Step |
Hyp |
Ref |
Expression |
1 |
|
oveq2 |
⊢ ( 𝑁 = 1 → ( 2 ↑ 𝑁 ) = ( 2 ↑ 1 ) ) |
2 |
|
2cn |
⊢ 2 ∈ ℂ |
3 |
|
exp1 |
⊢ ( 2 ∈ ℂ → ( 2 ↑ 1 ) = 2 ) |
4 |
2 3
|
ax-mp |
⊢ ( 2 ↑ 1 ) = 2 |
5 |
1 4
|
eqtrdi |
⊢ ( 𝑁 = 1 → ( 2 ↑ 𝑁 ) = 2 ) |
6 |
5
|
oveq1d |
⊢ ( 𝑁 = 1 → ( ( 2 ↑ 𝑁 ) − 1 ) = ( 2 − 1 ) ) |
7 |
|
2m1e1 |
⊢ ( 2 − 1 ) = 1 |
8 |
6 7
|
eqtrdi |
⊢ ( 𝑁 = 1 → ( ( 2 ↑ 𝑁 ) − 1 ) = 1 ) |
9 |
8
|
adantl |
⊢ ( ( ( 𝑃 ∈ ( ℙ ∖ { 2 } ) ∧ 𝑀 ∈ ℕ ) ∧ 𝑁 = 1 ) → ( ( 2 ↑ 𝑁 ) − 1 ) = 1 ) |
10 |
9
|
eqeq1d |
⊢ ( ( ( 𝑃 ∈ ( ℙ ∖ { 2 } ) ∧ 𝑀 ∈ ℕ ) ∧ 𝑁 = 1 ) → ( ( ( 2 ↑ 𝑁 ) − 1 ) = ( 𝑃 ↑ 𝑀 ) ↔ 1 = ( 𝑃 ↑ 𝑀 ) ) ) |
11 |
|
eldifi |
⊢ ( 𝑃 ∈ ( ℙ ∖ { 2 } ) → 𝑃 ∈ ℙ ) |
12 |
|
prmnn |
⊢ ( 𝑃 ∈ ℙ → 𝑃 ∈ ℕ ) |
13 |
|
nnnn0 |
⊢ ( 𝑃 ∈ ℕ → 𝑃 ∈ ℕ0 ) |
14 |
11 12 13
|
3syl |
⊢ ( 𝑃 ∈ ( ℙ ∖ { 2 } ) → 𝑃 ∈ ℕ0 ) |
15 |
14
|
nn0zd |
⊢ ( 𝑃 ∈ ( ℙ ∖ { 2 } ) → 𝑃 ∈ ℤ ) |
16 |
|
iddvdsexp |
⊢ ( ( 𝑃 ∈ ℤ ∧ 𝑀 ∈ ℕ ) → 𝑃 ∥ ( 𝑃 ↑ 𝑀 ) ) |
17 |
15 16
|
sylan |
⊢ ( ( 𝑃 ∈ ( ℙ ∖ { 2 } ) ∧ 𝑀 ∈ ℕ ) → 𝑃 ∥ ( 𝑃 ↑ 𝑀 ) ) |
18 |
|
breq2 |
⊢ ( 1 = ( 𝑃 ↑ 𝑀 ) → ( 𝑃 ∥ 1 ↔ 𝑃 ∥ ( 𝑃 ↑ 𝑀 ) ) ) |
19 |
18
|
adantl |
⊢ ( ( ( 𝑃 ∈ ( ℙ ∖ { 2 } ) ∧ 𝑀 ∈ ℕ ) ∧ 1 = ( 𝑃 ↑ 𝑀 ) ) → ( 𝑃 ∥ 1 ↔ 𝑃 ∥ ( 𝑃 ↑ 𝑀 ) ) ) |
20 |
|
dvds1 |
⊢ ( 𝑃 ∈ ℕ0 → ( 𝑃 ∥ 1 ↔ 𝑃 = 1 ) ) |
21 |
14 20
|
syl |
⊢ ( 𝑃 ∈ ( ℙ ∖ { 2 } ) → ( 𝑃 ∥ 1 ↔ 𝑃 = 1 ) ) |
22 |
|
eleq1 |
⊢ ( 𝑃 = 1 → ( 𝑃 ∈ ℙ ↔ 1 ∈ ℙ ) ) |
23 |
|
1nprm |
⊢ ¬ 1 ∈ ℙ |
24 |
23
|
pm2.21i |
⊢ ( 1 ∈ ℙ → 𝑀 = 1 ) |
25 |
22 24
|
syl6bi |
⊢ ( 𝑃 = 1 → ( 𝑃 ∈ ℙ → 𝑀 = 1 ) ) |
26 |
11 25
|
syl5com |
⊢ ( 𝑃 ∈ ( ℙ ∖ { 2 } ) → ( 𝑃 = 1 → 𝑀 = 1 ) ) |
27 |
21 26
|
sylbid |
⊢ ( 𝑃 ∈ ( ℙ ∖ { 2 } ) → ( 𝑃 ∥ 1 → 𝑀 = 1 ) ) |
28 |
27
|
ad2antrr |
⊢ ( ( ( 𝑃 ∈ ( ℙ ∖ { 2 } ) ∧ 𝑀 ∈ ℕ ) ∧ 1 = ( 𝑃 ↑ 𝑀 ) ) → ( 𝑃 ∥ 1 → 𝑀 = 1 ) ) |
29 |
19 28
|
sylbird |
⊢ ( ( ( 𝑃 ∈ ( ℙ ∖ { 2 } ) ∧ 𝑀 ∈ ℕ ) ∧ 1 = ( 𝑃 ↑ 𝑀 ) ) → ( 𝑃 ∥ ( 𝑃 ↑ 𝑀 ) → 𝑀 = 1 ) ) |
30 |
29
|
ex |
⊢ ( ( 𝑃 ∈ ( ℙ ∖ { 2 } ) ∧ 𝑀 ∈ ℕ ) → ( 1 = ( 𝑃 ↑ 𝑀 ) → ( 𝑃 ∥ ( 𝑃 ↑ 𝑀 ) → 𝑀 = 1 ) ) ) |
31 |
17 30
|
mpid |
⊢ ( ( 𝑃 ∈ ( ℙ ∖ { 2 } ) ∧ 𝑀 ∈ ℕ ) → ( 1 = ( 𝑃 ↑ 𝑀 ) → 𝑀 = 1 ) ) |
32 |
31
|
adantr |
⊢ ( ( ( 𝑃 ∈ ( ℙ ∖ { 2 } ) ∧ 𝑀 ∈ ℕ ) ∧ 𝑁 = 1 ) → ( 1 = ( 𝑃 ↑ 𝑀 ) → 𝑀 = 1 ) ) |
33 |
10 32
|
sylbid |
⊢ ( ( ( 𝑃 ∈ ( ℙ ∖ { 2 } ) ∧ 𝑀 ∈ ℕ ) ∧ 𝑁 = 1 ) → ( ( ( 2 ↑ 𝑁 ) − 1 ) = ( 𝑃 ↑ 𝑀 ) → 𝑀 = 1 ) ) |
34 |
33
|
ex |
⊢ ( ( 𝑃 ∈ ( ℙ ∖ { 2 } ) ∧ 𝑀 ∈ ℕ ) → ( 𝑁 = 1 → ( ( ( 2 ↑ 𝑁 ) − 1 ) = ( 𝑃 ↑ 𝑀 ) → 𝑀 = 1 ) ) ) |
35 |
34
|
com23 |
⊢ ( ( 𝑃 ∈ ( ℙ ∖ { 2 } ) ∧ 𝑀 ∈ ℕ ) → ( ( ( 2 ↑ 𝑁 ) − 1 ) = ( 𝑃 ↑ 𝑀 ) → ( 𝑁 = 1 → 𝑀 = 1 ) ) ) |
36 |
35
|
a1d |
⊢ ( ( 𝑃 ∈ ( ℙ ∖ { 2 } ) ∧ 𝑀 ∈ ℕ ) → ( ( ¬ 2 ∥ 𝑁 ∧ 2 ∥ 𝑀 ) → ( ( ( 2 ↑ 𝑁 ) − 1 ) = ( 𝑃 ↑ 𝑀 ) → ( 𝑁 = 1 → 𝑀 = 1 ) ) ) ) |
37 |
36
|
3adant3 |
⊢ ( ( 𝑃 ∈ ( ℙ ∖ { 2 } ) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ) → ( ( ¬ 2 ∥ 𝑁 ∧ 2 ∥ 𝑀 ) → ( ( ( 2 ↑ 𝑁 ) − 1 ) = ( 𝑃 ↑ 𝑀 ) → ( 𝑁 = 1 → 𝑀 = 1 ) ) ) ) |
38 |
37
|
3imp |
⊢ ( ( ( 𝑃 ∈ ( ℙ ∖ { 2 } ) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ) ∧ ( ¬ 2 ∥ 𝑁 ∧ 2 ∥ 𝑀 ) ∧ ( ( 2 ↑ 𝑁 ) − 1 ) = ( 𝑃 ↑ 𝑀 ) ) → ( 𝑁 = 1 → 𝑀 = 1 ) ) |
39 |
|
neqne |
⊢ ( ¬ 𝑁 = 1 → 𝑁 ≠ 1 ) |
40 |
39
|
anim2i |
⊢ ( ( 𝑁 ∈ ℕ ∧ ¬ 𝑁 = 1 ) → ( 𝑁 ∈ ℕ ∧ 𝑁 ≠ 1 ) ) |
41 |
|
eluz2b3 |
⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 2 ) ↔ ( 𝑁 ∈ ℕ ∧ 𝑁 ≠ 1 ) ) |
42 |
40 41
|
sylibr |
⊢ ( ( 𝑁 ∈ ℕ ∧ ¬ 𝑁 = 1 ) → 𝑁 ∈ ( ℤ≥ ‘ 2 ) ) |
43 |
|
oddge22np1 |
⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 2 ) → ( ¬ 2 ∥ 𝑁 ↔ ∃ 𝑗 ∈ ℕ ( ( 2 · 𝑗 ) + 1 ) = 𝑁 ) ) |
44 |
42 43
|
syl |
