| Step | Hyp | Ref | Expression | 
						
							| 1 |  | oveq2 | ⊢ ( 𝑁  =  1  →  ( 2 ↑ 𝑁 )  =  ( 2 ↑ 1 ) ) | 
						
							| 2 |  | 2cn | ⊢ 2  ∈  ℂ | 
						
							| 3 |  | exp1 | ⊢ ( 2  ∈  ℂ  →  ( 2 ↑ 1 )  =  2 ) | 
						
							| 4 | 2 3 | ax-mp | ⊢ ( 2 ↑ 1 )  =  2 | 
						
							| 5 | 1 4 | eqtrdi | ⊢ ( 𝑁  =  1  →  ( 2 ↑ 𝑁 )  =  2 ) | 
						
							| 6 | 5 | oveq1d | ⊢ ( 𝑁  =  1  →  ( ( 2 ↑ 𝑁 )  −  1 )  =  ( 2  −  1 ) ) | 
						
							| 7 |  | 2m1e1 | ⊢ ( 2  −  1 )  =  1 | 
						
							| 8 | 6 7 | eqtrdi | ⊢ ( 𝑁  =  1  →  ( ( 2 ↑ 𝑁 )  −  1 )  =  1 ) | 
						
							| 9 | 8 | adantl | ⊢ ( ( ( 𝑃  ∈  ( ℙ  ∖  { 2 } )  ∧  𝑀  ∈  ℕ )  ∧  𝑁  =  1 )  →  ( ( 2 ↑ 𝑁 )  −  1 )  =  1 ) | 
						
							| 10 | 9 | eqeq1d | ⊢ ( ( ( 𝑃  ∈  ( ℙ  ∖  { 2 } )  ∧  𝑀  ∈  ℕ )  ∧  𝑁  =  1 )  →  ( ( ( 2 ↑ 𝑁 )  −  1 )  =  ( 𝑃 ↑ 𝑀 )  ↔  1  =  ( 𝑃 ↑ 𝑀 ) ) ) | 
						
							| 11 |  | eldifi | ⊢ ( 𝑃  ∈  ( ℙ  ∖  { 2 } )  →  𝑃  ∈  ℙ ) | 
						
							| 12 |  | prmnn | ⊢ ( 𝑃  ∈  ℙ  →  𝑃  ∈  ℕ ) | 
						
							| 13 |  | nnnn0 | ⊢ ( 𝑃  ∈  ℕ  →  𝑃  ∈  ℕ0 ) | 
						
							| 14 | 11 12 13 | 3syl | ⊢ ( 𝑃  ∈  ( ℙ  ∖  { 2 } )  →  𝑃  ∈  ℕ0 ) | 
						
							| 15 | 14 | nn0zd | ⊢ ( 𝑃  ∈  ( ℙ  ∖  { 2 } )  →  𝑃  ∈  ℤ ) | 
						
							| 16 |  | iddvdsexp | ⊢ ( ( 𝑃  ∈  ℤ  ∧  𝑀  ∈  ℕ )  →  𝑃  ∥  ( 𝑃 ↑ 𝑀 ) ) | 
						
							| 17 | 15 16 | sylan | ⊢ ( ( 𝑃  ∈  ( ℙ  ∖  { 2 } )  ∧  𝑀  ∈  ℕ )  →  𝑃  ∥  ( 𝑃 ↑ 𝑀 ) ) | 
						
							| 18 |  | breq2 | ⊢ ( 1  =  ( 𝑃 ↑ 𝑀 )  →  ( 𝑃  ∥  1  ↔  𝑃  ∥  ( 𝑃 ↑ 𝑀 ) ) ) | 
						
							| 19 | 18 | adantl | ⊢ ( ( ( 𝑃  ∈  ( ℙ  ∖  { 2 } )  ∧  𝑀  ∈  ℕ )  ∧  1  =  ( 𝑃 ↑ 𝑀 ) )  →  ( 𝑃  ∥  1  ↔  𝑃  ∥  ( 𝑃 ↑ 𝑀 ) ) ) | 
						
							| 20 |  | dvds1 | ⊢ ( 𝑃  ∈  ℕ0  →  ( 𝑃  ∥  1  ↔  𝑃  =  1 ) ) | 
						
							| 21 | 14 20 | syl | ⊢ ( 𝑃  ∈  ( ℙ  ∖  { 2 } )  →  ( 𝑃  ∥  1  ↔  𝑃  =  1 ) ) | 
						
							| 22 |  | eleq1 | ⊢ ( 𝑃  =  1  →  ( 𝑃  ∈  ℙ  ↔  1  ∈  ℙ ) ) | 
						
							| 23 |  | 1nprm | ⊢ ¬  1  ∈  ℙ | 
						
							| 24 | 23 | pm2.21i | ⊢ ( 1  ∈  ℙ  →  𝑀  =  1 ) | 
						
							| 25 | 22 24 | biimtrdi | ⊢ ( 𝑃  =  1  →  ( 𝑃  ∈  ℙ  →  𝑀  =  1 ) ) | 
						
							| 26 | 11 25 | syl5com | ⊢ ( 𝑃  ∈  ( ℙ  ∖  { 2 } )  →  ( 𝑃  =  1  →  𝑀  =  1 ) ) | 
						
							| 27 | 21 26 | sylbid | ⊢ ( 𝑃  ∈  ( ℙ  ∖  { 2 } )  →  ( 𝑃  ∥  1  →  𝑀  =  1 ) ) | 
						
							| 28 | 27 | ad2antrr | ⊢ ( ( ( 𝑃  ∈  ( ℙ  ∖  { 2 } )  ∧  𝑀  ∈  ℕ )  ∧  1  =  ( 𝑃 ↑ 𝑀 ) )  →  ( 𝑃  ∥  1  →  𝑀  =  1 ) ) | 
						
							| 29 | 19 28 | sylbird | ⊢ ( ( ( 𝑃  ∈  ( ℙ  ∖  { 2 } )  ∧  𝑀  ∈  ℕ )  ∧  1  =  ( 𝑃 ↑ 𝑀 ) )  →  ( 𝑃  ∥  ( 𝑃 ↑ 𝑀 )  →  𝑀  =  1 ) ) | 
						
