| Step |
Hyp |
Ref |
Expression |
| 1 |
|
evennn2n |
⊢ ( 𝑁 ∈ ℕ → ( 2 ∥ 𝑁 ↔ ∃ 𝑘 ∈ ℕ ( 2 · 𝑘 ) = 𝑁 ) ) |
| 2 |
1
|
3ad2ant3 |
⊢ ( ( 𝑃 ∈ ( ℙ ∖ { 2 } ) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ) → ( 2 ∥ 𝑁 ↔ ∃ 𝑘 ∈ ℕ ( 2 · 𝑘 ) = 𝑁 ) ) |
| 3 |
|
oveq2 |
⊢ ( 𝑁 = ( 2 · 𝑘 ) → ( 2 ↑ 𝑁 ) = ( 2 ↑ ( 2 · 𝑘 ) ) ) |
| 4 |
3
|
eqcoms |
⊢ ( ( 2 · 𝑘 ) = 𝑁 → ( 2 ↑ 𝑁 ) = ( 2 ↑ ( 2 · 𝑘 ) ) ) |
| 5 |
|
2cnd |
⊢ ( 𝑘 ∈ ℕ → 2 ∈ ℂ ) |
| 6 |
|
nncn |
⊢ ( 𝑘 ∈ ℕ → 𝑘 ∈ ℂ ) |
| 7 |
5 6
|
mulcomd |
⊢ ( 𝑘 ∈ ℕ → ( 2 · 𝑘 ) = ( 𝑘 · 2 ) ) |
| 8 |
7
|
oveq2d |
⊢ ( 𝑘 ∈ ℕ → ( 2 ↑ ( 2 · 𝑘 ) ) = ( 2 ↑ ( 𝑘 · 2 ) ) ) |
| 9 |
|
2nn0 |
⊢ 2 ∈ ℕ0 |
| 10 |
9
|
a1i |
⊢ ( 𝑘 ∈ ℕ → 2 ∈ ℕ0 ) |
| 11 |
|
nnnn0 |
⊢ ( 𝑘 ∈ ℕ → 𝑘 ∈ ℕ0 ) |
| 12 |
5 10 11
|
expmuld |
⊢ ( 𝑘 ∈ ℕ → ( 2 ↑ ( 𝑘 · 2 ) ) = ( ( 2 ↑ 𝑘 ) ↑ 2 ) ) |
| 13 |
8 12
|
eqtrd |
⊢ ( 𝑘 ∈ ℕ → ( 2 ↑ ( 2 · 𝑘 ) ) = ( ( 2 ↑ 𝑘 ) ↑ 2 ) ) |
| 14 |
13
|
adantl |
⊢ ( ( ( 𝑃 ∈ ( ℙ ∖ { 2 } ) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ) ∧ 𝑘 ∈ ℕ ) → ( 2 ↑ ( 2 · 𝑘 ) ) = ( ( 2 ↑ 𝑘 ) ↑ 2 ) ) |
| 15 |
4 14
|
sylan9eqr |
⊢ ( ( ( ( 𝑃 ∈ ( ℙ ∖ { 2 } ) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ) ∧ 𝑘 ∈ ℕ ) ∧ ( 2 · 𝑘 ) = 𝑁 ) → ( 2 ↑ 𝑁 ) = ( ( 2 ↑ 𝑘 ) ↑ 2 ) ) |
| 16 |
15
|
oveq1d |
⊢ ( ( ( ( 𝑃 ∈ ( ℙ ∖ { 2 } ) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ) ∧ 𝑘 ∈ ℕ ) ∧ ( 2 · 𝑘 ) = 𝑁 ) → ( ( 2 ↑ 𝑁 ) − 1 ) = ( ( ( 2 ↑ 𝑘 ) ↑ 2 ) − 1 ) ) |
| 17 |
16
|
eqeq1d |
⊢ ( ( ( ( 𝑃 ∈ ( ℙ ∖ { 2 } ) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ) ∧ 𝑘 ∈ ℕ ) ∧ ( 2 · 𝑘 ) = 𝑁 ) → ( ( ( 2 ↑ 𝑁 ) − 1 ) = ( 𝑃 ↑ 𝑀 ) ↔ ( ( ( 2 ↑ 𝑘 ) ↑ 2 ) − 1 ) = ( 𝑃 ↑ 𝑀 ) ) ) |
| 18 |
|
elnn1uz2 |
⊢ ( 𝑘 ∈ ℕ ↔ ( 𝑘 = 1 ∨ 𝑘 ∈ ( ℤ≥ ‘ 2 ) ) ) |
| 19 |
|
oveq2 |
⊢ ( 𝑘 = 1 → ( 2 ↑ 𝑘 ) = ( 2 ↑ 1 ) ) |
| 20 |
|
2cn |
⊢ 2 ∈ ℂ |
| 21 |
|
exp1 |
⊢ ( 2 ∈ ℂ → ( 2 ↑ 1 ) = 2 ) |
| 22 |
20 21
|
ax-mp |
⊢ ( 2 ↑ 1 ) = 2 |
| 23 |
19 22
|
eqtrdi |
⊢ ( 𝑘 = 1 → ( 2 ↑ 𝑘 ) = 2 ) |
| 24 |
23
|
oveq1d |
⊢ ( 𝑘 = 1 → ( ( 2 ↑ 𝑘 ) ↑ 2 ) = ( 2 ↑ 2 ) ) |
| 25 |
24
|
oveq1d |
⊢ ( 𝑘 = 1 → ( ( ( 2 ↑ 𝑘 ) ↑ 2 ) − 1 ) = ( ( 2 ↑ 2 ) − 1 ) ) |
| 26 |
|
sq2 |
⊢ ( 2 ↑ 2 ) = 4 |
| 27 |
26
|
oveq1i |
⊢ ( ( 2 ↑ 2 ) − 1 ) = ( 4 − 1 ) |