⊢ ( ( 𝑁 ∈ ℕ ∧ ¬ 𝑁 = 1 ) → ( ¬ 2 ∥ 𝑁 ↔ ∃ 𝑗 ∈ ℕ ( ( 2 · 𝑗 ) + 1 ) = 𝑁 ) ) |
45 |
44
|
3ad2antl3 |
⊢ ( ( ( 𝑃 ∈ ( ℙ ∖ { 2 } ) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ) ∧ ¬ 𝑁 = 1 ) → ( ¬ 2 ∥ 𝑁 ↔ ∃ 𝑗 ∈ ℕ ( ( 2 · 𝑗 ) + 1 ) = 𝑁 ) ) |
46 |
|
oveq2 |
⊢ ( 𝑁 = ( ( 2 · 𝑗 ) + 1 ) → ( 2 ↑ 𝑁 ) = ( 2 ↑ ( ( 2 · 𝑗 ) + 1 ) ) ) |
47 |
46
|
oveq1d |
⊢ ( 𝑁 = ( ( 2 · 𝑗 ) + 1 ) → ( ( 2 ↑ 𝑁 ) − 1 ) = ( ( 2 ↑ ( ( 2 · 𝑗 ) + 1 ) ) − 1 ) ) |
48 |
47
|
eqcoms |
⊢ ( ( ( 2 · 𝑗 ) + 1 ) = 𝑁 → ( ( 2 ↑ 𝑁 ) − 1 ) = ( ( 2 ↑ ( ( 2 · 𝑗 ) + 1 ) ) − 1 ) ) |
49 |
2
|
a1i |
⊢ ( 𝑗 ∈ ℕ → 2 ∈ ℂ ) |
50 |
|
2nn0 |
⊢ 2 ∈ ℕ0 |
51 |
50
|
a1i |
⊢ ( 𝑗 ∈ ℕ → 2 ∈ ℕ0 ) |
52 |
|
nnnn0 |
⊢ ( 𝑗 ∈ ℕ → 𝑗 ∈ ℕ0 ) |
53 |
51 52
|
nn0mulcld |
⊢ ( 𝑗 ∈ ℕ → ( 2 · 𝑗 ) ∈ ℕ0 ) |
54 |
49 53
|
expp1d |
⊢ ( 𝑗 ∈ ℕ → ( 2 ↑ ( ( 2 · 𝑗 ) + 1 ) ) = ( ( 2 ↑ ( 2 · 𝑗 ) ) · 2 ) ) |
55 |
51 53
|
nn0expcld |
⊢ ( 𝑗 ∈ ℕ → ( 2 ↑ ( 2 · 𝑗 ) ) ∈ ℕ0 ) |
56 |
55
|
nn0cnd |
⊢ ( 𝑗 ∈ ℕ → ( 2 ↑ ( 2 · 𝑗 ) ) ∈ ℂ ) |
57 |
56 49
|
mulcomd |
⊢ ( 𝑗 ∈ ℕ → ( ( 2 ↑ ( 2 · 𝑗 ) ) · 2 ) = ( 2 · ( 2 ↑ ( 2 · 𝑗 ) ) ) ) |
58 |
54 57
|
eqtrd |
⊢ ( 𝑗 ∈ ℕ → ( 2 ↑ ( ( 2 · 𝑗 ) + 1 ) ) = ( 2 · ( 2 ↑ ( 2 · 𝑗 ) ) ) ) |
59 |
58
|
oveq1d |
⊢ ( 𝑗 ∈ ℕ → ( ( 2 ↑ ( ( 2 · 𝑗 ) + 1 ) ) − 1 ) = ( ( 2 · ( 2 ↑ ( 2 · 𝑗 ) ) ) − 1 ) ) |
60 |
|
npcan1 |
⊢ ( ( 2 ↑ ( 2 · 𝑗 ) ) ∈ ℂ → ( ( ( 2 ↑ ( 2 · 𝑗 ) ) − 1 ) + 1 ) = ( 2 ↑ ( 2 · 𝑗 ) ) ) |
61 |
56 60
|
syl |
⊢ ( 𝑗 ∈ ℕ → ( ( ( 2 ↑ ( 2 · 𝑗 ) ) − 1 ) + 1 ) = ( 2 ↑ ( 2 · 𝑗 ) ) ) |
62 |
61
|
eqcomd |
⊢ ( 𝑗 ∈ ℕ → ( 2 ↑ ( 2 · 𝑗 ) ) = ( ( ( 2 ↑ ( 2 · 𝑗 ) ) − 1 ) + 1 ) ) |
63 |
62
|
oveq2d |
⊢ ( 𝑗 ∈ ℕ → ( 2 · ( 2 ↑ ( 2 · 𝑗 ) ) ) = ( 2 · ( ( ( 2 ↑ ( 2 · 𝑗 ) ) − 1 ) + 1 ) ) ) |
64 |
|
peano2cnm |
⊢ ( ( 2 ↑ ( 2 · 𝑗 ) ) ∈ ℂ → ( ( 2 ↑ ( 2 · 𝑗 ) ) − 1 ) ∈ ℂ ) |
65 |
56 64
|
syl |
⊢ ( 𝑗 ∈ ℕ → ( ( 2 ↑ ( 2 · 𝑗 ) ) − 1 ) ∈ ℂ ) |
66 |
|
1cnd |
⊢ ( 𝑗 ∈ ℕ → 1 ∈ ℂ ) |
67 |
49 65 66
|
adddid |
⊢ ( 𝑗 ∈ ℕ → ( 2 · ( ( ( 2 ↑ ( 2 · 𝑗 ) ) − 1 ) + 1 ) ) = ( ( 2 · ( ( 2 ↑ ( 2 · 𝑗 ) ) − 1 ) ) + ( 2 · 1 ) ) ) |
68 |
63 67
|
eqtrd |
⊢ ( 𝑗 ∈ ℕ → ( 2 · ( 2 ↑ ( 2 · 𝑗 ) ) ) = ( ( 2 · ( ( 2 ↑ ( 2 · 𝑗 ) ) − 1 ) ) + ( 2 · 1 ) ) ) |
69 |
68
|
oveq1d |
⊢ ( 𝑗 ∈ ℕ → ( ( 2 · ( 2 ↑ ( 2 · 𝑗 ) ) ) − 1 ) = ( ( ( 2 · ( ( 2 ↑ ( 2 · 𝑗 ) ) − 1 ) ) + ( 2 · 1 ) ) − 1 ) ) |
70 |
49 65
|
mulcld |
⊢ ( 𝑗 ∈ ℕ → ( 2 · ( ( 2 ↑ ( 2 · 𝑗 ) ) − 1 ) ) ∈ ℂ ) |
71 |
|
ax-1cn |
⊢ 1 ∈ ℂ |
72 |
2 71
|
mulcli |
⊢ ( 2 · 1 ) ∈ ℂ |
73 |
72
|
a1i |
⊢ ( 𝑗 ∈ ℕ → ( 2 · 1 ) ∈ ℂ ) |
74 |
70 73 66
|
addsubassd |
⊢ ( 𝑗 ∈ ℕ → ( ( ( 2 · ( ( 2 ↑ ( 2 · 𝑗 ) ) − 1 ) ) + ( 2 · 1 ) ) − 1 ) = ( ( 2 · ( ( 2 ↑ ( 2 · 𝑗 ) ) − 1 ) ) + ( ( 2 · 1 ) − 1 ) ) ) |
75 |
|
2t1e2 |
⊢ ( 2 · 1 ) = 2 |
76 |
75
|
oveq1i |
⊢ ( ( 2 · 1 ) − 1 ) = ( 2 − 1 ) |
77 |
76 7
|
eqtri |
⊢ ( ( 2 · 1 ) − 1 ) = 1 |
78 |
77
|
a1i |
⊢ ( 𝑗 ∈ ℕ → ( ( 2 · 1 ) − 1 ) = 1 ) |
79 |
78
|
oveq2d |
⊢ ( 𝑗 ∈ ℕ → ( ( 2 · ( ( 2 ↑ ( 2 · 𝑗 ) ) − 1 ) ) + ( ( 2 · 1 ) − 1 ) ) = ( ( 2 · ( ( 2 ↑ ( 2 · 𝑗 ) ) − 1 ) ) + 1 ) ) |
80 |
74 79
|
eqtrd |
⊢ ( 𝑗 ∈ ℕ → ( ( ( 2 · ( ( 2 ↑ ( 2 · 𝑗 ) ) − 1 ) ) + ( 2 · 1 ) ) − 1 ) = ( ( 2 · ( ( 2 ↑ ( 2 · 𝑗 ) ) − 1 ) ) + 1 ) ) |
81 |
59 69 80
|
3eqtrd |
⊢ ( 𝑗 ∈ ℕ → ( ( 2 ↑ ( ( 2 · 𝑗 ) + 1 ) ) − 1 ) = ( ( 2 · ( ( 2 ↑ ( 2 · 𝑗 ) ) − 1 ) ) + 1 ) ) |
82 |
81
|
ad2antlr |
⊢ ( ( ( ( 𝑃 ∈ ( ℙ ∖ { 2 } ) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ) ∧ 𝑗 ∈ ℕ ) ∧ 2 ∥ 𝑀 ) → ( ( 2 ↑ ( ( 2 · 𝑗 ) + 1 ) ) − 1 ) = ( ( 2 · ( ( 2 ↑ ( 2 · 𝑗 ) ) − 1 ) ) + 1 ) ) |
83 |
48 82
|