							| 30 | 29 | ex | ⊢ ( ( 𝑃  ∈  ( ℙ  ∖  { 2 } )  ∧  𝑀  ∈  ℕ )  →  ( 1  =  ( 𝑃 ↑ 𝑀 )  →  ( 𝑃  ∥  ( 𝑃 ↑ 𝑀 )  →  𝑀  =  1 ) ) ) | 
						
							| 31 | 17 30 | mpid | ⊢ ( ( 𝑃  ∈  ( ℙ  ∖  { 2 } )  ∧  𝑀  ∈  ℕ )  →  ( 1  =  ( 𝑃 ↑ 𝑀 )  →  𝑀  =  1 ) ) | 
						
							| 32 | 31 | adantr | ⊢ ( ( ( 𝑃  ∈  ( ℙ  ∖  { 2 } )  ∧  𝑀  ∈  ℕ )  ∧  𝑁  =  1 )  →  ( 1  =  ( 𝑃 ↑ 𝑀 )  →  𝑀  =  1 ) ) | 
						
							| 33 | 10 32 | sylbid | ⊢ ( ( ( 𝑃  ∈  ( ℙ  ∖  { 2 } )  ∧  𝑀  ∈  ℕ )  ∧  𝑁  =  1 )  →  ( ( ( 2 ↑ 𝑁 )  −  1 )  =  ( 𝑃 ↑ 𝑀 )  →  𝑀  =  1 ) ) | 
						
							| 34 | 33 | ex | ⊢ ( ( 𝑃  ∈  ( ℙ  ∖  { 2 } )  ∧  𝑀  ∈  ℕ )  →  ( 𝑁  =  1  →  ( ( ( 2 ↑ 𝑁 )  −  1 )  =  ( 𝑃 ↑ 𝑀 )  →  𝑀  =  1 ) ) ) | 
						
							| 35 | 34 | com23 | ⊢ ( ( 𝑃  ∈  ( ℙ  ∖  { 2 } )  ∧  𝑀  ∈  ℕ )  →  ( ( ( 2 ↑ 𝑁 )  −  1 )  =  ( 𝑃 ↑ 𝑀 )  →  ( 𝑁  =  1  →  𝑀  =  1 ) ) ) | 
						
							| 36 | 35 | a1d | ⊢ ( ( 𝑃  ∈  ( ℙ  ∖  { 2 } )  ∧  𝑀  ∈  ℕ )  →  ( ( ¬  2  ∥  𝑁  ∧  2  ∥  𝑀 )  →  ( ( ( 2 ↑ 𝑁 )  −  1 )  =  ( 𝑃 ↑ 𝑀 )  →  ( 𝑁  =  1  →  𝑀  =  1 ) ) ) ) | 
						
							| 37 | 36 | 3adant3 | ⊢ ( ( 𝑃  ∈  ( ℙ  ∖  { 2 } )  ∧  𝑀  ∈  ℕ  ∧  𝑁  ∈  ℕ )  →  ( ( ¬  2  ∥  𝑁  ∧  2  ∥  𝑀 )  →  ( ( ( 2 ↑ 𝑁 )  −  1 )  =  ( 𝑃 ↑ 𝑀 )  →  ( 𝑁  =  1  →  𝑀  =  1 ) ) ) ) | 
						
							| 38 | 37 | 3imp | ⊢ ( ( ( 𝑃  ∈  ( ℙ  ∖  { 2 } )  ∧  𝑀  ∈  ℕ  ∧  𝑁  ∈  ℕ )  ∧  ( ¬  2  ∥  𝑁  ∧  2  ∥  𝑀 )  ∧  ( ( 2 ↑ 𝑁 )  −  1 )  =  ( 𝑃 ↑ 𝑀 ) )  →  ( 𝑁  =  1  →  𝑀  =  1 ) ) | 
						
							| 39 |  | neqne | ⊢ ( ¬  𝑁  =  1  →  𝑁  ≠  1 ) | 
						
							| 40 | 39 | anim2i | ⊢ ( ( 𝑁  ∈  ℕ  ∧  ¬  𝑁  =  1 )  →  ( 𝑁  ∈  ℕ  ∧  𝑁  ≠  1 ) ) | 
						
							| 41 |  | eluz2b3 | ⊢ ( 𝑁  ∈  ( ℤ≥ ‘ 2 )  ↔  ( 𝑁  ∈  ℕ  ∧  𝑁  ≠  1 ) ) | 
						
							| 42 | 40 41 | sylibr | ⊢ ( ( 𝑁  ∈  ℕ  ∧  ¬  𝑁  =  1 )  →  𝑁  ∈  ( ℤ≥ ‘ 2 ) ) | 
						
							| 43 |  | oddge22np1 | ⊢ ( 𝑁  ∈  ( ℤ≥ ‘ 2 )  →  ( ¬  2  ∥  𝑁  ↔  ∃ 𝑗  ∈  ℕ ( ( 2  ·  𝑗 )  +  1 )  =  𝑁 ) ) | 
						
							| 44 | 42 43 | syl | ⊢ ( ( 𝑁  ∈  ℕ  ∧  ¬  𝑁  =  1 )  →  ( ¬  2  ∥  𝑁  ↔  ∃ 𝑗  ∈  ℕ ( ( 2  ·  𝑗 )  +  1 )  =  𝑁 ) ) | 
						
							| 45 | 44 | 3ad2antl3 | ⊢ ( ( ( 𝑃  ∈  ( ℙ  ∖  { 2 } )  ∧  𝑀  ∈  ℕ  ∧  𝑁  ∈  ℕ )  ∧  ¬  𝑁  =  1 )  →  ( ¬  2  ∥  𝑁  ↔  ∃ 𝑗  ∈  ℕ ( ( 2  ·  𝑗 )  +  1 )  =  𝑁 ) ) | 
						
							| 46 |  | oveq2 | ⊢ ( 𝑁  =  ( ( 2  ·  𝑗 )  +  1 )  →  ( 2 ↑ 𝑁 )  =  ( 2 ↑ ( ( 2  ·  𝑗 )  +  1 ) ) ) | 
						
							| 47 | 46 | oveq1d | ⊢ ( 𝑁  =  ( ( 2  ·  𝑗 )  +  1 )  →  ( ( 2 ↑ 𝑁 )  −  1 )  =  ( ( 2 ↑ ( ( 2  ·  𝑗 )  +  1 ) )  −  1 ) ) | 
						
