| Step |
Hyp |
Ref |
Expression |
| 1 |
|
oveq2 |
⊢ ( 𝑁 = 1 → ( 2 ↑ 𝑁 ) = ( 2 ↑ 1 ) ) |
| 2 |
|
2cn |
⊢ 2 ∈ ℂ |
| 3 |
|
exp1 |
⊢ ( 2 ∈ ℂ → ( 2 ↑ 1 ) = 2 ) |
| 4 |
2 3
|
ax-mp |
⊢ ( 2 ↑ 1 ) = 2 |
| 5 |
1 4
|
eqtrdi |
⊢ ( 𝑁 = 1 → ( 2 ↑ 𝑁 ) = 2 ) |
| 6 |
5
|
oveq1d |
⊢ ( 𝑁 = 1 → ( ( 2 ↑ 𝑁 ) − 1 ) = ( 2 − 1 ) ) |
| 7 |
|
2m1e1 |
⊢ ( 2 − 1 ) = 1 |
| 8 |
6 7
|
eqtrdi |
⊢ ( 𝑁 = 1 → ( ( 2 ↑ 𝑁 ) − 1 ) = 1 ) |
| 9 |
8
|
adantl |
⊢ ( ( ( 𝑃 ∈ ( ℙ ∖ { 2 } ) ∧ 𝑀 ∈ ℕ ) ∧ 𝑁 = 1 ) → ( ( 2 ↑ 𝑁 ) − 1 ) = 1 ) |
| 10 |
9
|
eqeq1d |
⊢ ( ( ( 𝑃 ∈ ( ℙ ∖ { 2 } ) ∧ 𝑀 ∈ ℕ ) ∧ 𝑁 = 1 ) → ( ( ( 2 ↑ 𝑁 ) − 1 ) = ( 𝑃 ↑ 𝑀 ) ↔ 1 = ( 𝑃 ↑ 𝑀 ) ) ) |
| 11 |
|
eldifi |
⊢ ( 𝑃 ∈ ( ℙ ∖ { 2 } ) → 𝑃 ∈ ℙ ) |
| 12 |
|
prmnn |
⊢ ( 𝑃 ∈ ℙ → 𝑃 ∈ ℕ ) |
| 13 |
|
nnnn0 |
⊢ ( 𝑃 ∈ ℕ → 𝑃 ∈ ℕ0 ) |
| 14 |
11 12 13
|
3syl |
⊢ ( 𝑃 ∈ ( ℙ ∖ { 2 } ) → 𝑃 ∈ ℕ0 ) |
| 15 |
14
|
nn0zd |
⊢ ( 𝑃 ∈ ( ℙ ∖ { 2 } ) → 𝑃 ∈ ℤ ) |
| 16 |
|
iddvdsexp |
⊢ ( ( 𝑃 ∈ ℤ ∧ 𝑀 ∈ ℕ ) → 𝑃 ∥ ( 𝑃 ↑ 𝑀 ) ) |
| 17 |
15 16
|
sylan |
⊢ ( ( 𝑃 ∈ ( ℙ ∖ { 2 } ) ∧ 𝑀 ∈ ℕ ) → 𝑃 ∥ ( 𝑃 ↑ 𝑀 ) ) |
| 18 |
|
breq2 |
⊢ ( 1 = ( 𝑃 ↑ 𝑀 ) → ( 𝑃 ∥ 1 ↔ 𝑃 ∥ ( 𝑃 ↑ 𝑀 ) ) ) |
| 19 |
18
|
adantl |
⊢ ( ( ( 𝑃 ∈ ( ℙ ∖ { 2 } ) ∧ 𝑀 ∈ ℕ ) ∧ 1 = ( 𝑃 ↑ 𝑀 ) ) → ( 𝑃 ∥ 1 ↔ 𝑃 ∥ ( 𝑃 ↑ 𝑀 ) ) ) |
| 20 |
|
dvds1 |
⊢ ( 𝑃 ∈ ℕ0 → ( 𝑃 ∥ 1 ↔ 𝑃 = 1 ) ) |
| 21 |
14 20
|
syl |
⊢ ( 𝑃 ∈ ( ℙ ∖ { 2 } ) → ( 𝑃 ∥ 1 ↔ 𝑃 = 1 ) ) |
| 22 |
|
eleq1 |
⊢ ( 𝑃 = 1 → ( 𝑃 ∈ ℙ ↔ 1 ∈ ℙ ) ) |
| 23 |
|
1nprm |
⊢ ¬ 1 ∈ ℙ |
| 24 |
23
|
pm2.21i |
⊢ ( 1 ∈ ℙ → 𝑀 = 1 ) |
| 25 |
22 24
|
biimtrdi |
⊢ ( 𝑃 = 1 → ( 𝑃 ∈ ℙ → 𝑀 = 1 ) ) |
| 26 |
11 25
|
syl5com |
⊢ ( 𝑃 ∈ ( ℙ ∖ { 2 } ) → ( 𝑃 = 1 → 𝑀 = 1 ) ) |
| 27 |
21 26
|
sylbid |
⊢ ( 𝑃 ∈ ( ℙ ∖ { 2 } ) → ( 𝑃 ∥ 1 → 𝑀 = 1 ) ) |
| 28 |
27
|
ad2antrr |
⊢ ( ( ( 𝑃 ∈ ( ℙ ∖ { 2 } ) ∧ 𝑀 ∈ ℕ ) ∧ 1 = ( 𝑃 ↑ 𝑀 ) ) → ( 𝑃 ∥ 1 → 𝑀 = 1 ) ) |
| 29 |
19 28
|
sylbird |
⊢ ( ( ( 𝑃 ∈ ( ℙ ∖ { 2 } ) ∧ 𝑀 ∈ ℕ ) ∧ 1 = ( 𝑃 ↑ 𝑀 ) ) → ( 𝑃 ∥ ( 𝑃 ↑ 𝑀 ) → 𝑀 = 1 ) ) |
| 30 |
29
|
ex |
⊢ ( ( 𝑃 ∈ ( ℙ ∖ { 2 } ) ∧ 𝑀 ∈ ℕ ) → ( 1 = ( 𝑃 ↑ 𝑀 ) → ( 𝑃 ∥ ( 𝑃 ↑ 𝑀 ) → 𝑀 = 1 ) ) ) |
| 31 |
17 30
|
mpid |
⊢ ( ( 𝑃 ∈ ( ℙ ∖ { 2 } ) ∧ 𝑀 ∈ ℕ ) → ( 1 = ( 𝑃 ↑ 𝑀 ) → 𝑀 = 1 ) ) |
| 32 |
31
|
adantr |
⊢ ( ( ( 𝑃 ∈ ( ℙ ∖ { 2 } ) ∧ 𝑀 ∈ ℕ ) ∧ 𝑁 = 1 ) → ( 1 = ( 𝑃 ↑ 𝑀 ) → 𝑀 = 1 ) ) |
| 33 |
10 32
|
sylbid |
⊢ ( ( ( 𝑃 ∈ ( ℙ ∖ { 2 } ) ∧ 𝑀 ∈ ℕ ) ∧ 𝑁 = 1 ) → ( ( ( 2 ↑ 𝑁 ) − 1 ) = ( 𝑃 ↑ 𝑀 ) → 𝑀 = 1 ) ) |
| 34 |
33
|
ex |
⊢ ( ( 𝑃 ∈ ( ℙ ∖ { 2 } ) ∧ 𝑀 ∈ ℕ ) → ( 𝑁 = 1 → ( ( ( 2 ↑ 𝑁 ) − 1 ) = ( 𝑃 ↑ 𝑀 ) → 𝑀 = 1 ) ) ) |
| 35 |
34
|
com23 |
⊢ ( ( 𝑃 ∈ ( ℙ ∖ { 2 } ) ∧ 𝑀 ∈ ℕ ) → ( ( ( 2 ↑ 𝑁 ) − 1 ) = ( 𝑃 ↑ 𝑀 ) → ( 𝑁 = 1 → 𝑀 = 1 ) ) ) |
| 36 |
35
|
a1d |
⊢ ( ( 𝑃 ∈ ( ℙ ∖ { 2 } ) ∧ 𝑀 ∈ ℕ ) → ( ( ¬ 2 ∥ 𝑁 ∧ 2 ∥ 𝑀 ) → ( ( ( 2 ↑ 𝑁 ) − 1 ) = ( 𝑃 ↑ 𝑀 ) → ( 𝑁 = 1 → 𝑀 = 1 ) ) ) ) |
| 37 |
36
|
3adant3 |
⊢ ( ( 𝑃 ∈ ( ℙ ∖ { 2 } ) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ) → ( ( ¬ 2 ∥ 𝑁 ∧ 2 ∥ 𝑀 ) → ( ( ( 2 ↑ 𝑁 ) − 1 ) = ( 𝑃 ↑ 𝑀 ) → ( 𝑁 = 1 → 𝑀 = 1 ) ) ) ) |
| 38 |
37
|
3imp |
⊢ ( ( ( 𝑃 ∈ ( ℙ ∖ { 2 } ) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ) ∧ ( ¬ 2 ∥ 𝑁 ∧ 2 ∥ 𝑀 ) ∧ ( ( 2 ↑ 𝑁 ) − 1 ) = ( 𝑃 ↑ 𝑀 ) ) → ( 𝑁 = 1 → 𝑀 = 1 ) ) |
| 39 |
|
neqne |
⊢ ( ¬ 𝑁 = 1 → 𝑁 ≠ 1 ) |
| 40 |
39
|
anim2i |
⊢ ( ( 𝑁 ∈ ℕ ∧ ¬ 𝑁 = 1 ) → ( 𝑁 ∈ ℕ ∧ 𝑁 ≠ 1 ) ) |
| 41 |
|
eluz2b3 |
⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 2 ) ↔ ( 𝑁 ∈ ℕ ∧ 𝑁 ≠ 1 ) ) |
| 42 |
40 41
|
sylibr |
⊢ ( ( 𝑁 ∈ ℕ ∧ ¬ 𝑁 = 1 ) → 𝑁 ∈ ( ℤ≥ ‘ 2 ) ) |
| 43 |
|
oddge22np1 |
⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 2 ) → ( ¬ 2 ∥ 𝑁 ↔ ∃ 𝑗 ∈ ℕ ( ( 2 · 𝑗 ) + 1 ) = 𝑁 ) ) |