| 28 |
|
4m1e3 |
⊢ ( 4 − 1 ) = 3 |
| 29 |
27 28
|
eqtri |
⊢ ( ( 2 ↑ 2 ) − 1 ) = 3 |
| 30 |
25 29
|
eqtrdi |
⊢ ( 𝑘 = 1 → ( ( ( 2 ↑ 𝑘 ) ↑ 2 ) − 1 ) = 3 ) |
| 31 |
30
|
eqeq1d |
⊢ ( 𝑘 = 1 → ( ( ( ( 2 ↑ 𝑘 ) ↑ 2 ) − 1 ) = ( 𝑃 ↑ 𝑀 ) ↔ 3 = ( 𝑃 ↑ 𝑀 ) ) ) |
| 32 |
31
|
adantr |
⊢ ( ( 𝑘 = 1 ∧ ( 𝑃 ∈ ( ℙ ∖ { 2 } ) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ) ) → ( ( ( ( 2 ↑ 𝑘 ) ↑ 2 ) − 1 ) = ( 𝑃 ↑ 𝑀 ) ↔ 3 = ( 𝑃 ↑ 𝑀 ) ) ) |
| 33 |
|
eqcom |
⊢ ( 3 = ( 𝑃 ↑ 𝑀 ) ↔ ( 𝑃 ↑ 𝑀 ) = 3 ) |
| 34 |
|
eldifi |
⊢ ( 𝑃 ∈ ( ℙ ∖ { 2 } ) → 𝑃 ∈ ℙ ) |
| 35 |
|
prmnn |
⊢ ( 𝑃 ∈ ℙ → 𝑃 ∈ ℕ ) |
| 36 |
|
nnre |
⊢ ( 𝑃 ∈ ℕ → 𝑃 ∈ ℝ ) |
| 37 |
34 35 36
|
3syl |
⊢ ( 𝑃 ∈ ( ℙ ∖ { 2 } ) → 𝑃 ∈ ℝ ) |
| 38 |
37
|
3ad2ant1 |
⊢ ( ( 𝑃 ∈ ( ℙ ∖ { 2 } ) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ) → 𝑃 ∈ ℝ ) |
| 39 |
|
nnnn0 |
⊢ ( 𝑀 ∈ ℕ → 𝑀 ∈ ℕ0 ) |
| 40 |
39
|
3ad2ant2 |
⊢ ( ( 𝑃 ∈ ( ℙ ∖ { 2 } ) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ) → 𝑀 ∈ ℕ0 ) |
| 41 |
38 40
|
reexpcld |
⊢ ( ( 𝑃 ∈ ( ℙ ∖ { 2 } ) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ) → ( 𝑃 ↑ 𝑀 ) ∈ ℝ ) |
| 42 |
41
|
adantr |
⊢ ( ( ( 𝑃 ∈ ( ℙ ∖ { 2 } ) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ) ∧ ( 𝑃 ↑ 𝑀 ) = 3 ) → ( 𝑃 ↑ 𝑀 ) ∈ ℝ ) |
| 43 |
|
simpr |
⊢ ( ( ( 𝑃 ∈ ( ℙ ∖ { 2 } ) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ) ∧ ( 𝑃 ↑ 𝑀 ) = 3 ) → ( 𝑃 ↑ 𝑀 ) = 3 ) |
| 44 |
42 43
|
eqled |
⊢ ( ( ( 𝑃 ∈ ( ℙ ∖ { 2 } ) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ) ∧ ( 𝑃 ↑ 𝑀 ) = 3 ) → ( 𝑃 ↑ 𝑀 ) ≤ 3 ) |
| 45 |
44
|
ex |
⊢ ( ( 𝑃 ∈ ( ℙ ∖ { 2 } ) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ) → ( ( 𝑃 ↑ 𝑀 ) = 3 → ( 𝑃 ↑ 𝑀 ) ≤ 3 ) ) |
| 46 |
33 45
|
biimtrid |
⊢ ( ( 𝑃 ∈ ( ℙ ∖ { 2 } ) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ) → ( 3 = ( 𝑃 ↑ 𝑀 ) → ( 𝑃 ↑ 𝑀 ) ≤ 3 ) ) |
| 47 |
35
|
nnred |
⊢ ( 𝑃 ∈ ℙ → 𝑃 ∈ ℝ ) |
| 48 |
|
prmgt1 |
⊢ ( 𝑃 ∈ ℙ → 1 < 𝑃 ) |
| 49 |
47 48
|
jca |
⊢ ( 𝑃 ∈ ℙ → ( 𝑃 ∈ ℝ ∧ 1 < 𝑃 ) ) |
| 50 |
34 49
|
syl |
⊢ ( 𝑃 ∈ ( ℙ ∖ { 2 } ) → ( 𝑃 ∈ ℝ ∧ 1 < 𝑃 ) ) |
| 51 |
50
|
3ad2ant1 |
⊢ ( ( 𝑃 ∈ ( ℙ ∖ { 2 } ) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ) → ( 𝑃 ∈ ℝ ∧ 1 < 𝑃 ) ) |
| 52 |