							| 48 | 47 | eqcoms | ⊢ ( ( ( 2  ·  𝑗 )  +  1 )  =  𝑁  →  ( ( 2 ↑ 𝑁 )  −  1 )  =  ( ( 2 ↑ ( ( 2  ·  𝑗 )  +  1 ) )  −  1 ) ) | 
						
							| 49 | 2 | a1i | ⊢ ( 𝑗  ∈  ℕ  →  2  ∈  ℂ ) | 
						
							| 50 |  | 2nn0 | ⊢ 2  ∈  ℕ0 | 
						
							| 51 | 50 | a1i | ⊢ ( 𝑗  ∈  ℕ  →  2  ∈  ℕ0 ) | 
						
							| 52 |  | nnnn0 | ⊢ ( 𝑗  ∈  ℕ  →  𝑗  ∈  ℕ0 ) | 
						
							| 53 | 51 52 | nn0mulcld | ⊢ ( 𝑗  ∈  ℕ  →  ( 2  ·  𝑗 )  ∈  ℕ0 ) | 
						
							| 54 | 49 53 | expp1d | ⊢ ( 𝑗  ∈  ℕ  →  ( 2 ↑ ( ( 2  ·  𝑗 )  +  1 ) )  =  ( ( 2 ↑ ( 2  ·  𝑗 ) )  ·  2 ) ) | 
						
							| 55 | 51 53 | nn0expcld | ⊢ ( 𝑗  ∈  ℕ  →  ( 2 ↑ ( 2  ·  𝑗 ) )  ∈  ℕ0 ) | 
						
							| 56 | 55 | nn0cnd | ⊢ ( 𝑗  ∈  ℕ  →  ( 2 ↑ ( 2  ·  𝑗 ) )  ∈  ℂ ) | 
						
							| 57 | 56 49 | mulcomd | ⊢ ( 𝑗  ∈  ℕ  →  ( ( 2 ↑ ( 2  ·  𝑗 ) )  ·  2 )  =  ( 2  ·  ( 2 ↑ ( 2  ·  𝑗 ) ) ) ) | 
						
							| 58 | 54 57 | eqtrd | ⊢ ( 𝑗  ∈  ℕ  →  ( 2 ↑ ( ( 2  ·  𝑗 )  +  1 ) )  =  ( 2  ·  ( 2 ↑ ( 2  ·  𝑗 ) ) ) ) | 
						
							| 59 | 58 | oveq1d | ⊢ ( 𝑗  ∈  ℕ  →  ( ( 2 ↑ ( ( 2  ·  𝑗 )  +  1 ) )  −  1 )  =  ( ( 2  ·  ( 2 ↑ ( 2  ·  𝑗 ) ) )  −  1 ) ) | 
						
							| 60 |  | npcan1 | ⊢ ( ( 2 ↑ ( 2  ·  𝑗 ) )  ∈  ℂ  →  ( ( ( 2 ↑ ( 2  ·  𝑗 ) )  −  1 )  +  1 )  =  ( 2 ↑ ( 2  ·  𝑗 ) ) ) | 
						
							| 61 | 56 60 | syl | ⊢ ( 𝑗  ∈  ℕ  →  ( ( ( 2 ↑ ( 2  ·  𝑗 ) )  −  1 )  +  1 )  =  ( 2 ↑ ( 2  ·  𝑗 ) ) ) | 
						
							| 62 | 61 | eqcomd | ⊢ ( 𝑗  ∈  ℕ  →  ( 2 ↑ ( 2  ·  𝑗 ) )  =  ( ( ( 2 ↑ ( 2  ·  𝑗 ) )  −  1 )  +  1 ) ) | 
						
							| 63 | 62 | oveq2d | ⊢ ( 𝑗  ∈  ℕ  →  ( 2  ·  ( 2 ↑ ( 2  ·  𝑗 ) ) )  =  ( 2  ·  ( ( ( 2 ↑ ( 2  ·  𝑗 ) )  −  1 )  +  1 ) ) ) | 
						
							| 64 |  | peano2cnm | ⊢ ( ( 2 ↑ ( 2  ·  𝑗 ) )  ∈  ℂ  →  ( ( 2 ↑ ( 2  ·  𝑗 ) )  −  1 )  ∈  ℂ ) | 
						
							| 65 | 56 64 | syl | ⊢ ( 𝑗  ∈  ℕ  →  ( ( 2 ↑ ( 2  ·  𝑗 ) )  −  1 )  ∈  ℂ ) | 
						
							| 66 |  | 1cnd | ⊢ ( 𝑗  ∈  ℕ  →  1  ∈  ℂ ) | 
						
							| 67 | 49 65 66 | adddid | ⊢ ( 𝑗  ∈  ℕ  →  ( 2  ·  ( ( ( 2 ↑ ( 2  ·  𝑗 ) )  −  1 )  +  1 ) )  =  ( ( 2  ·  ( ( 2 ↑ ( 2  ·  𝑗 ) )  −  1 ) )  +  ( 2  ·  1 ) ) ) | 
						
							| 68 | 63 67 | eqtrd | ⊢ ( 𝑗  ∈  ℕ  →  ( 2  ·  ( 2 ↑ ( 2  ·  𝑗 ) ) )  =  ( ( 2  ·  ( ( 2 ↑ ( 2  ·  𝑗 ) )  −  1 ) )  +  ( 2  ·  1 ) ) ) | 
						
							| 69 | 68 | oveq1d | ⊢ ( 𝑗  ∈  ℕ  →  ( ( 2  ·  ( 2 ↑ ( 2  ·  𝑗 ) ) )  −  1 )  =  ( ( ( 2  ·  ( ( 2 ↑ ( 2  ·  𝑗 ) )  −  1 ) )  +  ( 2  ·  1 ) )  −  1 ) ) | 
						
							| 70 | 49 65 | mulcld | ⊢ ( 𝑗  ∈  ℕ  →  ( 2  ·  ( ( 2 ↑ ( 2  ·  𝑗 ) )  −  1 ) )  ∈  ℂ ) | 
						