| 44 |
42 43
|
syl |
⊢ ( ( 𝑁 ∈ ℕ ∧ ¬ 𝑁 = 1 ) → ( ¬ 2 ∥ 𝑁 ↔ ∃ 𝑗 ∈ ℕ ( ( 2 · 𝑗 ) + 1 ) = 𝑁 ) ) |
| 45 |
44
|
3ad2antl3 |
⊢ ( ( ( 𝑃 ∈ ( ℙ ∖ { 2 } ) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ) ∧ ¬ 𝑁 = 1 ) → ( ¬ 2 ∥ 𝑁 ↔ ∃ 𝑗 ∈ ℕ ( ( 2 · 𝑗 ) + 1 ) = 𝑁 ) ) |
| 46 |
|
oveq2 |
⊢ ( 𝑁 = ( ( 2 · 𝑗 ) + 1 ) → ( 2 ↑ 𝑁 ) = ( 2 ↑ ( ( 2 · 𝑗 ) + 1 ) ) ) |
| 47 |
46
|
oveq1d |
⊢ ( 𝑁 = ( ( 2 · 𝑗 ) + 1 ) → ( ( 2 ↑ 𝑁 ) − 1 ) = ( ( 2 ↑ ( ( 2 · 𝑗 ) + 1 ) ) − 1 ) ) |
| 48 |
47
|
eqcoms |
⊢ ( ( ( 2 · 𝑗 ) + 1 ) = 𝑁 → ( ( 2 ↑ 𝑁 ) − 1 ) = ( ( 2 ↑ ( ( 2 · 𝑗 ) + 1 ) ) − 1 ) ) |
| 49 |
2
|
a1i |
⊢ ( 𝑗 ∈ ℕ → 2 ∈ ℂ ) |
| 50 |
|
2nn0 |
⊢ 2 ∈ ℕ0 |
| 51 |
50
|
a1i |
⊢ ( 𝑗 ∈ ℕ → 2 ∈ ℕ0 ) |
| 52 |
|
nnnn0 |
⊢ ( 𝑗 ∈ ℕ → 𝑗 ∈ ℕ0 ) |
| 53 |
51 52
|
nn0mulcld |
⊢ ( 𝑗 ∈ ℕ → ( 2 · 𝑗 ) ∈ ℕ0 ) |
| 54 |
49 53
|
expp1d |
⊢ ( 𝑗 ∈ ℕ → ( 2 ↑ ( ( 2 · 𝑗 ) + 1 ) ) = ( ( 2 ↑ ( 2 · 𝑗 ) ) · 2 ) ) |
| 55 |
51 53
|
nn0expcld |
⊢ ( 𝑗 ∈ ℕ → ( 2 ↑ ( 2 · 𝑗 ) ) ∈ ℕ0 ) |
| 56 |
55
|
nn0cnd |
⊢ ( 𝑗 ∈ ℕ → ( 2 ↑ ( 2 · 𝑗 ) ) ∈ ℂ ) |
| 57 |
56 49
|
mulcomd |
⊢ ( 𝑗 ∈ ℕ → ( ( 2 ↑ ( 2 · 𝑗 ) ) · 2 ) = ( 2 · ( 2 ↑ ( 2 · 𝑗 ) ) ) ) |
| 58 |
54 57
|
eqtrd |
⊢ ( 𝑗 ∈ ℕ → ( 2 ↑ ( ( 2 · 𝑗 ) + 1 ) ) = ( 2 · ( 2 ↑ ( 2 · 𝑗 ) ) ) ) |
| 59 |
58
|
oveq1d |
⊢ ( 𝑗 ∈ ℕ → ( ( 2 ↑ ( ( 2 · 𝑗 ) + 1 ) ) − 1 ) = ( ( 2 · ( 2 ↑ ( 2 · 𝑗 ) ) ) − 1 ) ) |
| 60 |
|
npcan1 |
⊢ ( ( 2 ↑ ( 2 · 𝑗 ) ) ∈ ℂ → ( ( ( 2 ↑ ( 2 · 𝑗 ) ) − 1 ) + 1 ) = ( 2 ↑ ( 2 · 𝑗 ) ) ) |
| 61 |
56 60
|
syl |
⊢ ( 𝑗 ∈ ℕ → ( ( ( 2 ↑ ( 2 · 𝑗 ) ) − 1 ) + 1 ) = ( 2 ↑ ( 2 · 𝑗 ) ) ) |
| 62 |
61
|
eqcomd |
⊢ ( 𝑗 ∈ ℕ → ( 2 ↑ ( 2 · 𝑗 ) ) = ( ( ( 2 ↑ ( 2 · 𝑗 ) ) − 1 ) + 1 ) ) |
| 63 |
62
|
oveq2d |
⊢ ( 𝑗 ∈ ℕ → ( 2 · ( 2 ↑ ( 2 · 𝑗 ) ) ) = ( 2 · ( ( ( 2 ↑ ( 2 · 𝑗 ) ) − 1 ) + 1 ) ) ) |
| 64 |
|
peano2cnm |
⊢ ( ( 2 ↑ ( 2 · 𝑗 ) ) ∈ ℂ → ( ( 2 ↑ ( 2 · 𝑗 ) ) − 1 ) ∈ ℂ ) |
| 65 |
56 64
|
syl |
⊢ ( 𝑗 ∈ ℕ → ( ( 2 ↑ ( 2 · 𝑗 ) ) − 1 ) ∈ ℂ ) |
| 66 |
|
1cnd |
⊢ ( 𝑗 ∈ ℕ → 1 ∈ ℂ ) |
| 67 |
49 65 66
|
adddid |
⊢ ( 𝑗 ∈ ℕ → ( 2 · ( ( ( 2 ↑ ( 2 · 𝑗 ) ) − 1 ) + 1 ) ) = ( ( 2 · ( ( 2 ↑ ( 2 · 𝑗 ) ) − 1 ) ) + ( 2 · 1 ) ) ) |
| 68 |
63 67
|
eqtrd |
⊢ ( 𝑗 ∈ ℕ → ( 2 · ( 2 ↑ ( 2 · 𝑗 ) ) ) = ( ( 2 · ( ( 2 ↑ ( 2 · 𝑗 ) ) − 1 ) ) + ( 2 · 1 ) ) ) |
| 69 |
68
|
oveq1d |
⊢ ( 𝑗 ∈ ℕ → ( ( 2 · ( 2 ↑ ( 2 · 𝑗 ) ) ) − 1 ) = ( ( ( 2 · ( ( 2 ↑ ( 2 · 𝑗 ) ) − 1 ) ) + ( 2 · 1 ) ) − 1 ) ) |
| 70 |
49 65
|
mulcld |
⊢ ( 𝑗 ∈ ℕ → ( 2 · ( ( 2 ↑ ( 2 · 𝑗 ) ) − 1 ) ) ∈ ℂ ) |
| 71 |
|
ax-1cn |
⊢ 1 ∈ ℂ |
| 72 |
2 71
|
mulcli |
⊢ ( 2 · 1 ) ∈ ℂ |
| 73 |
72
|
a1i |
⊢ ( 𝑗 ∈ ℕ → ( 2 · 1 ) ∈ ℂ ) |
| 74 |
70 73 66
|
addsubassd |
⊢ ( 𝑗 ∈ ℕ → ( ( ( 2 · ( ( 2 ↑ ( 2 · 𝑗 ) ) − 1 ) ) + ( 2 · 1 ) ) − 1 ) = ( ( 2 · ( ( 2 ↑ ( 2 · 𝑗 ) ) − 1 ) ) + ( ( 2 · 1 ) − 1 ) ) ) |
| 75 |
|
2t1e2 |
⊢ ( 2 · 1 ) = 2 |
| 76 |
75
|
oveq1i |
⊢ ( ( 2 · 1 ) − 1 ) = ( 2 − 1 ) |
| 77 |
76 7
|
eqtri |
⊢ ( ( 2 · 1 ) − 1 ) = 1 |
| 78 |
77
|
a1i |
⊢ ( 𝑗 ∈ ℕ → ( ( 2 · 1 ) − 1 ) = 1 ) |
| 79 |
78
|
oveq2d |
⊢ ( 𝑗 ∈ ℕ → ( ( 2 · ( ( 2 ↑ ( 2 · 𝑗 ) ) − 1 ) ) + ( ( 2 · 1 ) − 1 ) ) = ( ( 2 · ( ( 2 ↑ ( 2 · 𝑗 ) ) − 1 ) ) + 1 ) ) |
| 80 |
74 79
|
eqtrd |
⊢ ( 𝑗 ∈ ℕ → ( ( ( 2 · ( ( 2 ↑ ( 2 · 𝑗 ) ) − 1 ) ) + ( 2 · 1 ) ) − 1 ) = ( ( 2 · ( ( 2 ↑ ( 2 · 𝑗 ) ) − 1 ) ) + 1 ) ) |
| 81 |
59 69 80
|
3eqtrd |
⊢ ( 𝑗 ∈ ℕ → ( ( 2 ↑ ( ( 2 · 𝑗 ) + 1 ) ) − 1 ) = ( ( 2 · ( ( 2 ↑ ( 2 · 𝑗 ) ) − 1 ) ) + 1 ) ) |
| 82 |
81
|
ad2antlr |
⊢ ( ( ( ( 𝑃 ∈ ( ℙ ∖ { 2 } ) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ) ∧ 𝑗 ∈ ℕ ) ∧ 2 ∥ 𝑀 ) → ( ( 2 ↑ ( ( 2 · 𝑗 ) + 1 ) ) − 1 ) = ( ( 2 · ( ( 2 ↑ ( 2 · 𝑗 ) ) − 1 ) ) + 1 ) ) |
