  −  ( 1 ↑ 2 ) )  =  ( 𝑃 ↑ 𝑀 ) ) | 
						
							| 120 |  | eqcom | ⊢ ( ( ( ( 2 ↑ 𝑘 ) ↑ 2 )  −  ( 1 ↑ 2 ) )  =  ( 𝑃 ↑ 𝑀 )  ↔  ( 𝑃 ↑ 𝑀 )  =  ( ( ( 2 ↑ 𝑘 ) ↑ 2 )  −  ( 1 ↑ 2 ) ) ) | 
						
							| 121 | 9 | a1i | ⊢ ( 𝑘  ∈  ( ℤ≥ ‘ 2 )  →  2  ∈  ℕ0 ) | 
						
							| 122 |  | eluzge2nn0 | ⊢ ( 𝑘  ∈  ( ℤ≥ ‘ 2 )  →  𝑘  ∈  ℕ0 ) | 
						
							| 123 | 121 122 | nn0expcld | ⊢ ( 𝑘  ∈  ( ℤ≥ ‘ 2 )  →  ( 2 ↑ 𝑘 )  ∈  ℕ0 ) | 
						
							| 124 | 123 | adantr | ⊢ ( ( 𝑘  ∈  ( ℤ≥ ‘ 2 )  ∧  ( 𝑃  ∈  ( ℙ  ∖  { 2 } )  ∧  𝑀  ∈  ℕ  ∧  𝑁  ∈  ℕ ) )  →  ( 2 ↑ 𝑘 )  ∈  ℕ0 ) | 
						
							| 125 |  | 1nn0 | ⊢ 1  ∈  ℕ0 | 
						
							| 126 | 125 | a1i | ⊢ ( ( 𝑘  ∈  ( ℤ≥ ‘ 2 )  ∧  ( 𝑃  ∈  ( ℙ  ∖  { 2 } )  ∧  𝑀  ∈  ℕ  ∧  𝑁  ∈  ℕ ) )  →  1  ∈  ℕ0 ) | 
						
							| 127 |  | 1p1e2 | ⊢ ( 1  +  1 )  =  2 | 
						
							| 128 | 22 | eqcomi | ⊢ 2  =  ( 2 ↑ 1 ) | 
						
							| 129 | 127 128 | eqtri | ⊢ ( 1  +  1 )  =  ( 2 ↑ 1 ) | 
						
							| 130 |  | eluz2gt1 | ⊢ ( 𝑘  ∈  ( ℤ≥ ‘ 2 )  →  1  <  𝑘 ) | 
						
							| 131 |  | 2re | ⊢ 2  ∈  ℝ | 
						
							| 132 | 131 | a1i | ⊢ ( 𝑘  ∈  ( ℤ≥ ‘ 2 )  →  2  ∈  ℝ ) | 
						
							| 133 |  | 1zzd | ⊢ ( 𝑘  ∈  ( ℤ≥ ‘ 2 )  →  1  ∈  ℤ ) | 
						
							| 134 |  | eluzelz | ⊢ ( 𝑘  ∈  ( ℤ≥ ‘ 2 )  →  𝑘  ∈  ℤ ) | 
						
							| 135 |  | 1lt2 | ⊢ 1  <  2 | 
						
							| 136 | 135 | a1i | ⊢ ( 𝑘  ∈  ( ℤ≥ ‘ 2 )  →  1  <  2 ) | 
						
							| 137 | 132 133 134 136 | ltexp2d | ⊢ ( 𝑘  ∈  ( ℤ≥ ‘ 2 )  →  ( 1  <  𝑘  ↔  ( 2 ↑ 1 )  <  ( 2 ↑ 𝑘 ) ) ) | 
						
							| 138 | 130 137 | mpbid | ⊢ ( 𝑘  ∈  ( ℤ≥ ‘ 2 )  →  ( 2 ↑ 1 )  <  ( 2 ↑ 𝑘 ) ) | 
						
							| 139 | 129 138 | eqbrtrid | ⊢ ( 𝑘  ∈  ( ℤ≥ ‘ 2 )  →  ( 1  +  1 )  <  ( 2 ↑ 𝑘 ) ) | 
						