							| 71 |  | ax-1cn | ⊢ 1  ∈  ℂ | 
						
							| 72 | 2 71 | mulcli | ⊢ ( 2  ·  1 )  ∈  ℂ | 
						
							| 73 | 72 | a1i | ⊢ ( 𝑗  ∈  ℕ  →  ( 2  ·  1 )  ∈  ℂ ) | 
						
							| 74 | 70 73 66 | addsubassd | ⊢ ( 𝑗  ∈  ℕ  →  ( ( ( 2  ·  ( ( 2 ↑ ( 2  ·  𝑗 ) )  −  1 ) )  +  ( 2  ·  1 ) )  −  1 )  =  ( ( 2  ·  ( ( 2 ↑ ( 2  ·  𝑗 ) )  −  1 ) )  +  ( ( 2  ·  1 )  −  1 ) ) ) | 
						
							| 75 |  | 2t1e2 | ⊢ ( 2  ·  1 )  =  2 | 
						
							| 76 | 75 | oveq1i | ⊢ ( ( 2  ·  1 )  −  1 )  =  ( 2  −  1 ) | 
						
							| 77 | 76 7 | eqtri | ⊢ ( ( 2  ·  1 )  −  1 )  =  1 | 
						
							| 78 | 77 | a1i | ⊢ ( 𝑗  ∈  ℕ  →  ( ( 2  ·  1 )  −  1 )  =  1 ) | 
						
							| 79 | 78 | oveq2d | ⊢ ( 𝑗  ∈  ℕ  →  ( ( 2  ·  ( ( 2 ↑ ( 2  ·  𝑗 ) )  −  1 ) )  +  ( ( 2  ·  1 )  −  1 ) )  =  ( ( 2  ·  ( ( 2 ↑ ( 2  ·  𝑗 ) )  −  1 ) )  +  1 ) ) | 
						
							| 80 | 74 79 | eqtrd | ⊢ ( 𝑗  ∈  ℕ  →  ( ( ( 2  ·  ( ( 2 ↑ ( 2  ·  𝑗 ) )  −  1 ) )  +  ( 2  ·  1 ) )  −  1 )  =  ( ( 2  ·  ( ( 2 ↑ ( 2  ·  𝑗 ) )  −  1 ) )  +  1 ) ) | 
						
							| 81 | 59 69 80 | 3eqtrd | ⊢ ( 𝑗  ∈  ℕ  →  ( ( 2 ↑ ( ( 2  ·  𝑗 )  +  1 ) )  −  1 )  =  ( ( 2  ·  ( ( 2 ↑ ( 2  ·  𝑗 ) )  −  1 ) )  +  1 ) ) | 
						
							| 82 | 81 | ad2antlr | ⊢ ( ( ( ( 𝑃  ∈  ( ℙ  ∖  { 2 } )  ∧  𝑀  ∈  ℕ  ∧  𝑁  ∈  ℕ )  ∧  𝑗  ∈  ℕ )  ∧  2  ∥  𝑀 )  →  ( ( 2 ↑ ( ( 2  ·  𝑗 )  +  1 ) )  −  1 )  =  ( ( 2  ·  ( ( 2 ↑ ( 2  ·  𝑗 ) )  −  1 ) )  +  1 ) ) | 
						
							| 83 | 48 82 | sylan9eqr | ⊢ ( ( ( ( ( 𝑃  ∈  ( ℙ  ∖  { 2 } )  ∧  𝑀  ∈  ℕ  ∧  𝑁  ∈  ℕ )  ∧  𝑗  ∈  ℕ )  ∧  2  ∥  𝑀 )  ∧  ( ( 2  ·  𝑗 )  +  1 )  =  𝑁 )  →  ( ( 2 ↑ 𝑁 )  −  1 )  =  ( ( 2  ·  ( ( 2 ↑ ( 2  ·  𝑗 ) )  −  1 ) )  +  1 ) ) | 
						
							| 84 | 83 | eqeq1d | ⊢ ( ( ( ( ( 𝑃  ∈  ( ℙ  ∖  { 2 } )  ∧  𝑀  ∈  ℕ  ∧  𝑁  ∈  ℕ )  ∧  𝑗  ∈  ℕ )  ∧  2  ∥  𝑀 )  ∧  ( ( 2  ·  𝑗 )  +  1 )  =  𝑁 )  →  ( ( ( 2 ↑ 𝑁 )  −  1 )  =  ( 𝑃 ↑ 𝑀 )  ↔  ( ( 2  ·  ( ( 2 ↑ ( 2  ·  𝑗 ) )  −  1 ) )  +  1 )  =  ( 𝑃 ↑ 𝑀 ) ) ) | 
						
							| 85 | 14 | 3ad2ant1 | ⊢ ( ( 𝑃  ∈  ( ℙ  ∖  { 2 } )  ∧  𝑀  ∈  ℕ  ∧  𝑁  ∈  ℕ )  →  𝑃  ∈  ℕ0 ) | 
						
							| 86 |  | nnnn0 | ⊢ ( 𝑀  ∈  ℕ  →  𝑀  ∈  ℕ0 ) | 
						
							| 87 | 86 | 3ad2ant2 | ⊢ ( ( 𝑃  ∈  ( ℙ  ∖  { 2 } )  ∧  𝑀  ∈  ℕ  ∧  𝑁  ∈  ℕ )  →  𝑀  ∈  ℕ0 ) | 
						
							| 88 | 85 87 | nn0expcld | ⊢ ( ( 𝑃  ∈  ( ℙ  ∖  { 2 } )  ∧  𝑀  ∈  ℕ  ∧  𝑁  ∈  ℕ )  →  ( 𝑃 ↑ 𝑀 )  ∈  ℕ0 ) | 
						
							| 89 | 88 | nn0cnd | ⊢ ( ( 𝑃  ∈  ( ℙ  ∖  { 2 } )  ∧  𝑀  ∈  ℕ  ∧  𝑁  ∈  ℕ )  →  ( 𝑃 ↑ 𝑀 )  ∈  ℂ ) | 
						
							| 90 | 89 | adantr | ⊢ ( ( ( 𝑃  ∈  ( ℙ  ∖  { 2 } )  ∧  𝑀  ∈  ℕ  ∧  𝑁  ∈  ℕ )  ∧  𝑗  ∈  ℕ )  →  ( 𝑃 ↑ 𝑀 )  ∈  ℂ ) | 
						