| 83 |
48 82
|
sylan9eqr |
⊢ ( ( ( ( ( 𝑃 ∈ ( ℙ ∖ { 2 } ) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ) ∧ 𝑗 ∈ ℕ ) ∧ 2 ∥ 𝑀 ) ∧ ( ( 2 · 𝑗 ) + 1 ) = 𝑁 ) → ( ( 2 ↑ 𝑁 ) − 1 ) = ( ( 2 · ( ( 2 ↑ ( 2 · 𝑗 ) ) − 1 ) ) + 1 ) ) |
| 84 |
83
|
eqeq1d |
⊢ ( ( ( ( ( 𝑃 ∈ ( ℙ ∖ { 2 } ) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ) ∧ 𝑗 ∈ ℕ ) ∧ 2 ∥ 𝑀 ) ∧ ( ( 2 · 𝑗 ) + 1 ) = 𝑁 ) → ( ( ( 2 ↑ 𝑁 ) − 1 ) = ( 𝑃 ↑ 𝑀 ) ↔ ( ( 2 · ( ( 2 ↑ ( 2 · 𝑗 ) ) − 1 ) ) + 1 ) = ( 𝑃 ↑ 𝑀 ) ) ) |
| 85 |
14
|
3ad2ant1 |
⊢ ( ( 𝑃 ∈ ( ℙ ∖ { 2 } ) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ) → 𝑃 ∈ ℕ0 ) |
| 86 |
|
nnnn0 |
⊢ ( 𝑀 ∈ ℕ → 𝑀 ∈ ℕ0 ) |
| 87 |
86
|
3ad2ant2 |
⊢ ( ( 𝑃 ∈ ( ℙ ∖ { 2 } ) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ) → 𝑀 ∈ ℕ0 ) |
| 88 |
85 87
|
nn0expcld |
⊢ ( ( 𝑃 ∈ ( ℙ ∖ { 2 } ) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ) → ( 𝑃 ↑ 𝑀 ) ∈ ℕ0 ) |
| 89 |
88
|
nn0cnd |
⊢ ( ( 𝑃 ∈ ( ℙ ∖ { 2 } ) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ) → ( 𝑃 ↑ 𝑀 ) ∈ ℂ ) |
| 90 |
89
|
adantr |
⊢ ( ( ( 𝑃 ∈ ( ℙ ∖ { 2 } ) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ) ∧ 𝑗 ∈ ℕ ) → ( 𝑃 ↑ 𝑀 ) ∈ ℂ ) |
| 91 |
|
1cnd |
⊢ ( ( ( 𝑃 ∈ ( ℙ ∖ { 2 } ) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ) ∧ 𝑗 ∈ ℕ ) → 1 ∈ ℂ ) |
| 92 |
70
|
adantl |
⊢ ( ( ( 𝑃 ∈ ( ℙ ∖ { 2 } ) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ) ∧ 𝑗 ∈ ℕ ) → ( 2 · ( ( 2 ↑ ( 2 · 𝑗 ) ) − 1 ) ) ∈ ℂ ) |
| 93 |
90 91 92
|
3jca |
⊢ ( ( ( 𝑃 ∈ ( ℙ ∖ { 2 } ) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ) ∧ 𝑗 ∈ ℕ ) → ( ( 𝑃 ↑ 𝑀 ) ∈ ℂ ∧ 1 ∈ ℂ ∧ ( 2 · ( ( 2 ↑ ( 2 · 𝑗 ) ) − 1 ) ) ∈ ℂ ) ) |
| 94 |
93
|
adantr |
⊢ ( ( ( ( 𝑃 ∈ ( ℙ ∖ { 2 } ) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ) ∧ 𝑗 ∈ ℕ ) ∧ 2 ∥ 𝑀 ) → ( ( 𝑃 ↑ 𝑀 ) ∈ ℂ ∧ 1 ∈ ℂ ∧ ( 2 · ( ( 2 ↑ ( 2 · 𝑗 ) ) − 1 ) ) ∈ ℂ ) ) |
| 95 |
|
subadd2 |
⊢ ( ( ( 𝑃 ↑ 𝑀 ) ∈ ℂ ∧ 1 ∈ ℂ ∧ ( 2 · ( ( 2 ↑ ( 2 · 𝑗 ) ) − 1 ) ) ∈ ℂ ) → ( ( ( 𝑃 ↑ 𝑀 ) − 1 ) = ( 2 · ( ( 2 ↑ ( 2 · 𝑗 ) ) − 1 ) ) ↔ ( ( 2 · ( ( 2 ↑ ( 2 · 𝑗 ) ) − 1 ) ) + 1 ) = ( 𝑃 ↑ 𝑀 ) ) ) |
| 96 |
94 95
|
syl |
⊢ ( ( ( ( 𝑃 ∈ ( ℙ ∖ { 2 } ) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ) ∧ 𝑗 ∈ ℕ ) ∧ 2 ∥ 𝑀 ) → ( ( ( 𝑃 ↑ 𝑀 ) − 1 ) = ( 2 · ( ( 2 ↑ ( 2 · 𝑗 ) ) − 1 ) ) ↔ ( ( 2 · ( ( 2 ↑ ( 2 · 𝑗 ) ) − 1 ) ) + 1 ) = ( 𝑃 ↑ 𝑀 ) ) ) |
| 97 |
|
nncn |
⊢ ( 𝑃 ∈ ℕ → 𝑃 ∈ ℂ ) |
| 98 |
11 12 97
|
3syl |
⊢ ( 𝑃 ∈ ( ℙ ∖ { 2 } ) → 𝑃 ∈ ℂ ) |
| 99 |
98
|
3ad2ant1 |
⊢ ( ( 𝑃 ∈ ( ℙ ∖ { 2 } ) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ) → 𝑃 ∈ ℂ ) |
| 100 |
99 87
|
pwm1geoser |
⊢ ( ( 𝑃 ∈ ( ℙ ∖ { 2 } ) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ) → ( ( 𝑃 ↑ 𝑀 ) − 1 ) = ( ( 𝑃 − 1 ) · Σ 𝑘 ∈ ( 0 ... ( 𝑀 − 1 ) ) ( 𝑃 ↑ 𝑘 ) ) ) |
| 101 |
100
|
adantr |
⊢ ( ( ( 𝑃 ∈ ( ℙ ∖ { 2 } ) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ) ∧ 𝑗 ∈ ℕ ) → ( ( 𝑃 ↑ 𝑀 ) − 1 ) = ( ( 𝑃 − 1 ) · Σ 𝑘 ∈ ( 0 ... ( 𝑀 − 1 ) ) ( 𝑃 ↑ 𝑘 ) ) ) |
| 102 |
101
|
eqeq1d |
⊢ ( ( ( 𝑃 ∈ ( ℙ ∖ { 2 } ) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ) ∧ 𝑗 ∈ ℕ ) → ( ( ( 𝑃 ↑ 𝑀 ) − 1 ) = ( 2 · ( ( 2 ↑ ( 2 · 𝑗 ) ) − 1 ) ) ↔ ( ( 𝑃 − 1 ) · Σ 𝑘 ∈ ( 0 ... ( 𝑀 − 1 ) ) ( 𝑃 ↑ 𝑘 ) ) = ( 2 · ( ( 2 ↑ ( 2 · 𝑗 ) ) − 1 ) ) ) ) |
| 103 |
102
|
adantr |
⊢ ( ( ( ( 𝑃 ∈ ( ℙ ∖ { 2 } ) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ) ∧ 𝑗 ∈ ℕ ) ∧ 2 ∥ 𝑀 ) → ( ( ( 𝑃 ↑ 𝑀 ) − 1 ) = ( 2 · ( ( 2 ↑ ( 2 · 𝑗 ) ) − 1 ) ) ↔ ( ( 𝑃 − 1 ) · Σ 𝑘 ∈ ( 0 ... ( 𝑀 − 1 ) ) ( 𝑃 ↑ 𝑘 ) ) = ( 2 · ( ( 2 ↑ ( 2 · 𝑗 ) ) − 1 ) ) ) ) |