sylan9eqr |
⊢ ( ( ( ( ( 𝑃 ∈ ( ℙ ∖ { 2 } ) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ) ∧ 𝑗 ∈ ℕ ) ∧ 2 ∥ 𝑀 ) ∧ ( ( 2 · 𝑗 ) + 1 ) = 𝑁 ) → ( ( 2 ↑ 𝑁 ) − 1 ) = ( ( 2 · ( ( 2 ↑ ( 2 · 𝑗 ) ) − 1 ) ) + 1 ) ) |
84 |
83
|
eqeq1d |
⊢ ( ( ( ( ( 𝑃 ∈ ( ℙ ∖ { 2 } ) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ) ∧ 𝑗 ∈ ℕ ) ∧ 2 ∥ 𝑀 ) ∧ ( ( 2 · 𝑗 ) + 1 ) = 𝑁 ) → ( ( ( 2 ↑ 𝑁 ) − 1 ) = ( 𝑃 ↑ 𝑀 ) ↔ ( ( 2 · ( ( 2 ↑ ( 2 · 𝑗 ) ) − 1 ) ) + 1 ) = ( 𝑃 ↑ 𝑀 ) ) ) |
85 |
14
|
3ad2ant1 |
⊢ ( ( 𝑃 ∈ ( ℙ ∖ { 2 } ) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ) → 𝑃 ∈ ℕ0 ) |
86 |
|
nnnn0 |
⊢ ( 𝑀 ∈ ℕ → 𝑀 ∈ ℕ0 ) |
87 |
86
|
3ad2ant2 |
⊢ ( ( 𝑃 ∈ ( ℙ ∖ { 2 } ) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ) → 𝑀 ∈ ℕ0 ) |
88 |
85 87
|
nn0expcld |
⊢ ( ( 𝑃 ∈ ( ℙ ∖ { 2 } ) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ) → ( 𝑃 ↑ 𝑀 ) ∈ ℕ0 ) |
89 |
88
|
nn0cnd |
⊢ ( ( 𝑃 ∈ ( ℙ ∖ { 2 } ) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ) → ( 𝑃 ↑ 𝑀 ) ∈ ℂ ) |
90 |
89
|
adantr |
⊢ ( ( ( 𝑃 ∈ ( ℙ ∖ { 2 } ) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ) ∧ 𝑗 ∈ ℕ ) → ( 𝑃 ↑ 𝑀 ) ∈ ℂ ) |
91 |
|
1cnd |
⊢ ( ( ( 𝑃 ∈ ( ℙ ∖ { 2 } ) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ) ∧ 𝑗 ∈ ℕ ) → 1 ∈ ℂ ) |
92 |
70
|
adantl |
⊢ ( ( ( 𝑃 ∈ ( ℙ ∖ { 2 } ) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ) ∧ 𝑗 ∈ ℕ ) → ( 2 · ( ( 2 ↑ ( 2 · 𝑗 ) ) − 1 ) ) ∈ ℂ ) |
93 |
90 91 92
|
3jca |
⊢ ( ( ( 𝑃 ∈ ( ℙ ∖ { 2 } ) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ) ∧ 𝑗 ∈ ℕ ) → ( ( 𝑃 ↑ 𝑀 ) ∈ ℂ ∧ 1 ∈ ℂ ∧ ( 2 · ( ( 2 ↑ ( 2 · 𝑗 ) ) − 1 ) ) ∈ ℂ ) ) |
94 |
93
|
adantr |
⊢ ( ( ( ( 𝑃 ∈ ( ℙ ∖ { 2 } ) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ) ∧ 𝑗 ∈ ℕ ) ∧ 2 ∥ 𝑀 ) → ( ( 𝑃 ↑ 𝑀 ) ∈ ℂ ∧ 1 ∈ ℂ ∧ ( 2 · ( ( 2 ↑ ( 2 · 𝑗 ) ) − 1 ) ) ∈ ℂ ) ) |
95 |
|
subadd2 |
⊢ ( ( ( 𝑃 ↑ 𝑀 ) ∈ ℂ ∧ 1 ∈ ℂ ∧ ( 2 · ( ( 2 ↑ ( 2 · 𝑗 ) ) − 1 ) ) ∈ ℂ ) → ( ( ( 𝑃 ↑ 𝑀 ) − 1 ) = ( 2 · ( ( 2 ↑ ( 2 · 𝑗 ) ) − 1 ) ) ↔ ( ( 2 · ( ( 2 ↑ ( 2 · 𝑗 ) ) − 1 ) ) + 1 ) = ( 𝑃 ↑ 𝑀 ) ) ) |
96 |
94 95
|
syl |
⊢ ( ( ( ( 𝑃 ∈ ( ℙ ∖ { 2 } ) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ) ∧ 𝑗 ∈ ℕ ) ∧ 2 ∥ 𝑀 ) → ( ( ( 𝑃 ↑ 𝑀 ) − 1 ) = ( 2 · ( ( 2 ↑ ( 2 · 𝑗 ) ) − 1 ) ) ↔ ( ( 2 · ( ( 2 ↑ ( 2 · 𝑗 ) ) − 1 ) ) + 1 ) = ( 𝑃 ↑ 𝑀 ) ) ) |
97 |
|
nncn |
⊢ ( 𝑃 ∈ ℕ → 𝑃 ∈ ℂ ) |
98 |
11 12 97
|
3syl |
⊢ ( 𝑃 ∈ ( ℙ ∖ { 2 } ) → 𝑃 ∈ ℂ ) |
99 |
98
|
3ad2ant1 |
⊢ ( ( 𝑃 ∈ ( ℙ ∖ { 2 } ) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ) → 𝑃 ∈ ℂ ) |
100 |
99 87
|
pwm1geoser |
⊢ ( ( 𝑃 ∈ ( ℙ ∖ { 2 } ) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ) → ( ( 𝑃 ↑ 𝑀 ) − 1 ) = ( ( 𝑃 − 1 ) · Σ 𝑘 ∈ ( 0 ... ( 𝑀 − 1 ) ) ( 𝑃 ↑ 𝑘 ) ) ) |
101 |
100
|
adantr |
⊢ ( ( ( 𝑃 ∈ ( ℙ ∖ { 2 } ) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ) ∧ 𝑗 ∈ ℕ ) → ( ( 𝑃 ↑ 𝑀 ) − 1 ) = ( ( 𝑃 − 1 ) · Σ 𝑘 ∈ ( 0 ... ( 𝑀 − 1 ) ) ( 𝑃 ↑ 𝑘 ) ) ) |
102 |
101
|
eqeq1d |
⊢ ( ( ( 𝑃 ∈ ( ℙ ∖ { 2 } ) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ) ∧ 𝑗 ∈ ℕ ) → ( ( ( 𝑃 ↑ 𝑀 ) − 1 ) = ( 2 · ( ( 2 ↑ ( 2 · 𝑗 ) ) − 1 ) ) ↔ ( ( 𝑃 − 1 ) · Σ 𝑘 ∈ ( 0 ... ( 𝑀 − 1 ) ) ( 𝑃 ↑ 𝑘 ) ) = ( 2 · ( ( 2 ↑ ( 2 · 𝑗 ) ) − 1 ) ) ) ) |
103 |
102
|
adantr |
⊢ ( ( ( ( 𝑃 ∈ ( ℙ ∖ { 2 } ) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ) ∧ 𝑗 ∈ ℕ ) ∧ 2 ∥ 𝑀 ) → ( ( ( 𝑃 ↑ 𝑀 ) − 1 ) = ( 2 · ( ( 2 ↑ ( 2 · 𝑗 ) ) − 1 ) ) ↔ ( ( 𝑃 − 1 ) · Σ 𝑘 ∈ ( 0 ... ( 𝑀 − 1 ) ) ( 𝑃 ↑ 𝑘 ) ) = ( 2 · ( ( 2 ↑ ( 2 · 𝑗 ) ) − 1 ) ) ) ) |
104 |
99
|
ad2antrr |