							| 91 |  | 1cnd | ⊢ ( ( ( 𝑃  ∈  ( ℙ  ∖  { 2 } )  ∧  𝑀  ∈  ℕ  ∧  𝑁  ∈  ℕ )  ∧  𝑗  ∈  ℕ )  →  1  ∈  ℂ ) | 
						
							| 92 | 70 | adantl | ⊢ ( ( ( 𝑃  ∈  ( ℙ  ∖  { 2 } )  ∧  𝑀  ∈  ℕ  ∧  𝑁  ∈  ℕ )  ∧  𝑗  ∈  ℕ )  →  ( 2  ·  ( ( 2 ↑ ( 2  ·  𝑗 ) )  −  1 ) )  ∈  ℂ ) | 
						
							| 93 | 90 91 92 | 3jca | ⊢ ( ( ( 𝑃  ∈  ( ℙ  ∖  { 2 } )  ∧  𝑀  ∈  ℕ  ∧  𝑁  ∈  ℕ )  ∧  𝑗  ∈  ℕ )  →  ( ( 𝑃 ↑ 𝑀 )  ∈  ℂ  ∧  1  ∈  ℂ  ∧  ( 2  ·  ( ( 2 ↑ ( 2  ·  𝑗 ) )  −  1 ) )  ∈  ℂ ) ) | 
						
							| 94 | 93 | adantr | ⊢ ( ( ( ( 𝑃  ∈  ( ℙ  ∖  { 2 } )  ∧  𝑀  ∈  ℕ  ∧  𝑁  ∈  ℕ )  ∧  𝑗  ∈  ℕ )  ∧  2  ∥  𝑀 )  →  ( ( 𝑃 ↑ 𝑀 )  ∈  ℂ  ∧  1  ∈  ℂ  ∧  ( 2  ·  ( ( 2 ↑ ( 2  ·  𝑗 ) )  −  1 ) )  ∈  ℂ ) ) | 
						
							| 95 |  | subadd2 | ⊢ ( ( ( 𝑃 ↑ 𝑀 )  ∈  ℂ  ∧  1  ∈  ℂ  ∧  ( 2  ·  ( ( 2 ↑ ( 2  ·  𝑗 ) )  −  1 ) )  ∈  ℂ )  →  ( ( ( 𝑃 ↑ 𝑀 )  −  1 )  =  ( 2  ·  ( ( 2 ↑ ( 2  ·  𝑗 ) )  −  1 ) )  ↔  ( ( 2  ·  ( ( 2 ↑ ( 2  ·  𝑗 ) )  −  1 ) )  +  1 )  =  ( 𝑃 ↑ 𝑀 ) ) ) | 
						
							| 96 | 94 95 | syl | ⊢ ( ( ( ( 𝑃  ∈  ( ℙ  ∖  { 2 } )  ∧  𝑀  ∈  ℕ  ∧  𝑁  ∈  ℕ )  ∧  𝑗  ∈  ℕ )  ∧  2  ∥  𝑀 )  →  ( ( ( 𝑃 ↑ 𝑀 )  −  1 )  =  ( 2  ·  ( ( 2 ↑ ( 2  ·  𝑗 ) )  −  1 ) )  ↔  ( ( 2  ·  ( ( 2 ↑ ( 2  ·  𝑗 ) )  −  1 ) )  +  1 )  =  ( 𝑃 ↑ 𝑀 ) ) ) | 
						
							| 97 |  | nncn | ⊢ ( 𝑃  ∈  ℕ  →  𝑃  ∈  ℂ ) | 
						
							| 98 | 11 12 97 | 3syl | ⊢ ( 𝑃  ∈  ( ℙ  ∖  { 2 } )  →  𝑃  ∈  ℂ ) | 
						
							| 99 | 98 | 3ad2ant1 | ⊢ ( ( 𝑃  ∈  ( ℙ  ∖  { 2 } )  ∧  𝑀  ∈  ℕ  ∧  𝑁  ∈  ℕ )  →  𝑃  ∈  ℂ ) | 
						
							| 100 | 99 87 | pwm1geoser | ⊢ ( ( 𝑃  ∈  ( ℙ  ∖  { 2 } )  ∧  𝑀  ∈  ℕ  ∧  𝑁  ∈  ℕ )  →  ( ( 𝑃 ↑ 𝑀 )  −  1 )  =  ( ( 𝑃  −  1 )  ·  Σ 𝑘  ∈  ( 0 ... ( 𝑀  −  1 ) ) ( 𝑃 ↑ 𝑘 ) ) ) | 
						
							| 101 | 100 | adantr | ⊢ ( ( ( 𝑃  ∈  ( ℙ  ∖  { 2 } )  ∧  𝑀  ∈  ℕ  ∧  𝑁  ∈  ℕ )  ∧  𝑗  ∈  ℕ )  →  ( ( 𝑃 ↑ 𝑀 )  −  1 )  =  ( ( 𝑃  −  1 )  ·  Σ 𝑘  ∈  ( 0 ... ( 𝑀  −  1 ) ) ( 𝑃 ↑ 𝑘 ) ) ) | 
						
							| 102 | 101 | eqeq1d | ⊢ ( ( ( 𝑃  ∈  ( ℙ  ∖  { 2 } )  ∧  𝑀  ∈  ℕ  ∧  𝑁  ∈  ℕ )  ∧  𝑗  ∈  ℕ )  →  ( ( ( 𝑃 ↑ 𝑀 )  −  1 )  =  ( 2  ·  ( ( 2 ↑ ( 2  ·  𝑗 ) )  −  1 ) )  ↔  ( ( 𝑃  −  1 )  ·  Σ 𝑘  ∈  ( 0 ... ( 𝑀  −  1 ) ) ( 𝑃 ↑ 𝑘 ) )  =  ( 2  ·  ( ( 2 ↑ ( 2  ·  𝑗 ) )  −  1 ) ) ) ) | 
						
							| 103 | 102 | adantr | ⊢ ( ( ( ( 𝑃  ∈  ( ℙ  ∖  { 2 } )  ∧  𝑀  ∈  ℕ  ∧  𝑁  ∈  ℕ )  ∧  𝑗  ∈  ℕ )  ∧  2  ∥  𝑀 )  →  ( ( ( 𝑃 ↑ 𝑀 )  −  1 )  =  ( 2  ·  ( ( 2 ↑ ( 2  ·  𝑗 ) )  −  1 ) )  ↔  ( ( 𝑃  −  1 )  ·  Σ 𝑘  ∈  ( 0 ... ( 𝑀  −  1 ) ) ( 𝑃 ↑ 𝑘 ) )  =  ( 2  ·  ( ( 2 ↑ ( 2  ·  𝑗 ) )  −  1 ) ) ) ) | 
						