| 104 |
99
|
ad2antrr |
⊢ ( ( ( ( 𝑃 ∈ ( ℙ ∖ { 2 } ) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ) ∧ 𝑗 ∈ ℕ ) ∧ 2 ∥ 𝑀 ) → 𝑃 ∈ ℂ ) |
| 105 |
|
1cnd |
⊢ ( ( ( ( 𝑃 ∈ ( ℙ ∖ { 2 } ) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ) ∧ 𝑗 ∈ ℕ ) ∧ 2 ∥ 𝑀 ) → 1 ∈ ℂ ) |
| 106 |
104 105
|
subcld |
⊢ ( ( ( ( 𝑃 ∈ ( ℙ ∖ { 2 } ) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ) ∧ 𝑗 ∈ ℕ ) ∧ 2 ∥ 𝑀 ) → ( 𝑃 − 1 ) ∈ ℂ ) |
| 107 |
|
fzfid |
⊢ ( ( 𝑃 ∈ ( ℙ ∖ { 2 } ) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ) → ( 0 ... ( 𝑀 − 1 ) ) ∈ Fin ) |
| 108 |
85
|
adantr |
⊢ ( ( ( 𝑃 ∈ ( ℙ ∖ { 2 } ) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ) ∧ 𝑘 ∈ ( 0 ... ( 𝑀 − 1 ) ) ) → 𝑃 ∈ ℕ0 ) |
| 109 |
|
elfznn0 |
⊢ ( 𝑘 ∈ ( 0 ... ( 𝑀 − 1 ) ) → 𝑘 ∈ ℕ0 ) |
| 110 |
109
|
adantl |
⊢ ( ( ( 𝑃 ∈ ( ℙ ∖ { 2 } ) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ) ∧ 𝑘 ∈ ( 0 ... ( 𝑀 − 1 ) ) ) → 𝑘 ∈ ℕ0 ) |
| 111 |
108 110
|
nn0expcld |
⊢ ( ( ( 𝑃 ∈ ( ℙ ∖ { 2 } ) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ) ∧ 𝑘 ∈ ( 0 ... ( 𝑀 − 1 ) ) ) → ( 𝑃 ↑ 𝑘 ) ∈ ℕ0 ) |
| 112 |
111
|
nn0zd |
⊢ ( ( ( 𝑃 ∈ ( ℙ ∖ { 2 } ) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ) ∧ 𝑘 ∈ ( 0 ... ( 𝑀 − 1 ) ) ) → ( 𝑃 ↑ 𝑘 ) ∈ ℤ ) |
| 113 |
107 112
|
fsumzcl |
⊢ ( ( 𝑃 ∈ ( ℙ ∖ { 2 } ) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ) → Σ 𝑘 ∈ ( 0 ... ( 𝑀 − 1 ) ) ( 𝑃 ↑ 𝑘 ) ∈ ℤ ) |
| 114 |
113
|
zcnd |
⊢ ( ( 𝑃 ∈ ( ℙ ∖ { 2 } ) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ) → Σ 𝑘 ∈ ( 0 ... ( 𝑀 − 1 ) ) ( 𝑃 ↑ 𝑘 ) ∈ ℂ ) |
| 115 |
114
|
ad2antrr |
⊢ ( ( ( ( 𝑃 ∈ ( ℙ ∖ { 2 } ) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ) ∧ 𝑗 ∈ ℕ ) ∧ 2 ∥ 𝑀 ) → Σ 𝑘 ∈ ( 0 ... ( 𝑀 − 1 ) ) ( 𝑃 ↑ 𝑘 ) ∈ ℂ ) |
| 116 |
106 115
|
mulcld |
⊢ ( ( ( ( 𝑃 ∈ ( ℙ ∖ { 2 } ) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ) ∧ 𝑗 ∈ ℕ ) ∧ 2 ∥ 𝑀 ) → ( ( 𝑃 − 1 ) · Σ 𝑘 ∈ ( 0 ... ( 𝑀 − 1 ) ) ( 𝑃 ↑ 𝑘 ) ) ∈ ℂ ) |
| 117 |
56
|
ad2antlr |
⊢ ( ( ( ( 𝑃 ∈ ( ℙ ∖ { 2 } ) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ) ∧ 𝑗 ∈ ℕ ) ∧ 2 ∥ 𝑀 ) → ( 2 ↑ ( 2 · 𝑗 ) ) ∈ ℂ ) |
| 118 |
117 105
|
subcld |
⊢ ( ( ( ( 𝑃 ∈ ( ℙ ∖ { 2 } ) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ) ∧ 𝑗 ∈ ℕ ) ∧ 2 ∥ 𝑀 ) → ( ( 2 ↑ ( 2 · 𝑗 ) ) − 1 ) ∈ ℂ ) |
| 119 |
|
2rp |
⊢ 2 ∈ ℝ+ |
| 120 |
119
|
a1i |
⊢ ( ( ( ( 𝑃 ∈ ( ℙ ∖ { 2 } ) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ) ∧ 𝑗 ∈ ℕ ) ∧ 2 ∥ 𝑀 ) → 2 ∈ ℝ+ ) |
| 121 |
120
|
rpcnne0d |
⊢ ( ( ( ( 𝑃 ∈ ( ℙ ∖ { 2 } ) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ) ∧ 𝑗 ∈ ℕ ) ∧ 2 ∥ 𝑀 ) → ( 2 ∈ ℂ ∧ 2 ≠ 0 ) ) |
| 122 |
|
divmul2 |
⊢ ( ( ( ( 𝑃 − 1 ) · Σ 𝑘 ∈ ( 0 ... ( 𝑀 − 1 ) ) ( 𝑃 ↑ 𝑘 ) ) ∈ ℂ ∧ ( ( 2 ↑ ( 2 · 𝑗 ) ) − 1 ) ∈ ℂ ∧ ( 2 ∈ ℂ ∧ 2 ≠ 0 ) ) → ( ( ( ( 𝑃 − 1 ) · Σ 𝑘 ∈ ( 0 ... ( 𝑀 − 1 ) ) ( 𝑃 ↑ 𝑘 ) ) / 2 ) = ( ( 2 ↑ ( 2 · 𝑗 ) ) − 1 ) ↔ ( ( 𝑃 − 1 ) · Σ 𝑘 ∈ ( 0 ... ( 𝑀 − 1 ) ) ( 𝑃 ↑ 𝑘 ) ) = ( 2 · ( ( 2 ↑ ( 2 · 𝑗 ) ) − 1 ) ) ) ) |
| 123 |
116 118 121 122
|
syl3anc |
⊢ ( ( ( ( 𝑃 ∈ ( ℙ ∖ { 2 } ) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ) ∧ 𝑗 ∈ ℕ ) ∧ 2 ∥ 𝑀 ) → ( ( ( ( 𝑃 − 1 ) · Σ 𝑘 ∈ ( 0 ... ( 𝑀 − 1 ) ) ( 𝑃 ↑ 𝑘 ) ) / 2 ) = ( ( 2 ↑ ( 2 · 𝑗 ) ) − 1 ) ↔ ( ( 𝑃 − 1 ) · Σ 𝑘 ∈ ( 0 ... ( 𝑀 − 1 ) ) ( 𝑃 ↑ 𝑘 ) ) = ( 2 · ( ( 2 ↑ ( 2 · 𝑗 ) ) − 1 ) ) ) ) |
| 124 |
|
div23 |
⊢ ( ( ( 𝑃 − 1 ) ∈ ℂ ∧ Σ 𝑘 ∈ ( 0 ... ( 𝑀 − 1 ) ) ( 𝑃 ↑ 𝑘 ) ∈ ℂ ∧ ( 2 ∈ ℂ ∧ 2 ≠ 0 ) ) → ( ( ( 𝑃 − 1 ) · Σ 𝑘 ∈ ( 0 ... ( 𝑀 − 1 ) ) ( 𝑃 ↑ 𝑘 ) ) / 2 ) = ( ( ( 𝑃 − 1 ) / 2 ) · Σ 𝑘 ∈ ( 0 ... ( 𝑀 − 1 ) ) ( 𝑃 ↑ 𝑘 ) ) ) |