							| 140 | 139 | adantr | ⊢ ( ( 𝑘  ∈  ( ℤ≥ ‘ 2 )  ∧  ( 𝑃  ∈  ( ℙ  ∖  { 2 } )  ∧  𝑀  ∈  ℕ  ∧  𝑁  ∈  ℕ ) )  →  ( 1  +  1 )  <  ( 2 ↑ 𝑘 ) ) | 
						
							| 141 | 34 39 | anim12i | ⊢ ( ( 𝑃  ∈  ( ℙ  ∖  { 2 } )  ∧  𝑀  ∈  ℕ )  →  ( 𝑃  ∈  ℙ  ∧  𝑀  ∈  ℕ0 ) ) | 
						
							| 142 | 141 | 3adant3 | ⊢ ( ( 𝑃  ∈  ( ℙ  ∖  { 2 } )  ∧  𝑀  ∈  ℕ  ∧  𝑁  ∈  ℕ )  →  ( 𝑃  ∈  ℙ  ∧  𝑀  ∈  ℕ0 ) ) | 
						
							| 143 | 142 | adantl | ⊢ ( ( 𝑘  ∈  ( ℤ≥ ‘ 2 )  ∧  ( 𝑃  ∈  ( ℙ  ∖  { 2 } )  ∧  𝑀  ∈  ℕ  ∧  𝑁  ∈  ℕ ) )  →  ( 𝑃  ∈  ℙ  ∧  𝑀  ∈  ℕ0 ) ) | 
						
							| 144 |  | difsqpwdvds | ⊢ ( ( ( ( 2 ↑ 𝑘 )  ∈  ℕ0  ∧  1  ∈  ℕ0  ∧  ( 1  +  1 )  <  ( 2 ↑ 𝑘 ) )  ∧  ( 𝑃  ∈  ℙ  ∧  𝑀  ∈  ℕ0 ) )  →  ( ( 𝑃 ↑ 𝑀 )  =  ( ( ( 2 ↑ 𝑘 ) ↑ 2 )  −  ( 1 ↑ 2 ) )  →  𝑃  ∥  ( 2  ·  1 ) ) ) | 
						
							| 145 | 124 126 140 143 144 | syl31anc | ⊢ ( ( 𝑘  ∈  ( ℤ≥ ‘ 2 )  ∧  ( 𝑃  ∈  ( ℙ  ∖  { 2 } )  ∧  𝑀  ∈  ℕ  ∧  𝑁  ∈  ℕ ) )  →  ( ( 𝑃 ↑ 𝑀 )  =  ( ( ( 2 ↑ 𝑘 ) ↑ 2 )  −  ( 1 ↑ 2 ) )  →  𝑃  ∥  ( 2  ·  1 ) ) ) | 
						
							| 146 |  | 2t1e2 | ⊢ ( 2  ·  1 )  =  2 | 
						
							| 147 | 146 | breq2i | ⊢ ( 𝑃  ∥  ( 2  ·  1 )  ↔  𝑃  ∥  2 ) | 
						
							| 148 |  | prmuz2 | ⊢ ( 𝑃  ∈  ℙ  →  𝑃  ∈  ( ℤ≥ ‘ 2 ) ) | 
						
							| 149 | 34 148 | syl | ⊢ ( 𝑃  ∈  ( ℙ  ∖  { 2 } )  →  𝑃  ∈  ( ℤ≥ ‘ 2 ) ) | 
						
							| 150 |  | 2prm | ⊢ 2  ∈  ℙ | 
						
							| 151 |  | dvdsprm | ⊢ ( ( 𝑃  ∈  ( ℤ≥ ‘ 2 )  ∧  2  ∈  ℙ )  →  ( 𝑃  ∥  2  ↔  𝑃  =  2 ) ) | 
						
							| 152 | 149 150 151 | sylancl | ⊢ ( 𝑃  ∈  ( ℙ  ∖  { 2 } )  →  ( 𝑃  ∥  2  ↔  𝑃  =  2 ) ) | 
						