|
nnz |
⊢ ( 𝑀 ∈ ℕ → 𝑀 ∈ ℤ ) |
| 53 |
52
|
3ad2ant2 |
⊢ ( ( 𝑃 ∈ ( ℙ ∖ { 2 } ) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ) → 𝑀 ∈ ℤ ) |
| 54 |
|
3rp |
⊢ 3 ∈ ℝ+ |
| 55 |
54
|
a1i |
⊢ ( ( 𝑃 ∈ ( ℙ ∖ { 2 } ) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ) → 3 ∈ ℝ+ ) |
| 56 |
|
efexple |
⊢ ( ( ( 𝑃 ∈ ℝ ∧ 1 < 𝑃 ) ∧ 𝑀 ∈ ℤ ∧ 3 ∈ ℝ+ ) → ( ( 𝑃 ↑ 𝑀 ) ≤ 3 ↔ 𝑀 ≤ ( ⌊ ‘ ( ( log ‘ 3 ) / ( log ‘ 𝑃 ) ) ) ) ) |
| 57 |
51 53 55 56
|
syl3anc |
⊢ ( ( 𝑃 ∈ ( ℙ ∖ { 2 } ) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ) → ( ( 𝑃 ↑ 𝑀 ) ≤ 3 ↔ 𝑀 ≤ ( ⌊ ‘ ( ( log ‘ 3 ) / ( log ‘ 𝑃 ) ) ) ) ) |
| 58 |
|
oddprmge3 |
⊢ ( 𝑃 ∈ ( ℙ ∖ { 2 } ) → 𝑃 ∈ ( ℤ≥ ‘ 3 ) ) |
| 59 |
|
eluzle |
⊢ ( 𝑃 ∈ ( ℤ≥ ‘ 3 ) → 3 ≤ 𝑃 ) |
| 60 |
58 59
|
syl |
⊢ ( 𝑃 ∈ ( ℙ ∖ { 2 } ) → 3 ≤ 𝑃 ) |
| 61 |
54
|
a1i |
⊢ ( 𝑃 ∈ ( ℙ ∖ { 2 } ) → 3 ∈ ℝ+ ) |
| 62 |
|
nnrp |
⊢ ( 𝑃 ∈ ℕ → 𝑃 ∈ ℝ+ ) |
| 63 |
34 35 62
|
3syl |
⊢ ( 𝑃 ∈ ( ℙ ∖ { 2 } ) → 𝑃 ∈ ℝ+ ) |
| 64 |
61 63
|
logled |
⊢ ( 𝑃 ∈ ( ℙ ∖ { 2 } ) → ( 3 ≤ 𝑃 ↔ ( log ‘ 3 ) ≤ ( log ‘ 𝑃 ) ) ) |
| 65 |
60 64
|
mpbid |
⊢ ( 𝑃 ∈ ( ℙ ∖ { 2 } ) → ( log ‘ 3 ) ≤ ( log ‘ 𝑃 ) ) |
| 66 |
65
|
3ad2ant1 |
⊢ ( ( 𝑃 ∈ ( ℙ ∖ { 2 } ) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ) → ( log ‘ 3 ) ≤ ( log ‘ 𝑃 ) ) |
| 67 |
|
relogcl |
⊢ ( 3 ∈ ℝ+ → ( log ‘ 3 ) ∈ ℝ ) |
| 68 |
54 67
|
ax-mp |
⊢ ( log ‘ 3 ) ∈ ℝ |
| 69 |
|
rplogcl |
⊢ ( ( 𝑃 ∈ ℝ ∧ 1 < 𝑃 ) → ( log ‘ 𝑃 ) ∈ ℝ+ ) |
| 70 |
34 49 69
|
3syl |
⊢ ( 𝑃 ∈ ( ℙ ∖ { 2 } ) → ( log ‘ 𝑃 ) ∈ ℝ+ ) |
| 71 |
70
|
3ad2ant1 |
⊢ ( ( 𝑃 ∈ ( ℙ ∖ { 2 } ) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ) → ( log ‘ 𝑃 ) ∈ ℝ+ ) |
| 72 |
|
divle1le |
⊢ ( ( ( log ‘ 3 ) ∈ ℝ ∧ ( log ‘ 𝑃 ) ∈ ℝ+ ) → ( ( ( log ‘ 3 ) / ( log ‘ 𝑃 ) ) ≤ 1 ↔ ( log ‘ 3 ) ≤ ( log ‘ 𝑃 ) ) ) |
| 73 |
68 71 72
|
sylancr |
⊢ ( ( 𝑃 ∈ ( ℙ ∖ { 2 } ) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ) → ( ( ( log ‘ 3 ) / ( log ‘ 𝑃 ) ) ≤ 1 ↔ ( log ‘ 3 ) ≤ ( log ‘ 𝑃 ) ) ) |
| 74 |
66 73
|
mpbird |
⊢ ( ( 𝑃 ∈ ( ℙ ∖ { 2 } ) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ) → ( ( log ‘ 3 ) / ( log ‘ 𝑃 ) ) ≤ 1 ) |
| 75 |
|
fldivle |