| 125 |
106 115 121 124
|
syl3anc |
⊢ ( ( ( ( 𝑃 ∈ ( ℙ ∖ { 2 } ) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ) ∧ 𝑗 ∈ ℕ ) ∧ 2 ∥ 𝑀 ) → ( ( ( 𝑃 − 1 ) · Σ 𝑘 ∈ ( 0 ... ( 𝑀 − 1 ) ) ( 𝑃 ↑ 𝑘 ) ) / 2 ) = ( ( ( 𝑃 − 1 ) / 2 ) · Σ 𝑘 ∈ ( 0 ... ( 𝑀 − 1 ) ) ( 𝑃 ↑ 𝑘 ) ) ) |
| 126 |
125
|
eqeq1d |
⊢ ( ( ( ( 𝑃 ∈ ( ℙ ∖ { 2 } ) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ) ∧ 𝑗 ∈ ℕ ) ∧ 2 ∥ 𝑀 ) → ( ( ( ( 𝑃 − 1 ) · Σ 𝑘 ∈ ( 0 ... ( 𝑀 − 1 ) ) ( 𝑃 ↑ 𝑘 ) ) / 2 ) = ( ( 2 ↑ ( 2 · 𝑗 ) ) − 1 ) ↔ ( ( ( 𝑃 − 1 ) / 2 ) · Σ 𝑘 ∈ ( 0 ... ( 𝑀 − 1 ) ) ( 𝑃 ↑ 𝑘 ) ) = ( ( 2 ↑ ( 2 · 𝑗 ) ) − 1 ) ) ) |
| 127 |
51
|
nn0zd |
⊢ ( 𝑗 ∈ ℕ → 2 ∈ ℤ ) |
| 128 |
|
2nn |
⊢ 2 ∈ ℕ |
| 129 |
128
|
a1i |
⊢ ( 𝑗 ∈ ℕ → 2 ∈ ℕ ) |
| 130 |
|
id |
⊢ ( 𝑗 ∈ ℕ → 𝑗 ∈ ℕ ) |
| 131 |
129 130
|
nnmulcld |
⊢ ( 𝑗 ∈ ℕ → ( 2 · 𝑗 ) ∈ ℕ ) |
| 132 |
|
iddvdsexp |
⊢ ( ( 2 ∈ ℤ ∧ ( 2 · 𝑗 ) ∈ ℕ ) → 2 ∥ ( 2 ↑ ( 2 · 𝑗 ) ) ) |
| 133 |
127 131 132
|
syl2anc |
⊢ ( 𝑗 ∈ ℕ → 2 ∥ ( 2 ↑ ( 2 · 𝑗 ) ) ) |
| 134 |
133
|
notnotd |
⊢ ( 𝑗 ∈ ℕ → ¬ ¬ 2 ∥ ( 2 ↑ ( 2 · 𝑗 ) ) ) |
| 135 |
55
|
nn0zd |
⊢ ( 𝑗 ∈ ℕ → ( 2 ↑ ( 2 · 𝑗 ) ) ∈ ℤ ) |
| 136 |
|
oddm1even |
⊢ ( ( 2 ↑ ( 2 · 𝑗 ) ) ∈ ℤ → ( ¬ 2 ∥ ( 2 ↑ ( 2 · 𝑗 ) ) ↔ 2 ∥ ( ( 2 ↑ ( 2 · 𝑗 ) ) − 1 ) ) ) |
| 137 |
135 136
|
syl |
⊢ ( 𝑗 ∈ ℕ → ( ¬ 2 ∥ ( 2 ↑ ( 2 · 𝑗 ) ) ↔ 2 ∥ ( ( 2 ↑ ( 2 · 𝑗 ) ) − 1 ) ) ) |
| 138 |
134 137
|
mtbid |
⊢ ( 𝑗 ∈ ℕ → ¬ 2 ∥ ( ( 2 ↑ ( 2 · 𝑗 ) ) − 1 ) ) |
| 139 |
138
|
ad2antlr |
⊢ ( ( ( ( 𝑃 ∈ ( ℙ ∖ { 2 } ) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ) ∧ 𝑗 ∈ ℕ ) ∧ 2 ∥ 𝑀 ) → ¬ 2 ∥ ( ( 2 ↑ ( 2 · 𝑗 ) ) − 1 ) ) |
| 140 |
|
breq2 |
⊢ ( ( ( ( 𝑃 − 1 ) / 2 ) · Σ 𝑘 ∈ ( 0 ... ( 𝑀 − 1 ) ) ( 𝑃 ↑ 𝑘 ) ) = ( ( 2 ↑ ( 2 · 𝑗 ) ) − 1 ) → ( 2 ∥ ( ( ( 𝑃 − 1 ) / 2 ) · Σ 𝑘 ∈ ( 0 ... ( 𝑀 − 1 ) ) ( 𝑃 ↑ 𝑘 ) ) ↔ 2 ∥ ( ( 2 ↑ ( 2 · 𝑗 ) ) − 1 ) ) ) |
| 141 |
140
|
notbid |
⊢ ( ( ( ( 𝑃 − 1 ) / 2 ) · Σ 𝑘 ∈ ( 0 ... ( 𝑀 − 1 ) ) ( 𝑃 ↑ 𝑘 ) ) = ( ( 2 ↑ ( 2 · 𝑗 ) ) − 1 ) → ( ¬ 2 ∥ ( ( ( 𝑃 − 1 ) / 2 ) · Σ 𝑘 ∈ ( 0 ... ( 𝑀 − 1 ) ) ( 𝑃 ↑ 𝑘 ) ) ↔ ¬ 2 ∥ ( ( 2 ↑ ( 2 · 𝑗 ) ) − 1 ) ) ) |
| 142 |
141
|
adantl |
⊢ ( ( ( ( ( 𝑃 ∈ ( ℙ ∖ { 2 } ) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ) ∧ 𝑗 ∈ ℕ ) ∧ 2 ∥ 𝑀 ) ∧ ( ( ( 𝑃 − 1 ) / 2 ) · Σ 𝑘 ∈ ( 0 ... ( 𝑀 − 1 ) ) ( 𝑃 ↑ 𝑘 ) ) = ( ( 2 ↑ ( 2 · 𝑗 ) ) − 1 ) ) → ( ¬ 2 ∥ ( ( ( 𝑃 − 1 ) / 2 ) · Σ 𝑘 ∈ ( 0 ... ( 𝑀 − 1 ) ) ( 𝑃 ↑ 𝑘 ) ) ↔ ¬ 2 ∥ ( ( 2 ↑ ( 2 · 𝑗 ) ) − 1 ) ) ) |
| 143 |
|
fzfid |
⊢ ( ( ( ( 𝑃 ∈ ( ℙ ∖ { 2 } ) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ) ∧ 𝑗 ∈ ℕ ) ∧ 2 ∥ 𝑀 ) → ( 0 ... ( 𝑀 − 1 ) ) ∈ Fin ) |
| 144 |
112
|
ad4ant14 |
⊢ ( ( ( ( ( 𝑃 ∈ ( ℙ ∖ { 2 } ) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ) ∧ 𝑗 ∈ ℕ ) ∧ 2 ∥ 𝑀 ) ∧ 𝑘 ∈ ( 0 ... ( 𝑀 − 1 ) ) ) → ( 𝑃 ↑ 𝑘 ) ∈ ℤ ) |
| 145 |
|
elnn0 |
⊢ ( 𝑘 ∈ ℕ0 ↔ ( 𝑘 ∈ ℕ ∨ 𝑘 = 0 ) ) |
| 146 |
|
eldifsn |
⊢ ( 𝑃 ∈ ( ℙ ∖ { 2 } ) ↔ ( 𝑃 ∈ ℙ ∧ 𝑃 ≠ 2 ) ) |
| 147 |
|
simpr |
⊢ ( ( 𝑃 ∈ ℙ ∧ 𝑃 ≠ 2 ) → 𝑃 ≠ 2 ) |
| 148 |
147
|
necomd |
⊢ ( ( 𝑃 ∈ ℙ ∧ 𝑃 ≠ 2 ) → 2 ≠ 𝑃 ) |
| 149 |
146 148
|
sylbi |
⊢ ( 𝑃 ∈ ( ℙ ∖ { 2 } ) → 2 ≠ 𝑃 ) |
| 150 |
149
|
adantl |
⊢ ( ( 𝑘 ∈ ℕ ∧ 𝑃 ∈ ( ℙ ∖ { 2 } ) ) → 2 ≠ 𝑃 ) |
| 151 |
150
|
neneqd |
⊢ ( ( 𝑘 ∈ ℕ ∧ 𝑃 ∈ ( ℙ ∖ { 2 } ) ) → ¬ 2 = 𝑃 ) |
| 152 |
|
2prm |
⊢ 2 ∈ ℙ |
| 153 |
11
|
adantl |
⊢ ( ( 𝑘 ∈ ℕ ∧ 𝑃 ∈ ( ℙ ∖ { 2 } ) ) → 𝑃 ∈ ℙ ) |
| 154 |
|
simpl |
⊢ ( ( 𝑘 ∈ ℕ ∧ 𝑃 ∈ ( ℙ ∖ { 2 } ) ) → 𝑘 ∈ ℕ ) |
| 155 |
|
prmdvdsexpb |
⊢ ( ( 2 ∈ ℙ ∧ 𝑃 ∈ ℙ ∧ 𝑘 ∈ ℕ ) → ( 2 ∥ ( 𝑃 ↑ 𝑘 ) ↔ 2 = 𝑃 ) ) |
| 156 |
152 153 154 155
|
mp3an2i |
⊢ ( ( 𝑘 ∈ ℕ ∧ 𝑃 ∈ ( ℙ ∖ { 2 } ) ) → ( 2 ∥ ( 𝑃 ↑ 𝑘 ) ↔ 2 = 𝑃 ) ) |