							| 153 | 147 152 | bitrid | ⊢ ( 𝑃  ∈  ( ℙ  ∖  { 2 } )  →  ( 𝑃  ∥  ( 2  ·  1 )  ↔  𝑃  =  2 ) ) | 
						
							| 154 |  | eldifsn | ⊢ ( 𝑃  ∈  ( ℙ  ∖  { 2 } )  ↔  ( 𝑃  ∈  ℙ  ∧  𝑃  ≠  2 ) ) | 
						
							| 155 |  | eqneqall | ⊢ ( 𝑃  =  2  →  ( 𝑃  ≠  2  →  𝑀  =  1 ) ) | 
						
							| 156 | 155 | com12 | ⊢ ( 𝑃  ≠  2  →  ( 𝑃  =  2  →  𝑀  =  1 ) ) | 
						
							| 157 | 154 156 | simplbiim | ⊢ ( 𝑃  ∈  ( ℙ  ∖  { 2 } )  →  ( 𝑃  =  2  →  𝑀  =  1 ) ) | 
						
							| 158 | 153 157 | sylbid | ⊢ ( 𝑃  ∈  ( ℙ  ∖  { 2 } )  →  ( 𝑃  ∥  ( 2  ·  1 )  →  𝑀  =  1 ) ) | 
						
							| 159 | 158 | 3ad2ant1 | ⊢ ( ( 𝑃  ∈  ( ℙ  ∖  { 2 } )  ∧  𝑀  ∈  ℕ  ∧  𝑁  ∈  ℕ )  →  ( 𝑃  ∥  ( 2  ·  1 )  →  𝑀  =  1 ) ) | 
						
							| 160 | 159 | adantl | ⊢ ( ( 𝑘  ∈  ( ℤ≥ ‘ 2 )  ∧  ( 𝑃  ∈  ( ℙ  ∖  { 2 } )  ∧  𝑀  ∈  ℕ  ∧  𝑁  ∈  ℕ ) )  →  ( 𝑃  ∥  ( 2  ·  1 )  →  𝑀  =  1 ) ) | 
						
							| 161 | 145 160 | syld | ⊢ ( ( 𝑘  ∈  ( ℤ≥ ‘ 2 )  ∧  ( 𝑃  ∈  ( ℙ  ∖  { 2 } )  ∧  𝑀  ∈  ℕ  ∧  𝑁  ∈  ℕ ) )  →  ( ( 𝑃 ↑ 𝑀 )  =  ( ( ( 2 ↑ 𝑘 ) ↑ 2 )  −  ( 1 ↑ 2 ) )  →  𝑀  =  1 ) ) | 
						
							| 162 | 120 161 | biimtrid | ⊢ ( ( 𝑘  ∈  ( ℤ≥ ‘ 2 )  ∧  ( 𝑃  ∈  ( ℙ  ∖  { 2 } )  ∧  𝑀  ∈  ℕ  ∧  𝑁  ∈  ℕ ) )  →  ( ( ( ( 2 ↑ 𝑘 ) ↑ 2 )  −  ( 1 ↑ 2 ) )  =  ( 𝑃 ↑ 𝑀 )  →  𝑀  =  1 ) ) | 
						
							| 163 | 119 162 | biimtrid | ⊢ ( ( 𝑘  ∈  ( ℤ≥ ‘ 2 )  ∧  ( 𝑃  ∈  ( ℙ  ∖  { 2 } )  ∧  𝑀  ∈  ℕ  ∧  𝑁  ∈  ℕ ) )  →  ( ( ( ( 2 ↑ 𝑘 ) ↑ 2 )  −  1 )  =  ( 𝑃 ↑ 𝑀 )  →  𝑀  =  1 ) ) | 
						
							| 164 | 163 | ex | ⊢ ( 𝑘  ∈  ( ℤ≥ ‘ 2 )  →  ( ( 𝑃  ∈  ( ℙ  ∖  { 2 } )  ∧  𝑀  ∈  ℕ  ∧  𝑁  ∈  ℕ )  →  ( ( ( ( 2 ↑ 𝑘 ) ↑ 2 )  −  1 )  =  ( 𝑃 ↑ 𝑀 )  →  𝑀  =  1 ) ) ) | 
						