⊢ ( ( ( ( 𝑃 ∈ ( ℙ ∖ { 2 } ) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ) ∧ 𝑗 ∈ ℕ ) ∧ 2 ∥ 𝑀 ) → 𝑃 ∈ ℂ ) |
105 |
|
1cnd |
⊢ ( ( ( ( 𝑃 ∈ ( ℙ ∖ { 2 } ) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ) ∧ 𝑗 ∈ ℕ ) ∧ 2 ∥ 𝑀 ) → 1 ∈ ℂ ) |
106 |
104 105
|
subcld |
⊢ ( ( ( ( 𝑃 ∈ ( ℙ ∖ { 2 } ) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ) ∧ 𝑗 ∈ ℕ ) ∧ 2 ∥ 𝑀 ) → ( 𝑃 − 1 ) ∈ ℂ ) |
107 |
|
fzfid |
⊢ ( ( 𝑃 ∈ ( ℙ ∖ { 2 } ) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ) → ( 0 ... ( 𝑀 − 1 ) ) ∈ Fin ) |
108 |
85
|
adantr |
⊢ ( ( ( 𝑃 ∈ ( ℙ ∖ { 2 } ) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ) ∧ 𝑘 ∈ ( 0 ... ( 𝑀 − 1 ) ) ) → 𝑃 ∈ ℕ0 ) |
109 |
|
elfznn0 |
⊢ ( 𝑘 ∈ ( 0 ... ( 𝑀 − 1 ) ) → 𝑘 ∈ ℕ0 ) |
110 |
109
|
adantl |
⊢ ( ( ( 𝑃 ∈ ( ℙ ∖ { 2 } ) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ) ∧ 𝑘 ∈ ( 0 ... ( 𝑀 − 1 ) ) ) → 𝑘 ∈ ℕ0 ) |
111 |
108 110
|
nn0expcld |
⊢ ( ( ( 𝑃 ∈ ( ℙ ∖ { 2 } ) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ) ∧ 𝑘 ∈ ( 0 ... ( 𝑀 − 1 ) ) ) → ( 𝑃 ↑ 𝑘 ) ∈ ℕ0 ) |
112 |
111
|
nn0zd |
⊢ ( ( ( 𝑃 ∈ ( ℙ ∖ { 2 } ) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ) ∧ 𝑘 ∈ ( 0 ... ( 𝑀 − 1 ) ) ) → ( 𝑃 ↑ 𝑘 ) ∈ ℤ ) |
113 |
107 112
|
fsumzcl |
⊢ ( ( 𝑃 ∈ ( ℙ ∖ { 2 } ) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ) → Σ 𝑘 ∈ ( 0 ... ( 𝑀 − 1 ) ) ( 𝑃 ↑ 𝑘 ) ∈ ℤ ) |
114 |
113
|
zcnd |
⊢ ( ( 𝑃 ∈ ( ℙ ∖ { 2 } ) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ) → Σ 𝑘 ∈ ( 0 ... ( 𝑀 − 1 ) ) ( 𝑃 ↑ 𝑘 ) ∈ ℂ ) |
115 |
114
|
ad2antrr |
⊢ ( ( ( ( 𝑃 ∈ ( ℙ ∖ { 2 } ) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ) ∧ 𝑗 ∈ ℕ ) ∧ 2 ∥ 𝑀 ) → Σ 𝑘 ∈ ( 0 ... ( 𝑀 − 1 ) ) ( 𝑃 ↑ 𝑘 ) ∈ ℂ ) |
116 |
106 115
|
mulcld |
⊢ ( ( ( ( 𝑃 ∈ ( ℙ ∖ { 2 } ) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ) ∧ 𝑗 ∈ ℕ ) ∧ 2 ∥ 𝑀 ) → ( ( 𝑃 − 1 ) · Σ 𝑘 ∈ ( 0 ... ( 𝑀 − 1 ) ) ( 𝑃 ↑ 𝑘 ) ) ∈ ℂ ) |
117 |
56
|
ad2antlr |
⊢ ( ( ( ( 𝑃 ∈ ( ℙ ∖ { 2 } ) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ) ∧ 𝑗 ∈ ℕ ) ∧ 2 ∥ 𝑀 ) → ( 2 ↑ ( 2 · 𝑗 ) ) ∈ ℂ ) |
118 |
117 105
|
subcld |
⊢ ( ( ( ( 𝑃 ∈ ( ℙ ∖ { 2 } ) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ) ∧ 𝑗 ∈ ℕ ) ∧ 2 ∥ 𝑀 ) → ( ( 2 ↑ ( 2 · 𝑗 ) ) − 1 ) ∈ ℂ ) |
119 |
|
2rp |
⊢ 2 ∈ ℝ+ |
120 |
119
|
a1i |
⊢ ( ( ( ( 𝑃 ∈ ( ℙ ∖ { 2 } ) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ) ∧ 𝑗 ∈ ℕ ) ∧ 2 ∥ 𝑀 ) → 2 ∈ ℝ+ ) |
121 |
120
|
rpcnne0d |
⊢ ( ( ( ( 𝑃 ∈ ( ℙ ∖ { 2 } ) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ) ∧ 𝑗 ∈ ℕ ) ∧ 2 ∥ 𝑀 ) → ( 2 ∈ ℂ ∧ 2 ≠ 0 ) ) |
122 |
|
divmul2 |
⊢ ( ( ( ( 𝑃 − 1 ) · Σ 𝑘 ∈ ( 0 ... ( 𝑀 − 1 ) ) ( 𝑃 ↑ 𝑘 ) ) ∈ ℂ ∧ ( ( 2 ↑ ( 2 · 𝑗 ) ) − 1 ) ∈ ℂ ∧ ( 2 ∈ ℂ ∧ 2 ≠ 0 ) ) → ( ( ( ( 𝑃 − 1 ) · Σ 𝑘 ∈ ( 0 ... ( 𝑀 − 1 ) ) ( 𝑃 ↑ 𝑘 ) ) / 2 ) = ( ( 2 ↑ ( 2 · 𝑗 ) ) − 1 ) ↔ ( ( 𝑃 − 1 ) · Σ 𝑘 ∈ ( 0 ... ( 𝑀 − 1 ) ) ( 𝑃 ↑ 𝑘 ) ) = ( 2 · ( ( 2 ↑ ( 2 · 𝑗 ) ) − 1 ) ) ) ) |
123 |
116 118 121 122
|
syl3anc |
⊢ ( ( ( ( 𝑃 ∈ ( ℙ ∖ { 2 } ) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ) ∧ 𝑗 ∈ ℕ ) ∧ 2 ∥ 𝑀 ) → ( ( ( ( 𝑃 − 1 ) · Σ 𝑘 ∈ ( 0 ... ( 𝑀 − 1 ) ) ( 𝑃 ↑ 𝑘 ) ) / 2 ) = ( ( 2 ↑ ( 2 · 𝑗 ) ) − 1 ) ↔ ( ( 𝑃 − 1 ) · Σ 𝑘 ∈ ( 0 ... ( 𝑀 − 1 ) ) ( 𝑃 ↑ 𝑘 ) ) = ( 2 · ( ( 2 ↑ ( 2 · 𝑗 ) ) − 1 ) ) ) ) |
124 |
|
div23 |
⊢ ( ( ( 𝑃 − 1 ) ∈ ℂ ∧ Σ 𝑘 ∈ ( 0 ... ( 𝑀 − 1 ) ) ( 𝑃 ↑ 𝑘 ) ∈ ℂ ∧ ( 2 ∈ ℂ ∧ 2 ≠ 0 ) ) → ( ( ( 𝑃 − 1 ) · Σ 𝑘 ∈ ( 0 ... ( 𝑀 − 1 ) ) ( 𝑃 ↑ 𝑘 ) ) / 2 ) = ( ( ( 𝑃 − 1 ) / 2 ) · Σ 𝑘 ∈ ( 0 ... ( 𝑀 − 1 ) ) ( 𝑃 ↑ 𝑘 ) ) ) |
125 |