							| 104 | 99 | ad2antrr | ⊢ ( ( ( ( 𝑃  ∈  ( ℙ  ∖  { 2 } )  ∧  𝑀  ∈  ℕ  ∧  𝑁  ∈  ℕ )  ∧  𝑗  ∈  ℕ )  ∧  2  ∥  𝑀 )  →  𝑃  ∈  ℂ ) | 
						
							| 105 |  | 1cnd | ⊢ ( ( ( ( 𝑃  ∈  ( ℙ  ∖  { 2 } )  ∧  𝑀  ∈  ℕ  ∧  𝑁  ∈  ℕ )  ∧  𝑗  ∈  ℕ )  ∧  2  ∥  𝑀 )  →  1  ∈  ℂ ) | 
						
							| 106 | 104 105 | subcld | ⊢ ( ( ( ( 𝑃  ∈  ( ℙ  ∖  { 2 } )  ∧  𝑀  ∈  ℕ  ∧  𝑁  ∈  ℕ )  ∧  𝑗  ∈  ℕ )  ∧  2  ∥  𝑀 )  →  ( 𝑃  −  1 )  ∈  ℂ ) | 
						
							| 107 |  | fzfid | ⊢ ( ( 𝑃  ∈  ( ℙ  ∖  { 2 } )  ∧  𝑀  ∈  ℕ  ∧  𝑁  ∈  ℕ )  →  ( 0 ... ( 𝑀  −  1 ) )  ∈  Fin ) | 
						
							| 108 | 85 | adantr | ⊢ ( ( ( 𝑃  ∈  ( ℙ  ∖  { 2 } )  ∧  𝑀  ∈  ℕ  ∧  𝑁  ∈  ℕ )  ∧  𝑘  ∈  ( 0 ... ( 𝑀  −  1 ) ) )  →  𝑃  ∈  ℕ0 ) | 
						
							| 109 |  | elfznn0 | ⊢ ( 𝑘  ∈  ( 0 ... ( 𝑀  −  1 ) )  →  𝑘  ∈  ℕ0 ) | 
						
							| 110 | 109 | adantl | ⊢ ( ( ( 𝑃  ∈  ( ℙ  ∖  { 2 } )  ∧  𝑀  ∈  ℕ  ∧  𝑁  ∈  ℕ )  ∧  𝑘  ∈  ( 0 ... ( 𝑀  −  1 ) ) )  →  𝑘  ∈  ℕ0 ) | 
						
							| 111 | 108 110 | nn0expcld | ⊢ ( ( ( 𝑃  ∈  ( ℙ  ∖  { 2 } )  ∧  𝑀  ∈  ℕ  ∧  𝑁  ∈  ℕ )  ∧  𝑘  ∈  ( 0 ... ( 𝑀  −  1 ) ) )  →  ( 𝑃 ↑ 𝑘 )  ∈  ℕ0 ) | 
						
							| 112 | 111 | nn0zd | ⊢ ( ( ( 𝑃  ∈  ( ℙ  ∖  { 2 } )  ∧  𝑀  ∈  ℕ  ∧  𝑁  ∈  ℕ )  ∧  𝑘  ∈  ( 0 ... ( 𝑀  −  1 ) ) )  →  ( 𝑃 ↑ 𝑘 )  ∈  ℤ ) | 
						
							| 113 | 107 112 | fsumzcl | ⊢ ( ( 𝑃  ∈  ( ℙ  ∖  { 2 } )  ∧  𝑀  ∈  ℕ  ∧  𝑁  ∈  ℕ )  →  Σ 𝑘  ∈  ( 0 ... ( 𝑀  −  1 ) ) ( 𝑃 ↑ 𝑘 )  ∈  ℤ ) | 
						
							| 114 | 113 | zcnd | ⊢ ( ( 𝑃  ∈  ( ℙ  ∖  { 2 } )  ∧  𝑀  ∈  ℕ  ∧  𝑁  ∈  ℕ )  →  Σ 𝑘  ∈  ( 0 ... ( 𝑀  −  1 ) ) ( 𝑃 ↑ 𝑘 )  ∈  ℂ ) | 
						
							| 115 | 114 | ad2antrr | ⊢ ( ( ( ( 𝑃  ∈  ( ℙ  ∖  { 2 } )  ∧  𝑀  ∈  ℕ  ∧  𝑁  ∈  ℕ )  ∧  𝑗  ∈  ℕ )  ∧  2  ∥  𝑀 )  →  Σ 𝑘  ∈  ( 0 ... ( 𝑀  −  1 ) ) ( 𝑃 ↑ 𝑘 )  ∈  ℂ ) | 
						
							| 116 | 106 115 | mulcld | ⊢ ( ( ( ( 𝑃  ∈  ( ℙ  ∖  { 2 } )  ∧  𝑀  ∈  ℕ  ∧  𝑁  ∈  ℕ )  ∧  𝑗  ∈  ℕ )  ∧  2  ∥  𝑀 )  →  ( ( 𝑃  −  1 )  ·  Σ 𝑘  ∈  ( 0 ... ( 𝑀  −  1 ) ) ( 𝑃 ↑ 𝑘 ) )  ∈  ℂ ) | 
						
							| 117 | 56 | ad2antlr | ⊢ ( ( ( ( 𝑃  ∈  ( ℙ  ∖  { 2 } )  ∧  𝑀  ∈  ℕ  ∧  𝑁  ∈  ℕ )  ∧  𝑗  ∈  ℕ )  ∧  2  ∥  𝑀 )  →  ( 2 ↑ ( 2  ·  𝑗 ) )  ∈  ℂ ) | 
						
							| 118 | 117 105 | subcld | ⊢ ( ( ( ( 𝑃  ∈  ( ℙ  ∖  { 2 } )  ∧  𝑀  ∈  ℕ  ∧  𝑁  ∈  ℕ )  ∧  𝑗  ∈  ℕ )  ∧  2  ∥  𝑀 )  →  ( ( 2 ↑ ( 2  ·  𝑗 ) )  −  1 )  ∈  ℂ ) | 
						