⊢ ( ( ( log ‘ 3 ) ∈ ℝ ∧ ( log ‘ 𝑃 ) ∈ ℝ+ ) → ( ⌊ ‘ ( ( log ‘ 3 ) / ( log ‘ 𝑃 ) ) ) ≤ ( ( log ‘ 3 ) / ( log ‘ 𝑃 ) ) ) |
| 76 |
68 71 75
|
sylancr |
⊢ ( ( 𝑃 ∈ ( ℙ ∖ { 2 } ) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ) → ( ⌊ ‘ ( ( log ‘ 3 ) / ( log ‘ 𝑃 ) ) ) ≤ ( ( log ‘ 3 ) / ( log ‘ 𝑃 ) ) ) |
| 77 |
|
nnre |
⊢ ( 𝑀 ∈ ℕ → 𝑀 ∈ ℝ ) |
| 78 |
77
|
3ad2ant2 |
⊢ ( ( 𝑃 ∈ ( ℙ ∖ { 2 } ) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ) → 𝑀 ∈ ℝ ) |
| 79 |
68
|
a1i |
⊢ ( 𝑃 ∈ ( ℙ ∖ { 2 } ) → ( log ‘ 3 ) ∈ ℝ ) |
| 80 |
62
|
relogcld |
⊢ ( 𝑃 ∈ ℕ → ( log ‘ 𝑃 ) ∈ ℝ ) |
| 81 |
34 35 80
|
3syl |
⊢ ( 𝑃 ∈ ( ℙ ∖ { 2 } ) → ( log ‘ 𝑃 ) ∈ ℝ ) |
| 82 |
35
|
nnrpd |
⊢ ( 𝑃 ∈ ℙ → 𝑃 ∈ ℝ+ ) |
| 83 |
|
1red |
⊢ ( 𝑃 ∈ ℙ → 1 ∈ ℝ ) |
| 84 |
83 48
|
gtned |
⊢ ( 𝑃 ∈ ℙ → 𝑃 ≠ 1 ) |
| 85 |
82 84
|
jca |
⊢ ( 𝑃 ∈ ℙ → ( 𝑃 ∈ ℝ+ ∧ 𝑃 ≠ 1 ) ) |
| 86 |
|
logne0 |
⊢ ( ( 𝑃 ∈ ℝ+ ∧ 𝑃 ≠ 1 ) → ( log ‘ 𝑃 ) ≠ 0 ) |
| 87 |
34 85 86
|
3syl |
⊢ ( 𝑃 ∈ ( ℙ ∖ { 2 } ) → ( log ‘ 𝑃 ) ≠ 0 ) |
| 88 |
79 81 87
|
redivcld |
⊢ ( 𝑃 ∈ ( ℙ ∖ { 2 } ) → ( ( log ‘ 3 ) / ( log ‘ 𝑃 ) ) ∈ ℝ ) |
| 89 |
88
|
flcld |
⊢ ( 𝑃 ∈ ( ℙ ∖ { 2 } ) → ( ⌊ ‘ ( ( log ‘ 3 ) / ( log ‘ 𝑃 ) ) ) ∈ ℤ ) |
| 90 |
89
|
zred |
⊢ ( 𝑃 ∈ ( ℙ ∖ { 2 } ) → ( ⌊ ‘ ( ( log ‘ 3 ) / ( log ‘ 𝑃 ) ) ) ∈ ℝ ) |
| 91 |
90
|
3ad2ant1 |
⊢ ( ( 𝑃 ∈ ( ℙ ∖ { 2 } ) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ) → ( ⌊ ‘ ( ( log ‘ 3 ) / ( log ‘ 𝑃 ) ) ) ∈ ℝ ) |
| 92 |
88
|
3ad2ant1 |
⊢ ( ( 𝑃 ∈ ( ℙ ∖ { 2 } ) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ) → ( ( log ‘ 3 ) / ( log ‘ 𝑃 ) ) ∈ ℝ ) |
| 93 |
|
letr |
⊢ ( ( 𝑀 ∈ ℝ ∧ ( ⌊ ‘ ( ( log ‘ 3 ) / ( log ‘ 𝑃 ) ) ) ∈ ℝ ∧ ( ( log ‘ 3 ) / ( log ‘ 𝑃 ) ) ∈ ℝ ) → ( ( 𝑀 ≤ ( ⌊ ‘ ( ( log ‘ 3 ) / ( log ‘ 𝑃 ) ) ) ∧ ( ⌊ ‘ ( ( log ‘ 3 ) / ( log ‘ 𝑃 ) ) ) ≤ ( ( log ‘ 3 ) / ( log ‘ 𝑃 ) ) ) → 𝑀 ≤ ( ( log ‘ 3 ) / ( log ‘ 𝑃 ) ) ) ) |
| 94 |
78 91 92 93
|
syl3anc |
⊢ ( ( 𝑃 ∈ ( ℙ ∖ { 2 } ) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ) → ( ( 𝑀 ≤ ( ⌊ ‘ ( ( log ‘ 3 ) / ( log ‘ 𝑃 ) ) ) ∧ ( ⌊ ‘ ( ( log ‘ 3 ) / ( log ‘ 𝑃 ) ) ) ≤ ( ( log ‘ 3 ) / ( log ‘ 𝑃 ) ) ) → 𝑀 ≤ ( ( log ‘ 3 ) / ( log ‘ 𝑃 ) ) ) ) |
| 95 |
|
1red |
⊢ ( ( 𝑃 ∈ ( ℙ ∖ { 2 } ) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ) → 1 ∈ ℝ ) |