106 115 121 124
|
syl3anc |
⊢ ( ( ( ( 𝑃 ∈ ( ℙ ∖ { 2 } ) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ) ∧ 𝑗 ∈ ℕ ) ∧ 2 ∥ 𝑀 ) → ( ( ( 𝑃 − 1 ) · Σ 𝑘 ∈ ( 0 ... ( 𝑀 − 1 ) ) ( 𝑃 ↑ 𝑘 ) ) / 2 ) = ( ( ( 𝑃 − 1 ) / 2 ) · Σ 𝑘 ∈ ( 0 ... ( 𝑀 − 1 ) ) ( 𝑃 ↑ 𝑘 ) ) ) |
126 |
125
|
eqeq1d |
⊢ ( ( ( ( 𝑃 ∈ ( ℙ ∖ { 2 } ) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ) ∧ 𝑗 ∈ ℕ ) ∧ 2 ∥ 𝑀 ) → ( ( ( ( 𝑃 − 1 ) · Σ 𝑘 ∈ ( 0 ... ( 𝑀 − 1 ) ) ( 𝑃 ↑ 𝑘 ) ) / 2 ) = ( ( 2 ↑ ( 2 · 𝑗 ) ) − 1 ) ↔ ( ( ( 𝑃 − 1 ) / 2 ) · Σ 𝑘 ∈ ( 0 ... ( 𝑀 − 1 ) ) ( 𝑃 ↑ 𝑘 ) ) = ( ( 2 ↑ ( 2 · 𝑗 ) ) − 1 ) ) ) |
127 |
51
|
nn0zd |
⊢ ( 𝑗 ∈ ℕ → 2 ∈ ℤ ) |
128 |
|
2nn |
⊢ 2 ∈ ℕ |
129 |
128
|
a1i |
⊢ ( 𝑗 ∈ ℕ → 2 ∈ ℕ ) |
130 |
|
id |
⊢ ( 𝑗 ∈ ℕ → 𝑗 ∈ ℕ ) |
131 |
129 130
|
nnmulcld |
⊢ ( 𝑗 ∈ ℕ → ( 2 · 𝑗 ) ∈ ℕ ) |
132 |
|
iddvdsexp |
⊢ ( ( 2 ∈ ℤ ∧ ( 2 · 𝑗 ) ∈ ℕ ) → 2 ∥ ( 2 ↑ ( 2 · 𝑗 ) ) ) |
133 |
127 131 132
|
syl2anc |
⊢ ( 𝑗 ∈ ℕ → 2 ∥ ( 2 ↑ ( 2 · 𝑗 ) ) ) |
134 |
133
|
notnotd |
⊢ ( 𝑗 ∈ ℕ → ¬ ¬ 2 ∥ ( 2 ↑ ( 2 · 𝑗 ) ) ) |
135 |
55
|
nn0zd |
⊢ ( 𝑗 ∈ ℕ → ( 2 ↑ ( 2 · 𝑗 ) ) ∈ ℤ ) |
136 |
|
oddm1even |
⊢ ( ( 2 ↑ ( 2 · 𝑗 ) ) ∈ ℤ → ( ¬ 2 ∥ ( 2 ↑ ( 2 · 𝑗 ) ) ↔ 2 ∥ ( ( 2 ↑ ( 2 · 𝑗 ) ) − 1 ) ) ) |
137 |
135 136
|
syl |
⊢ ( 𝑗 ∈ ℕ → ( ¬ 2 ∥ ( 2 ↑ ( 2 · 𝑗 ) ) ↔ 2 ∥ ( ( 2 ↑ ( 2 · 𝑗 ) ) − 1 ) ) ) |
138 |
134 137
|
mtbid |
⊢ ( 𝑗 ∈ ℕ → ¬ 2 ∥ ( ( 2 ↑ ( 2 · 𝑗 ) ) − 1 ) ) |
139 |
138
|
ad2antlr |
⊢ ( ( ( ( 𝑃 ∈ ( ℙ ∖ { 2 } ) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ) ∧ 𝑗 ∈ ℕ ) ∧ 2 ∥ 𝑀 ) → ¬ 2 ∥ ( ( 2 ↑ ( 2 · 𝑗 ) ) − 1 ) ) |
140 |
|
breq2 |
⊢ ( ( ( ( 𝑃 − 1 ) / 2 ) · Σ 𝑘 ∈ ( 0 ... ( 𝑀 − 1 ) ) ( 𝑃 ↑ 𝑘 ) ) = ( ( 2 ↑ ( 2 · 𝑗 ) ) − 1 ) → ( 2 ∥ ( ( ( 𝑃 − 1 ) / 2 ) · Σ 𝑘 ∈ ( 0 ... ( 𝑀 − 1 ) ) ( 𝑃 ↑ 𝑘 ) ) ↔ 2 ∥ ( ( 2 ↑ ( 2 · 𝑗 ) ) − 1 ) ) ) |
141 |
140
|
notbid |
⊢ ( ( ( ( 𝑃 − 1 ) / 2 ) · Σ 𝑘 ∈ ( 0 ... ( 𝑀 − 1 ) ) ( 𝑃 ↑ 𝑘 ) ) = ( ( 2 ↑ ( 2 · 𝑗 ) ) − 1 ) → ( ¬ 2 ∥ ( ( ( 𝑃 − 1 ) / 2 ) · Σ 𝑘 ∈ ( 0 ... ( 𝑀 − 1 ) ) ( 𝑃 ↑ 𝑘 ) ) ↔ ¬ 2 ∥ ( ( 2 ↑ ( 2 · 𝑗 ) ) − 1 ) ) ) |
142 |
141
|
adantl |
⊢ ( ( ( ( ( 𝑃 ∈ ( ℙ ∖ { 2 } ) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ) ∧ 𝑗 ∈ ℕ ) ∧ 2 ∥ 𝑀 ) ∧ ( ( ( 𝑃 − 1 ) / 2 ) · Σ 𝑘 ∈ ( 0 ... ( 𝑀 − 1 ) ) ( 𝑃 ↑ 𝑘 ) ) = ( ( 2 ↑ ( 2 · 𝑗 ) ) − 1 ) ) → ( ¬ 2 ∥ ( ( ( 𝑃 − 1 ) / 2 ) · Σ 𝑘 ∈ ( 0 ... ( 𝑀 − 1 ) ) ( 𝑃 ↑ 𝑘 ) ) ↔ ¬ 2 ∥ ( ( 2 ↑ ( 2 · 𝑗 ) ) − 1 ) ) ) |
143 |
|
fzfid |
⊢ ( ( ( ( 𝑃 ∈ ( ℙ ∖ { 2 } ) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ) ∧ 𝑗 ∈ ℕ ) ∧ 2 ∥ 𝑀 ) → ( 0 ... ( 𝑀 − 1 ) ) ∈ Fin ) |
144 |
112
|
ad4ant14 |
⊢ ( ( ( ( ( 𝑃 ∈ ( ℙ ∖ { 2 } ) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ) ∧ 𝑗 ∈ ℕ ) ∧ 2 ∥ 𝑀 ) ∧ 𝑘 ∈ ( 0 ... ( 𝑀 − 1 ) ) ) → ( 𝑃 ↑ 𝑘 ) ∈ ℤ ) |
145 |
|
elnn0 |
⊢ ( 𝑘 ∈ ℕ0 ↔ ( 𝑘 ∈ ℕ ∨ 𝑘 = 0 ) ) |
146 |
|
eldifsn |
⊢ ( 𝑃 ∈ ( ℙ ∖ { 2 } ) ↔ ( 𝑃 ∈ ℙ ∧ 𝑃 ≠ 2 ) ) |
147 |
|
simpr |
⊢ ( ( 𝑃 ∈ ℙ ∧ 𝑃 ≠ 2 ) → 𝑃 ≠ 2 ) |
148 |
147
|
necomd |
⊢ ( ( 𝑃 ∈ ℙ ∧ 𝑃 ≠ 2 ) → 2 ≠ 𝑃 ) |
149 |
146 148
|
sylbi |
⊢ ( 𝑃 ∈ ( ℙ ∖ { 2 } ) → 2 ≠ 𝑃 ) |
150 |
149
|
adantl |
⊢ ( ( 𝑘 ∈ ℕ ∧ 𝑃 ∈ ( ℙ ∖ { 2 } ) ) → 2 ≠ 𝑃 ) |
151 |
150
|
neneqd |
⊢ ( ( 𝑘 ∈ ℕ ∧ 𝑃 ∈ ( ℙ ∖ { 2 } ) ) → ¬ 2 = 𝑃 ) |
152 |
|
2prm |
⊢ 2 ∈ ℙ |
153 |
11
|
adantl |
⊢ ( ( 𝑘 ∈ ℕ ∧ 𝑃 ∈ ( ℙ ∖ { 2 } ) ) → 𝑃 ∈ ℙ ) |
154 |
|
simpl |
⊢ ( ( 𝑘 ∈ ℕ ∧ 𝑃 ∈ ( ℙ ∖ { 2 } ) ) → 𝑘 ∈ ℕ ) |
155 |
|
prmdvdsexpb |
⊢ ( ( 2 ∈ ℙ ∧ 𝑃 ∈ ℙ ∧ 𝑘 ∈ ℕ ) → ( 2 ∥ ( 𝑃 ↑ 𝑘 ) ↔ 2 = 𝑃 ) ) |
156 |
152 153 154 155
|
mp3an2i |
⊢ ( ( 𝑘 ∈ ℕ ∧ 𝑃 ∈ ( ℙ ∖ { 2 } ) ) → ( 2 ∥ ( 𝑃 ↑ 𝑘 ) ↔ 2 = 𝑃 ) ) |
157 |
151 156