| 157 |
151 156
|
mtbird |
⊢ ( ( 𝑘 ∈ ℕ ∧ 𝑃 ∈ ( ℙ ∖ { 2 } ) ) → ¬ 2 ∥ ( 𝑃 ↑ 𝑘 ) ) |
| 158 |
157
|
ex |
⊢ ( 𝑘 ∈ ℕ → ( 𝑃 ∈ ( ℙ ∖ { 2 } ) → ¬ 2 ∥ ( 𝑃 ↑ 𝑘 ) ) ) |
| 159 |
|
n2dvds1 |
⊢ ¬ 2 ∥ 1 |
| 160 |
|
oveq2 |
⊢ ( 𝑘 = 0 → ( 𝑃 ↑ 𝑘 ) = ( 𝑃 ↑ 0 ) ) |
| 161 |
98
|
exp0d |
⊢ ( 𝑃 ∈ ( ℙ ∖ { 2 } ) → ( 𝑃 ↑ 0 ) = 1 ) |
| 162 |
160 161
|
sylan9eq |
⊢ ( ( 𝑘 = 0 ∧ 𝑃 ∈ ( ℙ ∖ { 2 } ) ) → ( 𝑃 ↑ 𝑘 ) = 1 ) |
| 163 |
162
|
breq2d |
⊢ ( ( 𝑘 = 0 ∧ 𝑃 ∈ ( ℙ ∖ { 2 } ) ) → ( 2 ∥ ( 𝑃 ↑ 𝑘 ) ↔ 2 ∥ 1 ) ) |
| 164 |
159 163
|
mtbiri |
⊢ ( ( 𝑘 = 0 ∧ 𝑃 ∈ ( ℙ ∖ { 2 } ) ) → ¬ 2 ∥ ( 𝑃 ↑ 𝑘 ) ) |
| 165 |
164
|
ex |
⊢ ( 𝑘 = 0 → ( 𝑃 ∈ ( ℙ ∖ { 2 } ) → ¬ 2 ∥ ( 𝑃 ↑ 𝑘 ) ) ) |
| 166 |
158 165
|
jaoi |
⊢ ( ( 𝑘 ∈ ℕ ∨ 𝑘 = 0 ) → ( 𝑃 ∈ ( ℙ ∖ { 2 } ) → ¬ 2 ∥ ( 𝑃 ↑ 𝑘 ) ) ) |
| 167 |
145 166
|
sylbi |
⊢ ( 𝑘 ∈ ℕ0 → ( 𝑃 ∈ ( ℙ ∖ { 2 } ) → ¬ 2 ∥ ( 𝑃 ↑ 𝑘 ) ) ) |
| 168 |
167 109
|
syl11 |
⊢ ( 𝑃 ∈ ( ℙ ∖ { 2 } ) → ( 𝑘 ∈ ( 0 ... ( 𝑀 − 1 ) ) → ¬ 2 ∥ ( 𝑃 ↑ 𝑘 ) ) ) |
| 169 |
168
|
3ad2ant1 |
⊢ ( ( 𝑃 ∈ ( ℙ ∖ { 2 } ) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ) → ( 𝑘 ∈ ( 0 ... ( 𝑀 − 1 ) ) → ¬ 2 ∥ ( 𝑃 ↑ 𝑘 ) ) ) |
| 170 |
169
|
ad2antrr |
⊢ ( ( ( ( 𝑃 ∈ ( ℙ ∖ { 2 } ) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ) ∧ 𝑗 ∈ ℕ ) ∧ 2 ∥ 𝑀 ) → ( 𝑘 ∈ ( 0 ... ( 𝑀 − 1 ) ) → ¬ 2 ∥ ( 𝑃 ↑ 𝑘 ) ) ) |
| 171 |
170
|
imp |
⊢ ( ( ( ( ( 𝑃 ∈ ( ℙ ∖ { 2 } ) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ) ∧ 𝑗 ∈ ℕ ) ∧ 2 ∥ 𝑀 ) ∧ 𝑘 ∈ ( 0 ... ( 𝑀 − 1 ) ) ) → ¬ 2 ∥ ( 𝑃 ↑ 𝑘 ) ) |
| 172 |
|
nnm1nn0 |
⊢ ( 𝑀 ∈ ℕ → ( 𝑀 − 1 ) ∈ ℕ0 ) |
| 173 |
|
hashfz0 |
⊢ ( ( 𝑀 − 1 ) ∈ ℕ0 → ( ♯ ‘ ( 0 ... ( 𝑀 − 1 ) ) ) = ( ( 𝑀 − 1 ) + 1 ) ) |
| 174 |
172 173
|
syl |
⊢ ( 𝑀 ∈ ℕ → ( ♯ ‘ ( 0 ... ( 𝑀 − 1 ) ) ) = ( ( 𝑀 − 1 ) + 1 ) ) |
| 175 |
|
nncn |
⊢ ( 𝑀 ∈ ℕ → 𝑀 ∈ ℂ ) |
| 176 |
|
1cnd |
⊢ ( 𝑀 ∈ ℕ → 1 ∈ ℂ ) |
| 177 |
175 176
|
npcand |
⊢ ( 𝑀 ∈ ℕ → ( ( 𝑀 − 1 ) + 1 ) = 𝑀 ) |
| 178 |
174 177
|
eqtr2d |
⊢ ( 𝑀 ∈ ℕ → 𝑀 = ( ♯ ‘ ( 0 ... ( 𝑀 − 1 ) ) ) ) |
| 179 |
178
|
3ad2ant2 |
⊢ ( ( 𝑃 ∈ ( ℙ ∖ { 2 } ) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ) → 𝑀 = ( ♯ ‘ ( 0 ... ( 𝑀 − 1 ) ) ) ) |
| 180 |
179
|
adantr |
⊢ ( ( ( 𝑃 ∈ ( ℙ ∖ { 2 } ) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ) ∧ 𝑗 ∈ ℕ ) → 𝑀 = ( ♯ ‘ ( 0 ... ( 𝑀 − 1 ) ) ) ) |
| 181 |
180
|
breq2d |
⊢ ( ( ( 𝑃 ∈ ( ℙ ∖ { 2 } ) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ) ∧ 𝑗 ∈ ℕ ) → ( 2 ∥ 𝑀 ↔ 2 ∥ ( ♯ ‘ ( 0 ... ( 𝑀 − 1 ) ) ) ) ) |
| 182 |
181
|
biimpa |
⊢ ( ( ( ( 𝑃 ∈ ( ℙ ∖ { 2 } ) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ) ∧ 𝑗 ∈ ℕ ) ∧ 2 ∥ 𝑀 ) → 2 ∥ ( ♯ ‘ ( 0 ... ( 𝑀 − 1 ) ) ) ) |
| 183 |
143 144 171 182
|
evensumodd |
⊢ ( ( ( ( 𝑃 ∈ ( ℙ ∖ { 2 } ) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ) ∧ 𝑗 ∈ ℕ ) ∧ 2 ∥ 𝑀 ) → 2 ∥ Σ 𝑘 ∈ ( 0 ... ( 𝑀 − 1 ) ) ( 𝑃 ↑ 𝑘 ) ) |
| 184 |
183
|
olcd |
⊢ ( ( ( ( 𝑃 ∈ ( ℙ ∖ { 2 } ) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ) ∧ 𝑗 ∈ ℕ ) ∧ 2 ∥ 𝑀 ) → ( 2 ∥ ( ( 𝑃 − 1 ) / 2 ) ∨ 2 ∥ Σ 𝑘 ∈ ( 0 ... ( 𝑀 − 1 ) ) ( 𝑃 ↑ 𝑘 ) ) ) |
| 185 |
152
|
a1i |
⊢ ( ( 𝑃 ∈ ( ℙ ∖ { 2 } ) ∧ 𝑀 ∈ ℕ ) → 2 ∈ ℙ ) |
| 186 |
|
oddn2prm |
⊢ ( 𝑃 ∈ ( ℙ ∖ { 2 } ) → ¬ 2 ∥ 𝑃 ) |
| 187 |
|
oddm1d2 |
⊢ ( 𝑃 ∈ ℤ → ( ¬ 2 ∥ 𝑃 ↔ ( ( 𝑃 − 1 ) / 2 ) ∈ ℤ ) ) |
| 188 |
15 187
|
syl |
⊢ ( 𝑃 ∈ ( ℙ ∖ { 2 } ) → ( ¬ 2 ∥ 𝑃 ↔ ( ( 𝑃 − 1 ) / 2 ) ∈ ℤ ) ) |
| 189 |
186 188
|
mpbid |
⊢ ( 𝑃 ∈ ( ℙ ∖ { 2 } ) → ( ( 𝑃 − 1 ) / 2 ) ∈ ℤ ) |
| 190 |
189
|
adantr |
⊢ ( ( 𝑃 ∈ ( ℙ ∖ { 2 } ) ∧ 𝑀 ∈ ℕ ) → ( ( 𝑃 − 1 ) / 2 ) ∈ ℤ ) |
| 191 |
|
fzfid |