							| 119 |  | 2rp | ⊢ 2  ∈  ℝ+ | 
						
							| 120 | 119 | a1i | ⊢ ( ( ( ( 𝑃  ∈  ( ℙ  ∖  { 2 } )  ∧  𝑀  ∈  ℕ  ∧  𝑁  ∈  ℕ )  ∧  𝑗  ∈  ℕ )  ∧  2  ∥  𝑀 )  →  2  ∈  ℝ+ ) | 
						
							| 121 | 120 | rpcnne0d | ⊢ ( ( ( ( 𝑃  ∈  ( ℙ  ∖  { 2 } )  ∧  𝑀  ∈  ℕ  ∧  𝑁  ∈  ℕ )  ∧  𝑗  ∈  ℕ )  ∧  2  ∥  𝑀 )  →  ( 2  ∈  ℂ  ∧  2  ≠  0 ) ) | 
						
							| 122 |  | divmul2 | ⊢ ( ( ( ( 𝑃  −  1 )  ·  Σ 𝑘  ∈  ( 0 ... ( 𝑀  −  1 ) ) ( 𝑃 ↑ 𝑘 ) )  ∈  ℂ  ∧  ( ( 2 ↑ ( 2  ·  𝑗 ) )  −  1 )  ∈  ℂ  ∧  ( 2  ∈  ℂ  ∧  2  ≠  0 ) )  →  ( ( ( ( 𝑃  −  1 )  ·  Σ 𝑘  ∈  ( 0 ... ( 𝑀  −  1 ) ) ( 𝑃 ↑ 𝑘 ) )  /  2 )  =  ( ( 2 ↑ ( 2  ·  𝑗 ) )  −  1 )  ↔  ( ( 𝑃  −  1 )  ·  Σ 𝑘  ∈  ( 0 ... ( 𝑀  −  1 ) ) ( 𝑃 ↑ 𝑘 ) )  =  ( 2  ·  ( ( 2 ↑ ( 2  ·  𝑗 ) )  −  1 ) ) ) ) | 
						
							| 123 | 116 118 121 122 | syl3anc | ⊢ ( ( ( ( 𝑃  ∈  ( ℙ  ∖  { 2 } )  ∧  𝑀  ∈  ℕ  ∧  𝑁  ∈  ℕ )  ∧  𝑗  ∈  ℕ )  ∧  2  ∥  𝑀 )  →  ( ( ( ( 𝑃  −  1 )  ·  Σ 𝑘  ∈  ( 0 ... ( 𝑀  −  1 ) ) ( 𝑃 ↑ 𝑘 ) )  /  2 )  =  ( ( 2 ↑ ( 2  ·  𝑗 ) )  −  1 )  ↔  ( ( 𝑃  −  1 )  ·  Σ 𝑘  ∈  ( 0 ... ( 𝑀  −  1 ) ) ( 𝑃 ↑ 𝑘 ) )  =  ( 2  ·  ( ( 2 ↑ ( 2  ·  𝑗 ) )  −  1 ) ) ) ) | 
						
							| 124 |  | div23 | ⊢ ( ( ( 𝑃  −  1 )  ∈  ℂ  ∧  Σ 𝑘  ∈  ( 0 ... ( 𝑀  −  1 ) ) ( 𝑃 ↑ 𝑘 )  ∈  ℂ  ∧  ( 2  ∈  ℂ  ∧  2  ≠  0 ) )  →  ( ( ( 𝑃  −  1 )  ·  Σ 𝑘  ∈  ( 0 ... ( 𝑀  −  1 ) ) ( 𝑃 ↑ 𝑘 ) )  /  2 )  =  ( ( ( 𝑃  −  1 )  /  2 )  ·  Σ 𝑘  ∈  ( 0 ... ( 𝑀  −  1 ) ) ( 𝑃 ↑ 𝑘 ) ) ) | 
						
							| 125 | 106 115 121 124 | syl3anc | ⊢ ( ( ( ( 𝑃  ∈  ( ℙ  ∖  { 2 } )  ∧  𝑀  ∈  ℕ  ∧  𝑁  ∈  ℕ )  ∧  𝑗  ∈  ℕ )  ∧  2  ∥  𝑀 )  →  ( ( ( 𝑃  −  1 )  ·  Σ 𝑘  ∈  ( 0 ... ( 𝑀  −  1 ) ) ( 𝑃 ↑ 𝑘 ) )  /  2 )  =  ( ( ( 𝑃  −  1 )  /  2 )  ·  Σ 𝑘  ∈  ( 0 ... ( 𝑀  −  1 ) ) ( 𝑃 ↑ 𝑘 ) ) ) | 
						
							| 126 | 125 | eqeq1d | ⊢ ( ( ( ( 𝑃  ∈  ( ℙ  ∖  { 2 } )  ∧  𝑀  ∈  ℕ  ∧  𝑁  ∈  ℕ )  ∧  𝑗  ∈  ℕ )  ∧  2  ∥  𝑀 )  →  ( ( ( ( 𝑃  −  1 )  ·  Σ 𝑘  ∈  ( 0 ... ( 𝑀  −  1 ) ) ( 𝑃 ↑ 𝑘 ) )  /  2 )  =  ( ( 2 ↑ ( 2  ·  𝑗 ) )  −  1 )  ↔  ( ( ( 𝑃  −  1 )  /  2 )  ·  Σ 𝑘  ∈  ( 0 ... ( 𝑀  −  1 ) ) ( 𝑃 ↑ 𝑘 ) )  =  ( ( 2 ↑ ( 2  ·  𝑗 ) )  −  1 ) ) ) | 
						
							| 127 | 51 | nn0zd | ⊢ ( 𝑗  ∈  ℕ  →  2  ∈  ℤ ) | 
						
							| 128 |  | 2nn | ⊢ 2  ∈  ℕ | 
						
							| 129 | 128 | a1i | ⊢ ( 𝑗  ∈  ℕ  →  2  ∈  ℕ ) | 
						
							| 130 |  | id | ⊢ ( 𝑗  ∈  ℕ  →  𝑗  ∈  ℕ ) | 
						
							| 131 | 129 130 | nnmulcld | ⊢ ( 𝑗  ∈  ℕ  →  ( 2  ·  𝑗 )  ∈  ℕ ) | 
						
							| 132 |  | iddvdsexp | ⊢ ( ( 2  ∈  ℤ  ∧  ( 2  ·  𝑗 )  ∈  ℕ )  →  2  ∥  ( 2 ↑ ( 2  ·  𝑗 ) ) ) | 
						