|
mtbird |
⊢ ( ( 𝑘 ∈ ℕ ∧ 𝑃 ∈ ( ℙ ∖ { 2 } ) ) → ¬ 2 ∥ ( 𝑃 ↑ 𝑘 ) ) |
158 |
157
|
ex |
⊢ ( 𝑘 ∈ ℕ → ( 𝑃 ∈ ( ℙ ∖ { 2 } ) → ¬ 2 ∥ ( 𝑃 ↑ 𝑘 ) ) ) |
159 |
|
n2dvds1 |
⊢ ¬ 2 ∥ 1 |
160 |
|
oveq2 |
⊢ ( 𝑘 = 0 → ( 𝑃 ↑ 𝑘 ) = ( 𝑃 ↑ 0 ) ) |
161 |
98
|
exp0d |
⊢ ( 𝑃 ∈ ( ℙ ∖ { 2 } ) → ( 𝑃 ↑ 0 ) = 1 ) |
162 |
160 161
|
sylan9eq |
⊢ ( ( 𝑘 = 0 ∧ 𝑃 ∈ ( ℙ ∖ { 2 } ) ) → ( 𝑃 ↑ 𝑘 ) = 1 ) |
163 |
162
|
breq2d |
⊢ ( ( 𝑘 = 0 ∧ 𝑃 ∈ ( ℙ ∖ { 2 } ) ) → ( 2 ∥ ( 𝑃 ↑ 𝑘 ) ↔ 2 ∥ 1 ) ) |
164 |
159 163
|
mtbiri |
⊢ ( ( 𝑘 = 0 ∧ 𝑃 ∈ ( ℙ ∖ { 2 } ) ) → ¬ 2 ∥ ( 𝑃 ↑ 𝑘 ) ) |
165 |
164
|
ex |
⊢ ( 𝑘 = 0 → ( 𝑃 ∈ ( ℙ ∖ { 2 } ) → ¬ 2 ∥ ( 𝑃 ↑ 𝑘 ) ) ) |
166 |
158 165
|
jaoi |
⊢ ( ( 𝑘 ∈ ℕ ∨ 𝑘 = 0 ) → ( 𝑃 ∈ ( ℙ ∖ { 2 } ) → ¬ 2 ∥ ( 𝑃 ↑ 𝑘 ) ) ) |
167 |
145 166
|
sylbi |
⊢ ( 𝑘 ∈ ℕ0 → ( 𝑃 ∈ ( ℙ ∖ { 2 } ) → ¬ 2 ∥ ( 𝑃 ↑ 𝑘 ) ) ) |
168 |
167 109
|
syl11 |
⊢ ( 𝑃 ∈ ( ℙ ∖ { 2 } ) → ( 𝑘 ∈ ( 0 ... ( 𝑀 − 1 ) ) → ¬ 2 ∥ ( 𝑃 ↑ 𝑘 ) ) ) |
169 |
168
|
3ad2ant1 |
⊢ ( ( 𝑃 ∈ ( ℙ ∖ { 2 } ) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ) → ( 𝑘 ∈ ( 0 ... ( 𝑀 − 1 ) ) → ¬ 2 ∥ ( 𝑃 ↑ 𝑘 ) ) ) |
170 |
169
|
ad2antrr |
⊢ ( ( ( ( 𝑃 ∈ ( ℙ ∖ { 2 } ) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ) ∧ 𝑗 ∈ ℕ ) ∧ 2 ∥ 𝑀 ) → ( 𝑘 ∈ ( 0 ... ( 𝑀 − 1 ) ) → ¬ 2 ∥ ( 𝑃 ↑ 𝑘 ) ) ) |
171 |
170
|
imp |
⊢ ( ( ( ( ( 𝑃 ∈ ( ℙ ∖ { 2 } ) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ) ∧ 𝑗 ∈ ℕ ) ∧ 2 ∥ 𝑀 ) ∧ 𝑘 ∈ ( 0 ... ( 𝑀 − 1 ) ) ) → ¬ 2 ∥ ( 𝑃 ↑ 𝑘 ) ) |
172 |
|
nnm1nn0 |
⊢ ( 𝑀 ∈ ℕ → ( 𝑀 − 1 ) ∈ ℕ0 ) |
173 |
|
hashfz0 |
⊢ ( ( 𝑀 − 1 ) ∈ ℕ0 → ( ♯ ‘ ( 0 ... ( 𝑀 − 1 ) ) ) = ( ( 𝑀 − 1 ) + 1 ) ) |
174 |
172 173
|
syl |
⊢ ( 𝑀 ∈ ℕ → ( ♯ ‘ ( 0 ... ( 𝑀 − 1 ) ) ) = ( ( 𝑀 − 1 ) + 1 ) ) |
175 |
|
nncn |
⊢ ( 𝑀 ∈ ℕ → 𝑀 ∈ ℂ ) |
176 |
|
1cnd |
⊢ ( 𝑀 ∈ ℕ → 1 ∈ ℂ ) |
177 |
175 176
|
npcand |
⊢ ( 𝑀 ∈ ℕ → ( ( 𝑀 − 1 ) + 1 ) = 𝑀 ) |
178 |
174 177
|
eqtr2d |
⊢ ( 𝑀 ∈ ℕ → 𝑀 = ( ♯ ‘ ( 0 ... ( 𝑀 − 1 ) ) ) ) |
179 |
178
|
3ad2ant2 |
⊢ ( ( 𝑃 ∈ ( ℙ ∖ { 2 } ) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ) → 𝑀 = ( ♯ ‘ ( 0 ... ( 𝑀 − 1 ) ) ) ) |
180 |
179
|
adantr |
⊢ ( ( ( 𝑃 ∈ ( ℙ ∖ { 2 } ) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ) ∧ 𝑗 ∈ ℕ ) → 𝑀 = ( ♯ ‘ ( 0 ... ( 𝑀 − 1 ) ) ) ) |
181 |
180
|
breq2d |
⊢ ( ( ( 𝑃 ∈ ( ℙ ∖ { 2 } ) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ) ∧ 𝑗 ∈ ℕ ) → ( 2 ∥ 𝑀 ↔ 2 ∥ ( ♯ ‘ ( 0 ... ( 𝑀 − 1 ) ) ) ) ) |
182 |
181
|
biimpa |
⊢ ( ( ( ( 𝑃 ∈ ( ℙ ∖ { 2 } ) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ) ∧ 𝑗 ∈ ℕ ) ∧ 2 ∥ 𝑀 ) → 2 ∥ ( ♯ ‘ ( 0 ... ( 𝑀 − 1 ) ) ) ) |
183 |
143 144 171 182
|
evensumodd |
⊢ ( ( ( ( 𝑃 ∈ ( ℙ ∖ { 2 } ) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ) ∧ 𝑗 ∈ ℕ ) ∧ 2 ∥ 𝑀 ) → 2 ∥ Σ 𝑘 ∈ ( 0 ... ( 𝑀 − 1 ) ) ( 𝑃 ↑ 𝑘 ) ) |
184 |
183
|
olcd |
⊢ ( ( ( ( 𝑃 ∈ ( ℙ ∖ { 2 } ) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ) ∧ 𝑗 ∈ ℕ ) ∧ 2 ∥ 𝑀 ) → ( 2 ∥ ( ( 𝑃 − 1 ) / 2 ) ∨ 2 ∥ Σ 𝑘 ∈ ( 0 ... ( 𝑀 − 1 ) ) ( 𝑃 ↑ 𝑘 ) ) ) |
185 |
152
|
a1i |
⊢ ( ( 𝑃 ∈ ( ℙ ∖ { 2 } ) ∧ 𝑀 ∈ ℕ ) → 2 ∈ ℙ ) |
186 |
|
oddn2prm |
⊢ ( 𝑃 ∈ ( ℙ ∖ { 2 } ) → ¬ 2 ∥ 𝑃 ) |
187 |
|
oddm1d2 |
⊢ ( 𝑃 ∈ ℤ → ( ¬ 2 ∥ 𝑃 ↔ ( ( 𝑃 − 1 ) / 2 ) ∈ ℤ ) ) |
188 |
15 187
|
syl |
⊢ ( 𝑃 ∈ ( ℙ ∖ { 2 } ) → ( ¬ 2 ∥ 𝑃 ↔ ( ( 𝑃 − 1 ) / 2 ) ∈ ℤ ) ) |
189 |
186 188
|
mpbid |
⊢ ( 𝑃 ∈ ( ℙ ∖ { 2 } ) → ( ( 𝑃 − 1 ) / 2 ) ∈ ℤ ) |
190 |
189
|
adantr |
⊢ ( ( 𝑃 ∈ ( ℙ ∖ { 2 } ) ∧ 𝑀 ∈ ℕ ) → ( ( 𝑃 − 1 ) / 2 ) ∈ ℤ ) |
191 |
|
fzfid |
⊢ ( ( 𝑃 ∈ ( ℙ ∖ { 2 } ) ∧ 𝑀 ∈ ℕ ) → ( 0 ... ( 𝑀 − 1 ) ) ∈ Fin ) |