⊢ ( ( 𝑃 ∈ ( ℙ ∖ { 2 } ) ∧ 𝑀 ∈ ℕ ) → ( 0 ... ( 𝑀 − 1 ) ) ∈ Fin ) |
| 192 |
14
|
ad2antrr |
⊢ ( ( ( 𝑃 ∈ ( ℙ ∖ { 2 } ) ∧ 𝑀 ∈ ℕ ) ∧ 𝑘 ∈ ( 0 ... ( 𝑀 − 1 ) ) ) → 𝑃 ∈ ℕ0 ) |
| 193 |
109
|
adantl |
⊢ ( ( ( 𝑃 ∈ ( ℙ ∖ { 2 } ) ∧ 𝑀 ∈ ℕ ) ∧ 𝑘 ∈ ( 0 ... ( 𝑀 − 1 ) ) ) → 𝑘 ∈ ℕ0 ) |
| 194 |
192 193
|
nn0expcld |
⊢ ( ( ( 𝑃 ∈ ( ℙ ∖ { 2 } ) ∧ 𝑀 ∈ ℕ ) ∧ 𝑘 ∈ ( 0 ... ( 𝑀 − 1 ) ) ) → ( 𝑃 ↑ 𝑘 ) ∈ ℕ0 ) |
| 195 |
194
|
nn0zd |
⊢ ( ( ( 𝑃 ∈ ( ℙ ∖ { 2 } ) ∧ 𝑀 ∈ ℕ ) ∧ 𝑘 ∈ ( 0 ... ( 𝑀 − 1 ) ) ) → ( 𝑃 ↑ 𝑘 ) ∈ ℤ ) |
| 196 |
191 195
|
fsumzcl |
⊢ ( ( 𝑃 ∈ ( ℙ ∖ { 2 } ) ∧ 𝑀 ∈ ℕ ) → Σ 𝑘 ∈ ( 0 ... ( 𝑀 − 1 ) ) ( 𝑃 ↑ 𝑘 ) ∈ ℤ ) |
| 197 |
185 190 196
|
3jca |
⊢ ( ( 𝑃 ∈ ( ℙ ∖ { 2 } ) ∧ 𝑀 ∈ ℕ ) → ( 2 ∈ ℙ ∧ ( ( 𝑃 − 1 ) / 2 ) ∈ ℤ ∧ Σ 𝑘 ∈ ( 0 ... ( 𝑀 − 1 ) ) ( 𝑃 ↑ 𝑘 ) ∈ ℤ ) ) |
| 198 |
197
|
3adant3 |
⊢ ( ( 𝑃 ∈ ( ℙ ∖ { 2 } ) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ) → ( 2 ∈ ℙ ∧ ( ( 𝑃 − 1 ) / 2 ) ∈ ℤ ∧ Σ 𝑘 ∈ ( 0 ... ( 𝑀 − 1 ) ) ( 𝑃 ↑ 𝑘 ) ∈ ℤ ) ) |
| 199 |
|
euclemma |
⊢ ( ( 2 ∈ ℙ ∧ ( ( 𝑃 − 1 ) / 2 ) ∈ ℤ ∧ Σ 𝑘 ∈ ( 0 ... ( 𝑀 − 1 ) ) ( 𝑃 ↑ 𝑘 ) ∈ ℤ ) → ( 2 ∥ ( ( ( 𝑃 − 1 ) / 2 ) · Σ 𝑘 ∈ ( 0 ... ( 𝑀 − 1 ) ) ( 𝑃 ↑ 𝑘 ) ) ↔ ( 2 ∥ ( ( 𝑃 − 1 ) / 2 ) ∨ 2 ∥ Σ 𝑘 ∈ ( 0 ... ( 𝑀 − 1 ) ) ( 𝑃 ↑ 𝑘 ) ) ) ) |
| 200 |
198 199
|
syl |
⊢ ( ( 𝑃 ∈ ( ℙ ∖ { 2 } ) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ) → ( 2 ∥ ( ( ( 𝑃 − 1 ) / 2 ) · Σ 𝑘 ∈ ( 0 ... ( 𝑀 − 1 ) ) ( 𝑃 ↑ 𝑘 ) ) ↔ ( 2 ∥ ( ( 𝑃 − 1 ) / 2 ) ∨ 2 ∥ Σ 𝑘 ∈ ( 0 ... ( 𝑀 − 1 ) ) ( 𝑃 ↑ 𝑘 ) ) ) ) |
| 201 |
200
|
ad2antrr |
⊢ ( ( ( ( 𝑃 ∈ ( ℙ ∖ { 2 } ) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ) ∧ 𝑗 ∈ ℕ ) ∧ 2 ∥ 𝑀 ) → ( 2 ∥ ( ( ( 𝑃 − 1 ) / 2 ) · Σ 𝑘 ∈ ( 0 ... ( 𝑀 − 1 ) ) ( 𝑃 ↑ 𝑘 ) ) ↔ ( 2 ∥ ( ( 𝑃 − 1 ) / 2 ) ∨ 2 ∥ Σ 𝑘 ∈ ( 0 ... ( 𝑀 − 1 ) ) ( 𝑃 ↑ 𝑘 ) ) ) ) |
| 202 |
184 201
|
mpbird |
⊢ ( ( ( ( 𝑃 ∈ ( ℙ ∖ { 2 } ) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ) ∧ 𝑗 ∈ ℕ ) ∧ 2 ∥ 𝑀 ) → 2 ∥ ( ( ( 𝑃 − 1 ) / 2 ) · Σ 𝑘 ∈ ( 0 ... ( 𝑀 − 1 ) ) ( 𝑃 ↑ 𝑘 ) ) ) |
| 203 |
202
|
pm2.24d |
⊢ ( ( ( ( 𝑃 ∈ ( ℙ ∖ { 2 } ) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ) ∧ 𝑗 ∈ ℕ ) ∧ 2 ∥ 𝑀 ) → ( ¬ 2 ∥ ( ( ( 𝑃 − 1 ) / 2 ) · Σ 𝑘 ∈ ( 0 ... ( 𝑀 − 1 ) ) ( 𝑃 ↑ 𝑘 ) ) → 𝑀 = 1 ) ) |
| 204 |
203
|
adantr |
⊢ ( ( ( ( ( 𝑃 ∈ ( ℙ ∖ { 2 } ) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ) ∧ 𝑗 ∈ ℕ ) ∧ 2 ∥ 𝑀 ) ∧ ( ( ( 𝑃 − 1 ) / 2 ) · Σ 𝑘 ∈ ( 0 ... ( 𝑀 − 1 ) ) ( 𝑃 ↑ 𝑘 ) ) = ( ( 2 ↑ ( 2 · 𝑗 ) ) − 1 ) ) → ( ¬ 2 ∥ ( ( ( 𝑃 − 1 ) / 2 ) · Σ 𝑘 ∈ ( 0 ... ( 𝑀 − 1 ) ) ( 𝑃 ↑ 𝑘 ) ) → 𝑀 = 1 ) ) |
| 205 |
142 204
|
sylbird |
⊢ ( ( ( ( ( 𝑃 ∈ ( ℙ ∖ { 2 } ) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ) ∧ 𝑗 ∈ ℕ ) ∧ 2 ∥ 𝑀 ) ∧ ( ( ( 𝑃 − 1 ) / 2 ) · Σ 𝑘 ∈ ( 0 ... ( 𝑀 − 1 ) ) ( 𝑃 ↑ 𝑘 ) ) = ( ( 2 ↑ ( 2 · 𝑗 ) ) − 1 ) ) → ( ¬ 2 ∥ ( ( 2 ↑ ( 2 · 𝑗 ) ) − 1 ) → 𝑀 = 1 ) ) |
| 206 |
205
|
ex |
⊢ ( ( ( ( 𝑃 ∈ ( ℙ ∖ { 2 } ) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ) ∧ 𝑗 ∈ ℕ ) ∧ 2 ∥ 𝑀 ) → ( ( ( ( 𝑃 − 1 ) / 2 ) · Σ 𝑘 ∈ ( 0 ... ( 𝑀 − 1 ) ) ( 𝑃 ↑ 𝑘 ) ) = ( ( 2 ↑ ( 2 · 𝑗 ) ) − 1 ) → ( ¬ 2 ∥ ( ( 2 ↑ ( 2 · 𝑗 ) ) − 1 ) → 𝑀 = 1 ) ) ) |
| 207 |
139 206
|
mpid |
⊢ ( ( ( ( 𝑃 ∈ ( ℙ ∖ { 2 } ) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ) ∧ 𝑗 ∈ ℕ ) ∧ 2 ∥ 𝑀 ) → ( ( ( ( 𝑃 − 1 ) / 2 ) · Σ 𝑘 ∈ ( 0 ... ( 𝑀 − 1 ) ) ( 𝑃 ↑ 𝑘 ) ) = ( ( 2 ↑ ( 2 · 𝑗 ) ) − 1 ) → 𝑀 = 1 ) ) |
| 208 |
126 207
|
sylbid |
⊢ ( ( ( ( 𝑃 ∈ ( ℙ ∖ { 2 } ) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ) ∧ 𝑗 ∈ ℕ ) ∧ 2 ∥ 𝑀 ) → ( ( ( ( 𝑃 − 1 ) · Σ 𝑘 ∈ ( 0 ... ( 𝑀 − 1 ) ) ( 𝑃 ↑ 𝑘 ) ) / 2 ) = ( ( 2 ↑ ( 2 · 𝑗 ) ) − 1 ) → 𝑀 = 1 ) ) |