							| 165 | 115 164 | jaoi | ⊢ ( ( 𝑘  =  1  ∨  𝑘  ∈  ( ℤ≥ ‘ 2 ) )  →  ( ( 𝑃  ∈  ( ℙ  ∖  { 2 } )  ∧  𝑀  ∈  ℕ  ∧  𝑁  ∈  ℕ )  →  ( ( ( ( 2 ↑ 𝑘 ) ↑ 2 )  −  1 )  =  ( 𝑃 ↑ 𝑀 )  →  𝑀  =  1 ) ) ) | 
						
							| 166 | 18 165 | sylbi | ⊢ ( 𝑘  ∈  ℕ  →  ( ( 𝑃  ∈  ( ℙ  ∖  { 2 } )  ∧  𝑀  ∈  ℕ  ∧  𝑁  ∈  ℕ )  →  ( ( ( ( 2 ↑ 𝑘 ) ↑ 2 )  −  1 )  =  ( 𝑃 ↑ 𝑀 )  →  𝑀  =  1 ) ) ) | 
						
							| 167 | 166 | impcom | ⊢ ( ( ( 𝑃  ∈  ( ℙ  ∖  { 2 } )  ∧  𝑀  ∈  ℕ  ∧  𝑁  ∈  ℕ )  ∧  𝑘  ∈  ℕ )  →  ( ( ( ( 2 ↑ 𝑘 ) ↑ 2 )  −  1 )  =  ( 𝑃 ↑ 𝑀 )  →  𝑀  =  1 ) ) | 
						
							| 168 | 167 | adantr | ⊢ ( ( ( ( 𝑃  ∈  ( ℙ  ∖  { 2 } )  ∧  𝑀  ∈  ℕ  ∧  𝑁  ∈  ℕ )  ∧  𝑘  ∈  ℕ )  ∧  ( 2  ·  𝑘 )  =  𝑁 )  →  ( ( ( ( 2 ↑ 𝑘 ) ↑ 2 )  −  1 )  =  ( 𝑃 ↑ 𝑀 )  →  𝑀  =  1 ) ) | 
						
							| 169 | 17 168 | sylbid | ⊢ ( ( ( ( 𝑃  ∈  ( ℙ  ∖  { 2 } )  ∧  𝑀  ∈  ℕ  ∧  𝑁  ∈  ℕ )  ∧  𝑘  ∈  ℕ )  ∧  ( 2  ·  𝑘 )  =  𝑁 )  →  ( ( ( 2 ↑ 𝑁 )  −  1 )  =  ( 𝑃 ↑ 𝑀 )  →  𝑀  =  1 ) ) | 
						
							| 170 | 169 | rexlimdva2 | ⊢ ( ( 𝑃  ∈  ( ℙ  ∖  { 2 } )  ∧  𝑀  ∈  ℕ  ∧  𝑁  ∈  ℕ )  →  ( ∃ 𝑘  ∈  ℕ ( 2  ·  𝑘 )  =  𝑁  →  ( ( ( 2 ↑ 𝑁 )  −  1 )  =  ( 𝑃 ↑ 𝑀 )  →  𝑀  =  1 ) ) ) | 
						
							| 171 | 2 170 | sylbid | ⊢ ( ( 𝑃  ∈  ( ℙ  ∖  { 2 } )  ∧  𝑀  ∈  ℕ  ∧  𝑁  ∈  ℕ )  →  ( 2  ∥  𝑁  →  ( ( ( 2 ↑ 𝑁 )  −  1 )  =  ( 𝑃 ↑ 𝑀 )  →  𝑀  =  1 ) ) ) | 
						
							| 172 | 171 | 3imp | ⊢ ( ( ( 𝑃  ∈  ( ℙ  ∖  { 2 } )  ∧  𝑀  ∈  ℕ  ∧  𝑁  ∈  ℕ )  ∧  2  ∥  𝑁  ∧  ( ( 2 ↑ 𝑁 )  −  1 )  =  ( 𝑃 ↑ 𝑀 ) )  →  𝑀  =  1 ) |