| 96 |
|
letr |
⊢ ( ( 𝑀 ∈ ℝ ∧ ( ( log ‘ 3 ) / ( log ‘ 𝑃 ) ) ∈ ℝ ∧ 1 ∈ ℝ ) → ( ( 𝑀 ≤ ( ( log ‘ 3 ) / ( log ‘ 𝑃 ) ) ∧ ( ( log ‘ 3 ) / ( log ‘ 𝑃 ) ) ≤ 1 ) → 𝑀 ≤ 1 ) ) |
| 97 |
78 92 95 96
|
syl3anc |
⊢ ( ( 𝑃 ∈ ( ℙ ∖ { 2 } ) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ) → ( ( 𝑀 ≤ ( ( log ‘ 3 ) / ( log ‘ 𝑃 ) ) ∧ ( ( log ‘ 3 ) / ( log ‘ 𝑃 ) ) ≤ 1 ) → 𝑀 ≤ 1 ) ) |
| 98 |
|
nnge1 |
⊢ ( 𝑀 ∈ ℕ → 1 ≤ 𝑀 ) |
| 99 |
|
eqcom |
⊢ ( 𝑀 = 1 ↔ 1 = 𝑀 ) |
| 100 |
|
1red |
⊢ ( 𝑀 ∈ ℕ → 1 ∈ ℝ ) |
| 101 |
100 77
|
letri3d |
⊢ ( 𝑀 ∈ ℕ → ( 1 = 𝑀 ↔ ( 1 ≤ 𝑀 ∧ 𝑀 ≤ 1 ) ) ) |
| 102 |
99 101
|
bitr2id |
⊢ ( 𝑀 ∈ ℕ → ( ( 1 ≤ 𝑀 ∧ 𝑀 ≤ 1 ) ↔ 𝑀 = 1 ) ) |
| 103 |
102
|
biimpd |
⊢ ( 𝑀 ∈ ℕ → ( ( 1 ≤ 𝑀 ∧ 𝑀 ≤ 1 ) → 𝑀 = 1 ) ) |
| 104 |
98 103
|
mpand |
⊢ ( 𝑀 ∈ ℕ → ( 𝑀 ≤ 1 → 𝑀 = 1 ) ) |
| 105 |
104
|
3ad2ant2 |
⊢ ( ( 𝑃 ∈ ( ℙ ∖ { 2 } ) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ) → ( 𝑀 ≤ 1 → 𝑀 = 1 ) ) |
| 106 |
97 105
|
syld |
⊢ ( ( 𝑃 ∈ ( ℙ ∖ { 2 } ) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ) → ( ( 𝑀 ≤ ( ( log ‘ 3 ) / ( log ‘ 𝑃 ) ) ∧ ( ( log ‘ 3 ) / ( log ‘ 𝑃 ) ) ≤ 1 ) → 𝑀 = 1 ) ) |
| 107 |
106
|
expd |
⊢ ( ( 𝑃 ∈ ( ℙ ∖ { 2 } ) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ) → ( 𝑀 ≤ ( ( log ‘ 3 ) / ( log ‘ 𝑃 ) ) → ( ( ( log ‘ 3 ) / ( log ‘ 𝑃 ) ) ≤ 1 → 𝑀 = 1 ) ) ) |
| 108 |
94 107
|
syld |
⊢ ( ( 𝑃 ∈ ( ℙ ∖ { 2 } ) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ) → ( ( 𝑀 ≤ ( ⌊ ‘ ( ( log ‘ 3 ) / ( log ‘ 𝑃 ) ) ) ∧ ( ⌊ ‘ ( ( log ‘ 3 ) / ( log ‘ 𝑃 ) ) ) ≤ ( ( log ‘ 3 ) / ( log ‘ 𝑃 ) ) ) → ( ( ( log ‘ 3 ) / ( log ‘ 𝑃 ) ) ≤ 1 → 𝑀 = 1 ) ) ) |
| 109 |
76 108
|
mpan2d |
⊢ ( ( 𝑃 ∈ ( ℙ ∖ { 2 } ) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ) → ( 𝑀 ≤ ( ⌊ ‘ ( ( log ‘ 3 ) / ( log ‘ 𝑃 ) ) ) → ( ( ( log ‘ 3 ) / ( log ‘ 𝑃 ) ) ≤ 1 → 𝑀 = 1 ) ) ) |
| 110 |
74 109
|
mpid |
⊢ ( ( 𝑃 ∈ ( ℙ ∖ { 2 } ) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ) → ( 𝑀 ≤ ( ⌊ ‘ ( ( log ‘ 3 ) / ( log ‘ 𝑃 ) ) ) → 𝑀 = 1 ) ) |
| 111 |
57 110
|
sylbid |
⊢ ( ( 𝑃 ∈ ( ℙ ∖ { 2 } ) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ) → ( ( 𝑃 ↑ 𝑀 ) ≤ 3 → 𝑀 = 1 ) ) |
| 112 |
46 111
|
syld |