192 |
14
|
ad2antrr |
⊢ ( ( ( 𝑃 ∈ ( ℙ ∖ { 2 } ) ∧ 𝑀 ∈ ℕ ) ∧ 𝑘 ∈ ( 0 ... ( 𝑀 − 1 ) ) ) → 𝑃 ∈ ℕ0 ) |
193 |
109
|
adantl |
⊢ ( ( ( 𝑃 ∈ ( ℙ ∖ { 2 } ) ∧ 𝑀 ∈ ℕ ) ∧ 𝑘 ∈ ( 0 ... ( 𝑀 − 1 ) ) ) → 𝑘 ∈ ℕ0 ) |
194 |
192 193
|
nn0expcld |
⊢ ( ( ( 𝑃 ∈ ( ℙ ∖ { 2 } ) ∧ 𝑀 ∈ ℕ ) ∧ 𝑘 ∈ ( 0 ... ( 𝑀 − 1 ) ) ) → ( 𝑃 ↑ 𝑘 ) ∈ ℕ0 ) |
195 |
194
|
nn0zd |
⊢ ( ( ( 𝑃 ∈ ( ℙ ∖ { 2 } ) ∧ 𝑀 ∈ ℕ ) ∧ 𝑘 ∈ ( 0 ... ( 𝑀 − 1 ) ) ) → ( 𝑃 ↑ 𝑘 ) ∈ ℤ ) |
196 |
191 195
|
fsumzcl |
⊢ ( ( 𝑃 ∈ ( ℙ ∖ { 2 } ) ∧ 𝑀 ∈ ℕ ) → Σ 𝑘 ∈ ( 0 ... ( 𝑀 − 1 ) ) ( 𝑃 ↑ 𝑘 ) ∈ ℤ ) |
197 |
185 190 196
|
3jca |
⊢ ( ( 𝑃 ∈ ( ℙ ∖ { 2 } ) ∧ 𝑀 ∈ ℕ ) → ( 2 ∈ ℙ ∧ ( ( 𝑃 − 1 ) / 2 ) ∈ ℤ ∧ Σ 𝑘 ∈ ( 0 ... ( 𝑀 − 1 ) ) ( 𝑃 ↑ 𝑘 ) ∈ ℤ ) ) |
198 |
197
|
3adant3 |
⊢ ( ( 𝑃 ∈ ( ℙ ∖ { 2 } ) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ) → ( 2 ∈ ℙ ∧ ( ( 𝑃 − 1 ) / 2 ) ∈ ℤ ∧ Σ 𝑘 ∈ ( 0 ... ( 𝑀 − 1 ) ) ( 𝑃 ↑ 𝑘 ) ∈ ℤ ) ) |
199 |
|
euclemma |
⊢ ( ( 2 ∈ ℙ ∧ ( ( 𝑃 − 1 ) / 2 ) ∈ ℤ ∧ Σ 𝑘 ∈ ( 0 ... ( 𝑀 − 1 ) ) ( 𝑃 ↑ 𝑘 ) ∈ ℤ ) → ( 2 ∥ ( ( ( 𝑃 − 1 ) / 2 ) · Σ 𝑘 ∈ ( 0 ... ( 𝑀 − 1 ) ) ( 𝑃 ↑ 𝑘 ) ) ↔ ( 2 ∥ ( ( 𝑃 − 1 ) / 2 ) ∨ 2 ∥ Σ 𝑘 ∈ ( 0 ... ( 𝑀 − 1 ) ) ( 𝑃 ↑ 𝑘 ) ) ) ) |
200 |
198 199
|
syl |
⊢ ( ( 𝑃 ∈ ( ℙ ∖ { 2 } ) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ) → ( 2 ∥ ( ( ( 𝑃 − 1 ) / 2 ) · Σ 𝑘 ∈ ( 0 ... ( 𝑀 − 1 ) ) ( 𝑃 ↑ 𝑘 ) ) ↔ ( 2 ∥ ( ( 𝑃 − 1 ) / 2 ) ∨ 2 ∥ Σ 𝑘 ∈ ( 0 ... ( 𝑀 − 1 ) ) ( 𝑃 ↑ 𝑘 ) ) ) ) |
201 |
200
|
ad2antrr |
⊢ ( ( ( ( 𝑃 ∈ ( ℙ ∖ { 2 } ) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ) ∧ 𝑗 ∈ ℕ ) ∧ 2 ∥ 𝑀 ) → ( 2 ∥ ( ( ( 𝑃 − 1 ) / 2 ) · Σ 𝑘 ∈ ( 0 ... ( 𝑀 − 1 ) ) ( 𝑃 ↑ 𝑘 ) ) ↔ ( 2 ∥ ( ( 𝑃 − 1 ) / 2 ) ∨ 2 ∥ Σ 𝑘 ∈ ( 0 ... ( 𝑀 − 1 ) ) ( 𝑃 ↑ 𝑘 ) ) ) ) |
202 |
184 201
|
mpbird |
⊢ ( ( ( ( 𝑃 ∈ ( ℙ ∖ { 2 } ) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ) ∧ 𝑗 ∈ ℕ ) ∧ 2 ∥ 𝑀 ) → 2 ∥ ( ( ( 𝑃 − 1 ) / 2 ) · Σ 𝑘 ∈ ( 0 ... ( 𝑀 − 1 ) ) ( 𝑃 ↑ 𝑘 ) ) ) |
203 |
202
|
pm2.24d |
⊢ ( ( ( ( 𝑃 ∈ ( ℙ ∖ { 2 } ) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ) ∧ 𝑗 ∈ ℕ ) ∧ 2 ∥ 𝑀 ) → ( ¬ 2 ∥ ( ( ( 𝑃 − 1 ) / 2 ) · Σ 𝑘 ∈ ( 0 ... ( 𝑀 − 1 ) ) ( 𝑃 ↑ 𝑘 ) ) → 𝑀 = 1 ) ) |
204 |
203
|
adantr |
⊢ ( ( ( ( ( 𝑃 ∈ ( ℙ ∖ { 2 } ) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ) ∧ 𝑗 ∈ ℕ ) ∧ 2 ∥ 𝑀 ) ∧ ( ( ( 𝑃 − 1 ) / 2 ) · Σ 𝑘 ∈ ( 0 ... ( 𝑀 − 1 ) ) ( 𝑃 ↑ 𝑘 ) ) = ( ( 2 ↑ ( 2 · 𝑗 ) ) − 1 ) ) → ( ¬ 2 ∥ ( ( ( 𝑃 − 1 ) / 2 ) · Σ 𝑘 ∈ ( 0 ... ( 𝑀 − 1 ) ) ( 𝑃 ↑ 𝑘 ) ) → 𝑀 = 1 ) ) |
205 |
142 204
|
sylbird |
⊢ ( ( ( ( ( 𝑃 ∈ ( ℙ ∖ { 2 } ) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ) ∧ 𝑗 ∈ ℕ ) ∧ 2 ∥ 𝑀 ) ∧ ( ( ( 𝑃 − 1 ) / 2 ) · Σ 𝑘 ∈ ( 0 ... ( 𝑀 − 1 ) ) ( 𝑃 ↑ 𝑘 ) ) = ( ( 2 ↑ ( 2 · 𝑗 ) ) − 1 ) ) → ( ¬ 2 ∥ ( ( 2 ↑ ( 2 · 𝑗 ) ) − 1 ) → 𝑀 = 1 ) ) |
206 |
205
|
ex |
⊢ ( ( ( ( 𝑃 ∈ ( ℙ ∖ { 2 } ) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ) ∧ 𝑗 ∈ ℕ ) ∧ 2 ∥ 𝑀 ) → ( ( ( ( 𝑃 − 1 ) / 2 ) · Σ 𝑘 ∈ ( 0 ... ( 𝑀 − 1 ) ) ( 𝑃 ↑ 𝑘 ) ) = ( ( 2 ↑ ( 2 · 𝑗 ) ) − 1 ) → ( ¬ 2 ∥ ( ( 2 ↑ ( 2 · 𝑗 ) ) − 1 ) → 𝑀 = 1 ) ) ) |
207 |
139 206
|
mpid |
⊢ ( ( ( ( 𝑃 ∈ ( ℙ ∖ { 2 } ) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ) ∧ 𝑗 ∈ ℕ ) ∧ 2 ∥ 𝑀 ) → ( ( ( ( 𝑃 − 1 ) / 2 ) · Σ 𝑘 ∈ ( 0 ... ( 𝑀 − 1 ) ) ( 𝑃 ↑ 𝑘 ) ) = ( ( 2 ↑ ( 2 · 𝑗 ) ) − 1 ) → 𝑀 = 1 ) ) |
208 |
126 207
|
sylbid |
⊢ ( ( ( ( 𝑃 ∈ ( ℙ ∖ { 2 } ) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ) ∧ 𝑗 ∈ ℕ ) ∧ 2 ∥ 𝑀 ) → ( ( ( ( 𝑃 − 1 ) · Σ 𝑘 ∈ ( 0 ... ( 𝑀 − 1 ) ) ( 𝑃 ↑ 𝑘 ) ) / 2 ) = ( ( 2 ↑ ( 2 · 𝑗 ) ) − 1 ) → 𝑀 = 1 ) ) |
209 |
123 208
|