| 209 |
123 208
|
sylbird |
⊢ ( ( ( ( 𝑃 ∈ ( ℙ ∖ { 2 } ) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ) ∧ 𝑗 ∈ ℕ ) ∧ 2 ∥ 𝑀 ) → ( ( ( 𝑃 − 1 ) · Σ 𝑘 ∈ ( 0 ... ( 𝑀 − 1 ) ) ( 𝑃 ↑ 𝑘 ) ) = ( 2 · ( ( 2 ↑ ( 2 · 𝑗 ) ) − 1 ) ) → 𝑀 = 1 ) ) |
| 210 |
103 209
|
sylbid |
⊢ ( ( ( ( 𝑃 ∈ ( ℙ ∖ { 2 } ) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ) ∧ 𝑗 ∈ ℕ ) ∧ 2 ∥ 𝑀 ) → ( ( ( 𝑃 ↑ 𝑀 ) − 1 ) = ( 2 · ( ( 2 ↑ ( 2 · 𝑗 ) ) − 1 ) ) → 𝑀 = 1 ) ) |
| 211 |
96 210
|
sylbird |
⊢ ( ( ( ( 𝑃 ∈ ( ℙ ∖ { 2 } ) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ) ∧ 𝑗 ∈ ℕ ) ∧ 2 ∥ 𝑀 ) → ( ( ( 2 · ( ( 2 ↑ ( 2 · 𝑗 ) ) − 1 ) ) + 1 ) = ( 𝑃 ↑ 𝑀 ) → 𝑀 = 1 ) ) |
| 212 |
211
|
adantr |
⊢ ( ( ( ( ( 𝑃 ∈ ( ℙ ∖ { 2 } ) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ) ∧ 𝑗 ∈ ℕ ) ∧ 2 ∥ 𝑀 ) ∧ ( ( 2 · 𝑗 ) + 1 ) = 𝑁 ) → ( ( ( 2 · ( ( 2 ↑ ( 2 · 𝑗 ) ) − 1 ) ) + 1 ) = ( 𝑃 ↑ 𝑀 ) → 𝑀 = 1 ) ) |
| 213 |
84 212
|
sylbid |
⊢ ( ( ( ( ( 𝑃 ∈ ( ℙ ∖ { 2 } ) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ) ∧ 𝑗 ∈ ℕ ) ∧ 2 ∥ 𝑀 ) ∧ ( ( 2 · 𝑗 ) + 1 ) = 𝑁 ) → ( ( ( 2 ↑ 𝑁 ) − 1 ) = ( 𝑃 ↑ 𝑀 ) → 𝑀 = 1 ) ) |
| 214 |
213
|
exp31 |
⊢ ( ( ( 𝑃 ∈ ( ℙ ∖ { 2 } ) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ) ∧ 𝑗 ∈ ℕ ) → ( 2 ∥ 𝑀 → ( ( ( 2 · 𝑗 ) + 1 ) = 𝑁 → ( ( ( 2 ↑ 𝑁 ) − 1 ) = ( 𝑃 ↑ 𝑀 ) → 𝑀 = 1 ) ) ) ) |
| 215 |
214
|
com23 |
⊢ ( ( ( 𝑃 ∈ ( ℙ ∖ { 2 } ) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ) ∧ 𝑗 ∈ ℕ ) → ( ( ( 2 · 𝑗 ) + 1 ) = 𝑁 → ( 2 ∥ 𝑀 → ( ( ( 2 ↑ 𝑁 ) − 1 ) = ( 𝑃 ↑ 𝑀 ) → 𝑀 = 1 ) ) ) ) |
| 216 |
215
|
rexlimdva |
⊢ ( ( 𝑃 ∈ ( ℙ ∖ { 2 } ) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ) → ( ∃ 𝑗 ∈ ℕ ( ( 2 · 𝑗 ) + 1 ) = 𝑁 → ( 2 ∥ 𝑀 → ( ( ( 2 ↑ 𝑁 ) − 1 ) = ( 𝑃 ↑ 𝑀 ) → 𝑀 = 1 ) ) ) ) |
| 217 |
216
|
com34 |
⊢ ( ( 𝑃 ∈ ( ℙ ∖ { 2 } ) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ) → ( ∃ 𝑗 ∈ ℕ ( ( 2 · 𝑗 ) + 1 ) = 𝑁 → ( ( ( 2 ↑ 𝑁 ) − 1 ) = ( 𝑃 ↑ 𝑀 ) → ( 2 ∥ 𝑀 → 𝑀 = 1 ) ) ) ) |
| 218 |
217
|
adantr |
⊢ ( ( ( 𝑃 ∈ ( ℙ ∖ { 2 } ) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ) ∧ ¬ 𝑁 = 1 ) → ( ∃ 𝑗 ∈ ℕ ( ( 2 · 𝑗 ) + 1 ) = 𝑁 → ( ( ( 2 ↑ 𝑁 ) − 1 ) = ( 𝑃 ↑ 𝑀 ) → ( 2 ∥ 𝑀 → 𝑀 = 1 ) ) ) ) |
| 219 |
45 218
|
sylbid |
⊢ ( ( ( 𝑃 ∈ ( ℙ ∖ { 2 } ) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ) ∧ ¬ 𝑁 = 1 ) → ( ¬ 2 ∥ 𝑁 → ( ( ( 2 ↑ 𝑁 ) − 1 ) = ( 𝑃 ↑ 𝑀 ) → ( 2 ∥ 𝑀 → 𝑀 = 1 ) ) ) ) |
| 220 |
219
|
com24 |
⊢ ( ( ( 𝑃 ∈ ( ℙ ∖ { 2 } ) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ) ∧ ¬ 𝑁 = 1 ) → ( 2 ∥ 𝑀 → ( ( ( 2 ↑ 𝑁 ) − 1 ) = ( 𝑃 ↑ 𝑀 ) → ( ¬ 2 ∥ 𝑁 → 𝑀 = 1 ) ) ) ) |
| 221 |
220
|
ex |
⊢ ( ( 𝑃 ∈ ( ℙ ∖ { 2 } ) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ) → ( ¬ 𝑁 = 1 → ( 2 ∥ 𝑀 → ( ( ( 2 ↑ 𝑁 ) − 1 ) = ( 𝑃 ↑ 𝑀 ) → ( ¬ 2 ∥ 𝑁 → 𝑀 = 1 ) ) ) ) ) |
| 222 |
221
|
com25 |
⊢ ( ( 𝑃 ∈ ( ℙ ∖ { 2 } ) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ) → ( ¬ 2 ∥ 𝑁 → ( 2 ∥ 𝑀 → ( ( ( 2 ↑ 𝑁 ) − 1 ) = ( 𝑃 ↑ 𝑀 ) → ( ¬ 𝑁 = 1 → 𝑀 = 1 ) ) ) ) ) |
| 223 |
222
|
impd |
⊢ ( ( 𝑃 ∈ ( ℙ ∖ { 2 } ) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ) → ( ( ¬ 2 ∥ 𝑁 ∧ 2 ∥ 𝑀 ) → ( ( ( 2 ↑ 𝑁 ) − 1 ) = ( 𝑃 ↑ 𝑀 ) → ( ¬ 𝑁 = 1 → 𝑀 = 1 ) ) ) ) |
| 224 |
223
|
3imp |
⊢ ( ( ( 𝑃 ∈ ( ℙ ∖ { 2 } ) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ) ∧ ( ¬ 2 ∥ 𝑁 ∧ 2 ∥ 𝑀 ) ∧ ( ( 2 ↑ 𝑁 ) − 1 ) = ( 𝑃 ↑ 𝑀 ) ) → ( ¬ 𝑁 = 1 → 𝑀 = 1 ) ) |
| 225 |
38 224
|
pm2.61d |
⊢ ( ( ( 𝑃 ∈ ( ℙ ∖ { 2 } ) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ) ∧ ( ¬ 2 ∥ 𝑁 ∧ 2 ∥ 𝑀 ) ∧ ( ( 2 ↑ 𝑁 ) − 1 ) = ( 𝑃 ↑ 𝑀 ) ) → 𝑀 = 1 ) |