⊢ ( ( 𝑃 ∈ ( ℙ ∖ { 2 } ) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ) → ( 3 = ( 𝑃 ↑ 𝑀 ) → 𝑀 = 1 ) ) |
| 113 |
112
|
adantl |
⊢ ( ( 𝑘 = 1 ∧ ( 𝑃 ∈ ( ℙ ∖ { 2 } ) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ) ) → ( 3 = ( 𝑃 ↑ 𝑀 ) → 𝑀 = 1 ) ) |
| 114 |
32 113
|
sylbid |
⊢ ( ( 𝑘 = 1 ∧ ( 𝑃 ∈ ( ℙ ∖ { 2 } ) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ) ) → ( ( ( ( 2 ↑ 𝑘 ) ↑ 2 ) − 1 ) = ( 𝑃 ↑ 𝑀 ) → 𝑀 = 1 ) ) |
| 115 |
114
|
ex |
⊢ ( 𝑘 = 1 → ( ( 𝑃 ∈ ( ℙ ∖ { 2 } ) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ) → ( ( ( ( 2 ↑ 𝑘 ) ↑ 2 ) − 1 ) = ( 𝑃 ↑ 𝑀 ) → 𝑀 = 1 ) ) ) |
| 116 |
|
sq1 |
⊢ ( 1 ↑ 2 ) = 1 |
| 117 |
116
|
eqcomi |
⊢ 1 = ( 1 ↑ 2 ) |
| 118 |
117
|
oveq2i |
⊢ ( ( ( 2 ↑ 𝑘 ) ↑ 2 ) − 1 ) = ( ( ( 2 ↑ 𝑘 ) ↑ 2 ) − ( 1 ↑ 2 ) ) |
| 119 |
118
|
eqeq1i |
⊢ ( ( ( ( 2 ↑ 𝑘 ) ↑ 2 ) − 1 ) = ( 𝑃 ↑ 𝑀 ) ↔ ( ( ( 2 ↑ 𝑘 ) ↑ 2 ) − ( 1 ↑ 2 ) ) = ( 𝑃 ↑ 𝑀 ) ) |
| 120 |
|
eqcom |
⊢ ( ( ( ( 2 ↑ 𝑘 ) ↑ 2 ) − ( 1 ↑ 2 ) ) = ( 𝑃 ↑ 𝑀 ) ↔ ( 𝑃 ↑ 𝑀 ) = ( ( ( 2 ↑ 𝑘 ) ↑ 2 ) − ( 1 ↑ 2 ) ) ) |
| 121 |
9
|
a1i |
⊢ ( 𝑘 ∈ ( ℤ≥ ‘ 2 ) → 2 ∈ ℕ0 ) |
| 122 |
|
eluzge2nn0 |
⊢ ( 𝑘 ∈ ( ℤ≥ ‘ 2 ) → 𝑘 ∈ ℕ0 ) |
| 123 |
121 122
|
nn0expcld |
⊢ ( 𝑘 ∈ ( ℤ≥ ‘ 2 ) → ( 2 ↑ 𝑘 ) ∈ ℕ0 ) |
| 124 |
123
|
adantr |
⊢ ( ( 𝑘 ∈ ( ℤ≥ ‘ 2 ) ∧ ( 𝑃 ∈ ( ℙ ∖ { 2 } ) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ) ) → ( 2 ↑ 𝑘 ) ∈ ℕ0 ) |
| 125 |
|
1nn0 |
⊢ 1 ∈ ℕ0 |
| 126 |
125
|
a1i |
⊢ ( ( 𝑘 ∈ ( ℤ≥ ‘ 2 ) ∧ ( 𝑃 ∈ ( ℙ ∖ { 2 } ) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ) ) → 1 ∈ ℕ0 ) |
| 127 |
|
1p1e2 |
⊢ ( 1 + 1 ) = 2 |
| 128 |
22
|
eqcomi |
⊢ 2 = ( 2 ↑ 1 ) |
| 129 |
127 128
|
eqtri |
⊢ ( 1 + 1 ) = ( 2 ↑ 1 ) |
| 130 |
|
eluz2gt1 |
⊢ ( 𝑘 ∈ ( ℤ≥ ‘ 2 ) → 1 < 𝑘 ) |
| 131 |
|
2re |
⊢ 2 ∈ ℝ |
| 132 |
131
|
a1i |
⊢ ( 𝑘 ∈ ( ℤ≥ ‘ 2 ) → 2 ∈ ℝ ) |
| 133 |
|
1zzd |
⊢ ( 𝑘 ∈ ( ℤ≥ ‘ 2 ) → 1 ∈ ℤ ) |
| 134 |
|
eluzelz |
⊢ ( 𝑘 ∈ ( ℤ≥ ‘ 2 ) → 𝑘 ∈ ℤ ) |
| 135 |
|
1lt2 |
⊢ 1 < 2 |
| 136 |
135
|
a1i |
⊢ ( 𝑘 ∈ ( ℤ≥ ‘ 2 ) → 1 < 2 ) |
| 137 |
132 133 134 136
|
ltexp2d |
⊢ ( 𝑘 ∈ ( ℤ≥ ‘ 2 ) → ( 1 < 𝑘 ↔ ( 2 ↑ 1 ) < ( 2 ↑ 𝑘 ) ) ) |
| 138 |
130 137
|
mpbid |
⊢ ( 𝑘 ∈ ( ℤ≥ ‘ 2 ) → ( 2 ↑ 1 ) < ( 2 ↑ 𝑘 ) ) |
| 139 |
129 138
|