sylbird |
⊢ ( ( ( ( 𝑃 ∈ ( ℙ ∖ { 2 } ) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ) ∧ 𝑗 ∈ ℕ ) ∧ 2 ∥ 𝑀 ) → ( ( ( 𝑃 − 1 ) · Σ 𝑘 ∈ ( 0 ... ( 𝑀 − 1 ) ) ( 𝑃 ↑ 𝑘 ) ) = ( 2 · ( ( 2 ↑ ( 2 · 𝑗 ) ) − 1 ) ) → 𝑀 = 1 ) ) |
210 |
103 209
|
sylbid |
⊢ ( ( ( ( 𝑃 ∈ ( ℙ ∖ { 2 } ) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ) ∧ 𝑗 ∈ ℕ ) ∧ 2 ∥ 𝑀 ) → ( ( ( 𝑃 ↑ 𝑀 ) − 1 ) = ( 2 · ( ( 2 ↑ ( 2 · 𝑗 ) ) − 1 ) ) → 𝑀 = 1 ) ) |
211 |
96 210
|
sylbird |
⊢ ( ( ( ( 𝑃 ∈ ( ℙ ∖ { 2 } ) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ) ∧ 𝑗 ∈ ℕ ) ∧ 2 ∥ 𝑀 ) → ( ( ( 2 · ( ( 2 ↑ ( 2 · 𝑗 ) ) − 1 ) ) + 1 ) = ( 𝑃 ↑ 𝑀 ) → 𝑀 = 1 ) ) |
212 |
211
|
adantr |
⊢ ( ( ( ( ( 𝑃 ∈ ( ℙ ∖ { 2 } ) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ) ∧ 𝑗 ∈ ℕ ) ∧ 2 ∥ 𝑀 ) ∧ ( ( 2 · 𝑗 ) + 1 ) = 𝑁 ) → ( ( ( 2 · ( ( 2 ↑ ( 2 · 𝑗 ) ) − 1 ) ) + 1 ) = ( 𝑃 ↑ 𝑀 ) → 𝑀 = 1 ) ) |
213 |
84 212
|
sylbid |
⊢ ( ( ( ( ( 𝑃 ∈ ( ℙ ∖ { 2 } ) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ) ∧ 𝑗 ∈ ℕ ) ∧ 2 ∥ 𝑀 ) ∧ ( ( 2 · 𝑗 ) + 1 ) = 𝑁 ) → ( ( ( 2 ↑ 𝑁 ) − 1 ) = ( 𝑃 ↑ 𝑀 ) → 𝑀 = 1 ) ) |
214 |
213
|
exp31 |
⊢ ( ( ( 𝑃 ∈ ( ℙ ∖ { 2 } ) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ) ∧ 𝑗 ∈ ℕ ) → ( 2 ∥ 𝑀 → ( ( ( 2 · 𝑗 ) + 1 ) = 𝑁 → ( ( ( 2 ↑ 𝑁 ) − 1 ) = ( 𝑃 ↑ 𝑀 ) → 𝑀 = 1 ) ) ) ) |
215 |
214
|
com23 |
⊢ ( ( ( 𝑃 ∈ ( ℙ ∖ { 2 } ) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ) ∧ 𝑗 ∈ ℕ ) → ( ( ( 2 · 𝑗 ) + 1 ) = 𝑁 → ( 2 ∥ 𝑀 → ( ( ( 2 ↑ 𝑁 ) − 1 ) = ( 𝑃 ↑ 𝑀 ) → 𝑀 = 1 ) ) ) ) |
216 |
215
|
rexlimdva |
⊢ ( ( 𝑃 ∈ ( ℙ ∖ { 2 } ) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ) → ( ∃ 𝑗 ∈ ℕ ( ( 2 · 𝑗 ) + 1 ) = 𝑁 → ( 2 ∥ 𝑀 → ( ( ( 2 ↑ 𝑁 ) − 1 ) = ( 𝑃 ↑ 𝑀 ) → 𝑀 = 1 ) ) ) ) |
217 |
216
|
com34 |
⊢ ( ( 𝑃 ∈ ( ℙ ∖ { 2 } ) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ) → ( ∃ 𝑗 ∈ ℕ ( ( 2 · 𝑗 ) + 1 ) = 𝑁 → ( ( ( 2 ↑ 𝑁 ) − 1 ) = ( 𝑃 ↑ 𝑀 ) → ( 2 ∥ 𝑀 → 𝑀 = 1 ) ) ) ) |
218 |
217
|
adantr |
⊢ ( ( ( 𝑃 ∈ ( ℙ ∖ { 2 } ) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ) ∧ ¬ 𝑁 = 1 ) → ( ∃ 𝑗 ∈ ℕ ( ( 2 · 𝑗 ) + 1 ) = 𝑁 → ( ( ( 2 ↑ 𝑁 ) − 1 ) = ( 𝑃 ↑ 𝑀 ) → ( 2 ∥ 𝑀 → 𝑀 = 1 ) ) ) ) |
219 |
45 218
|
sylbid |
⊢ ( ( ( 𝑃 ∈ ( ℙ ∖ { 2 } ) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ) ∧ ¬ 𝑁 = 1 ) → ( ¬ 2 ∥ 𝑁 → ( ( ( 2 ↑ 𝑁 ) − 1 ) = ( 𝑃 ↑ 𝑀 ) → ( 2 ∥ 𝑀 → 𝑀 = 1 ) ) ) ) |
220 |
219
|
com24 |
⊢ ( ( ( 𝑃 ∈ ( ℙ ∖ { 2 } ) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ) ∧ ¬ 𝑁 = 1 ) → ( 2 ∥ 𝑀 → ( ( ( 2 ↑ 𝑁 ) − 1 ) = ( 𝑃 ↑ 𝑀 ) → ( ¬ 2 ∥ 𝑁 → 𝑀 = 1 ) ) ) ) |
221 |
220
|
ex |
⊢ ( ( 𝑃 ∈ ( ℙ ∖ { 2 } ) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ) → ( ¬ 𝑁 = 1 → ( 2 ∥ 𝑀 → ( ( ( 2 ↑ 𝑁 ) − 1 ) = ( 𝑃 ↑ 𝑀 ) → ( ¬ 2 ∥ 𝑁 → 𝑀 = 1 ) ) ) ) ) |
222 |
221
|
com25 |
⊢ ( ( 𝑃 ∈ ( ℙ ∖ { 2 } ) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ) → ( ¬ 2 ∥ 𝑁 → ( 2 ∥ 𝑀 → ( ( ( 2 ↑ 𝑁 ) − 1 ) = ( 𝑃 ↑ 𝑀 ) → ( ¬ 𝑁 = 1 → 𝑀 = 1 ) ) ) ) ) |
223 |
222
|
impd |
⊢ ( ( 𝑃 ∈ ( ℙ ∖ { 2 } ) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ) → ( ( ¬ 2 ∥ 𝑁 ∧ 2 ∥ 𝑀 ) → ( ( ( 2 ↑ 𝑁 ) − 1 ) = ( 𝑃 ↑ 𝑀 ) → ( ¬ 𝑁 = 1 → 𝑀 = 1 ) ) ) ) |
224 |
223
|
3imp |
⊢ ( ( ( 𝑃 ∈ ( ℙ ∖ { 2 } ) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ) ∧ ( ¬ 2 ∥ 𝑁 ∧ 2 ∥ 𝑀 ) ∧ ( ( 2 ↑ 𝑁 ) − 1 ) = ( 𝑃 ↑ 𝑀 ) ) → ( ¬ 𝑁 = 1 → 𝑀 = 1 ) ) |
225 |
38 224
|
pm2.61d |
⊢ ( ( ( 𝑃 ∈ ( ℙ ∖ { 2 } ) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ) ∧ ( ¬ 2 ∥ 𝑁 ∧ 2 ∥ 𝑀 ) ∧ ( ( 2 ↑ 𝑁 ) − 1 ) = ( 𝑃 ↑ 𝑀 ) ) → 𝑀 = 1 ) |