eqbrtrid |
⊢ ( 𝑘 ∈ ( ℤ≥ ‘ 2 ) → ( 1 + 1 ) < ( 2 ↑ 𝑘 ) ) |
| 140 |
139
|
adantr |
⊢ ( ( 𝑘 ∈ ( ℤ≥ ‘ 2 ) ∧ ( 𝑃 ∈ ( ℙ ∖ { 2 } ) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ) ) → ( 1 + 1 ) < ( 2 ↑ 𝑘 ) ) |
| 141 |
34 39
|
anim12i |
⊢ ( ( 𝑃 ∈ ( ℙ ∖ { 2 } ) ∧ 𝑀 ∈ ℕ ) → ( 𝑃 ∈ ℙ ∧ 𝑀 ∈ ℕ0 ) ) |
| 142 |
141
|
3adant3 |
⊢ ( ( 𝑃 ∈ ( ℙ ∖ { 2 } ) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ) → ( 𝑃 ∈ ℙ ∧ 𝑀 ∈ ℕ0 ) ) |
| 143 |
142
|
adantl |
⊢ ( ( 𝑘 ∈ ( ℤ≥ ‘ 2 ) ∧ ( 𝑃 ∈ ( ℙ ∖ { 2 } ) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ) ) → ( 𝑃 ∈ ℙ ∧ 𝑀 ∈ ℕ0 ) ) |
| 144 |
|
difsqpwdvds |
⊢ ( ( ( ( 2 ↑ 𝑘 ) ∈ ℕ0 ∧ 1 ∈ ℕ0 ∧ ( 1 + 1 ) < ( 2 ↑ 𝑘 ) ) ∧ ( 𝑃 ∈ ℙ ∧ 𝑀 ∈ ℕ0 ) ) → ( ( 𝑃 ↑ 𝑀 ) = ( ( ( 2 ↑ 𝑘 ) ↑ 2 ) − ( 1 ↑ 2 ) ) → 𝑃 ∥ ( 2 · 1 ) ) ) |
| 145 |
124 126 140 143 144
|
syl31anc |
⊢ ( ( 𝑘 ∈ ( ℤ≥ ‘ 2 ) ∧ ( 𝑃 ∈ ( ℙ ∖ { 2 } ) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ) ) → ( ( 𝑃 ↑ 𝑀 ) = ( ( ( 2 ↑ 𝑘 ) ↑ 2 ) − ( 1 ↑ 2 ) ) → 𝑃 ∥ ( 2 · 1 ) ) ) |
| 146 |
|
2t1e2 |
⊢ ( 2 · 1 ) = 2 |
| 147 |
146
|
breq2i |
⊢ ( 𝑃 ∥ ( 2 · 1 ) ↔ 𝑃 ∥ 2 ) |
| 148 |
|
prmuz2 |
⊢ ( 𝑃 ∈ ℙ → 𝑃 ∈ ( ℤ≥ ‘ 2 ) ) |
| 149 |
34 148
|
syl |
⊢ ( 𝑃 ∈ ( ℙ ∖ { 2 } ) → 𝑃 ∈ ( ℤ≥ ‘ 2 ) ) |
| 150 |
|
2prm |
⊢ 2 ∈ ℙ |
| 151 |
|
dvdsprm |
⊢ ( ( 𝑃 ∈ ( ℤ≥ ‘ 2 ) ∧ 2 ∈ ℙ ) → ( 𝑃 ∥ 2 ↔ 𝑃 = 2 ) ) |
| 152 |
149 150 151
|
sylancl |
⊢ ( 𝑃 ∈ ( ℙ ∖ { 2 } ) → ( 𝑃 ∥ 2 ↔ 𝑃 = 2 ) ) |
| 153 |
147 152
|
bitrid |
⊢ ( 𝑃 ∈ ( ℙ ∖ { 2 } ) → ( 𝑃 ∥ ( 2 · 1 ) ↔ 𝑃 = 2 ) ) |
| 154 |
|
eldifsn |
⊢ ( 𝑃 ∈ ( ℙ ∖ { 2 } ) ↔ ( 𝑃 ∈ ℙ ∧ 𝑃 ≠ 2 ) ) |
| 155 |
|
eqneqall |
⊢ ( 𝑃 = 2 → ( 𝑃 ≠ 2 → 𝑀 = 1 ) ) |
| 156 |
155
|
com12 |
⊢ ( 𝑃 ≠ 2 → ( 𝑃 = 2 → 𝑀 = 1 ) ) |
| 157 |
154 156
|
simplbiim |
⊢ ( 𝑃 ∈ ( ℙ ∖ { 2 } ) → ( 𝑃 = 2 → 𝑀 = 1 ) ) |
| 158 |
153 157
|
sylbid |
⊢ ( 𝑃 ∈ ( ℙ ∖ { 2 } ) → ( 𝑃 ∥ ( 2 · 1 ) → 𝑀 = 1 ) ) |
| 159 |
158
|
3ad2ant1 |
⊢ ( ( 𝑃 ∈ ( ℙ ∖ { 2 } ) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ) → ( 𝑃 ∥ ( 2 · 1 ) → 𝑀 = 1 ) ) |
| 160 |
159
|
adantl |
⊢ ( ( 𝑘 ∈ ( ℤ≥ ‘ 2 ) ∧ ( 𝑃 ∈ ( ℙ ∖ { 2 } ) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ) ) → ( 𝑃 ∥ ( 2 · 1 ) → 𝑀 = 1 ) ) |
| 161 |
145 160
|
syld |
⊢ ( ( 𝑘 ∈ ( ℤ≥ ‘ 2 ) ∧ ( 𝑃 ∈ ( ℙ ∖ { 2 } ) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ) ) → ( ( 𝑃 ↑ 𝑀 ) = ( ( ( 2 ↑ 𝑘 ) ↑ 2 ) − ( 1 ↑ 2 ) ) → 𝑀 = 1 ) ) |
| 162 |
120 161
|
biimtrid |
⊢ ( ( 𝑘 ∈ ( ℤ≥ ‘ 2 ) ∧ ( 𝑃 ∈ ( ℙ ∖ { 2 } ) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ) ) → ( ( ( ( 2 ↑ 𝑘 ) ↑ 2 ) − ( 1 ↑ 2 ) ) = ( 𝑃 ↑ 𝑀 ) → 𝑀 = 1 ) ) |
| 163 |
119 162
|
biimtrid |
⊢ ( ( 𝑘 ∈ ( ℤ≥ ‘ 2 ) ∧ ( 𝑃 ∈ ( ℙ ∖ { 2 } ) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ) ) → ( ( ( ( 2 ↑ 𝑘 ) ↑ 2 ) − 1 ) = ( 𝑃 ↑ 𝑀 ) → 𝑀 = 1 ) ) |
| 164 |
163
|
ex |
⊢ ( 𝑘 ∈ ( ℤ≥ ‘ 2 ) → ( ( 𝑃 ∈ ( ℙ ∖ { 2 } ) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ) → ( ( ( ( 2 ↑ 𝑘 ) ↑ 2 ) − 1 ) = ( 𝑃 ↑ 𝑀 ) → 𝑀 = 1 ) ) ) |
| 165 |
115 164
|
jaoi |
⊢ ( ( 𝑘 = 1 ∨ 𝑘 ∈ ( ℤ≥ ‘ 2 ) ) → ( ( 𝑃 ∈ ( ℙ ∖ { 2 } ) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ) → ( ( ( ( 2 ↑ 𝑘 ) ↑ 2 ) − 1 ) = ( 𝑃 ↑ 𝑀 ) → 𝑀 = 1 ) ) ) |
| 166 |
18 165
|
sylbi |
⊢ ( 𝑘 ∈ ℕ → ( ( 𝑃 ∈ ( ℙ ∖ { 2 } ) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ) → ( ( ( ( 2 ↑ 𝑘 ) ↑ 2 ) − 1 ) = ( 𝑃 ↑ 𝑀 ) → 𝑀 = 1 ) ) ) |
| 167 |
166
|
impcom |
⊢ ( ( ( 𝑃 ∈ ( ℙ ∖ { 2 } ) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ) ∧ 𝑘 ∈ ℕ ) → ( ( ( ( 2 ↑ 𝑘 ) ↑ 2 ) − 1 ) = ( 𝑃 ↑ 𝑀 ) → 𝑀 = 1 ) ) |
| 168 |
167
|
adantr |
⊢ ( ( ( ( 𝑃 ∈ ( ℙ ∖ { 2 } ) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ) ∧ 𝑘 ∈ ℕ ) ∧ ( 2 · 𝑘 ) = 𝑁 ) → ( ( ( ( 2 ↑ 𝑘 ) ↑ 2 ) − 1 ) = ( 𝑃 ↑ 𝑀 ) → 𝑀 = 1 ) ) |
| 169 |
17 168
|
sylbid |
⊢ ( ( ( ( 𝑃 ∈ ( ℙ ∖ { 2 } ) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ) ∧ 𝑘 ∈ ℕ ) ∧ ( 2 · 𝑘 ) = 𝑁 ) → ( ( ( 2 ↑ 𝑁 ) − 1 ) = ( 𝑃 ↑ 𝑀 ) → 𝑀 = 1 ) ) |
| 170 |
169
|
rexlimdva2 |
⊢ ( ( 𝑃 ∈ ( ℙ ∖ { 2 } ) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ) → ( ∃ 𝑘 ∈ ℕ ( 2 · 𝑘 ) = 𝑁 → ( ( ( 2 ↑ 𝑁 ) − 1 ) = ( 𝑃 ↑ 𝑀 ) → 𝑀 = 1 ) ) ) |
| 171 |
2 170
|
sylbid |
⊢ ( ( 𝑃 ∈ ( ℙ ∖ { 2 } ) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ) → ( 2 ∥ 𝑁 → ( ( ( 2 ↑ 𝑁 ) − 1 ) = ( 𝑃 ↑ 𝑀 ) → 𝑀 = 1 ) ) ) |
| 172 |
171
|
3imp |
⊢ ( ( ( 𝑃 ∈ ( ℙ ∖ { 2 } ) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ) ∧ 2 ∥ 𝑁 ∧ ( ( 2 ↑ 𝑁 ) − 1 ) = ( 𝑃 ↑ 𝑀 ) ) → 𝑀 = 1 ) |