							| 133 | 127 131 132 | syl2anc | ⊢ ( 𝑗  ∈  ℕ  →  2  ∥  ( 2 ↑ ( 2  ·  𝑗 ) ) ) | 
						
							| 134 | 133 | notnotd | ⊢ ( 𝑗  ∈  ℕ  →  ¬  ¬  2  ∥  ( 2 ↑ ( 2  ·  𝑗 ) ) ) | 
						
							| 135 | 55 | nn0zd | ⊢ ( 𝑗  ∈  ℕ  →  ( 2 ↑ ( 2  ·  𝑗 ) )  ∈  ℤ ) | 
						
							| 136 |  | oddm1even | ⊢ ( ( 2 ↑ ( 2  ·  𝑗 ) )  ∈  ℤ  →  ( ¬  2  ∥  ( 2 ↑ ( 2  ·  𝑗 ) )  ↔  2  ∥  ( ( 2 ↑ ( 2  ·  𝑗 ) )  −  1 ) ) ) | 
						
							| 137 | 135 136 | syl | ⊢ ( 𝑗  ∈  ℕ  →  ( ¬  2  ∥  ( 2 ↑ ( 2  ·  𝑗 ) )  ↔  2  ∥  ( ( 2 ↑ ( 2  ·  𝑗 ) )  −  1 ) ) ) | 
						
							| 138 | 134 137 | mtbid | ⊢ ( 𝑗  ∈  ℕ  →  ¬  2  ∥  ( ( 2 ↑ ( 2  ·  𝑗 ) )  −  1 ) ) | 
						
							| 139 | 138 | ad2antlr | ⊢ ( ( ( ( 𝑃  ∈  ( ℙ  ∖  { 2 } )  ∧  𝑀  ∈  ℕ  ∧  𝑁  ∈  ℕ )  ∧  𝑗  ∈  ℕ )  ∧  2  ∥  𝑀 )  →  ¬  2  ∥  ( ( 2 ↑ ( 2  ·  𝑗 ) )  −  1 ) ) | 
						
							| 140 |  | breq2 | ⊢ ( ( ( ( 𝑃  −  1 )  /  2 )  ·  Σ 𝑘  ∈  ( 0 ... ( 𝑀  −  1 ) ) ( 𝑃 ↑ 𝑘 ) )  =  ( ( 2 ↑ ( 2  ·  𝑗 ) )  −  1 )  →  ( 2  ∥  ( ( ( 𝑃  −  1 )  /  2 )  ·  Σ 𝑘  ∈  ( 0 ... ( 𝑀  −  1 ) ) ( 𝑃 ↑ 𝑘 ) )  ↔  2  ∥  ( ( 2 ↑ ( 2  ·  𝑗 ) )  −  1 ) ) ) | 
						
							| 141 | 140 | notbid | ⊢ ( ( ( ( 𝑃  −  1 )  /  2 )  ·  Σ 𝑘  ∈  ( 0 ... ( 𝑀  −  1 ) ) ( 𝑃 ↑ 𝑘 ) )  =  ( ( 2 ↑ ( 2  ·  𝑗 ) )  −  1 )  →  ( ¬  2  ∥  ( ( ( 𝑃  −  1 )  /  2 )  ·  Σ 𝑘  ∈  ( 0 ... ( 𝑀  −  1 ) ) ( 𝑃 ↑ 𝑘 ) )  ↔  ¬  2  ∥  ( ( 2 ↑ ( 2  ·  𝑗 ) )  −  1 ) ) ) | 
						
							| 142 | 141 | adantl | ⊢ ( ( ( ( ( 𝑃  ∈  ( ℙ  ∖  { 2 } )  ∧  𝑀  ∈  ℕ  ∧  𝑁  ∈  ℕ )  ∧  𝑗  ∈  ℕ )  ∧  2  ∥  𝑀 )  ∧  ( ( ( 𝑃  −  1 )  /  2 )  ·  Σ 𝑘  ∈  ( 0 ... ( 𝑀  −  1 ) ) ( 𝑃 ↑ 𝑘 ) )  =  ( ( 2 ↑ ( 2  ·  𝑗 ) )  −  1 ) )  →  ( ¬  2  ∥  ( ( ( 𝑃  −  1 )  /  2 )  ·  Σ 𝑘  ∈  ( 0 ... ( 𝑀  −  1 ) ) ( 𝑃 ↑ 𝑘 ) )  ↔  ¬  2  ∥  ( ( 2 ↑ ( 2  ·  𝑗 ) )  −  1 ) ) ) | 
						
							| 143 |  | fzfid | ⊢ ( ( ( ( 𝑃  ∈  ( ℙ  ∖  { 2 } )  ∧  𝑀  ∈  ℕ  ∧  𝑁  ∈  ℕ )  ∧  𝑗  ∈  ℕ )  ∧  2  ∥  𝑀 )  →  ( 0 ... ( 𝑀  −  1 ) )  ∈  Fin ) | 
						
							| 144 | 112 | ad4ant14 | ⊢ ( ( ( ( ( 𝑃  ∈  ( ℙ  ∖  { 2 } )  ∧  𝑀  ∈  ℕ  ∧  𝑁  ∈  ℕ )  ∧  𝑗  ∈  ℕ )  ∧  2  ∥  𝑀 )  ∧  𝑘  ∈  ( 0 ... ( 𝑀  −  1 ) ) )  →  ( 𝑃 ↑ 𝑘 )  ∈  ℤ ) | 
						
							| 145 |  | elnn0 | ⊢ ( 𝑘  ∈  ℕ0  ↔  ( 𝑘  ∈  ℕ  ∨  𝑘  =  0 ) ) | 
						
							| 146 |  | eldifsn | ⊢ ( 𝑃  ∈  ( ℙ  ∖  { 2 } )  ↔  ( 𝑃  ∈  ℙ  ∧  𝑃  ≠  2 ) ) | 
						
							| 147 |  | simpr | ⊢ ( ( 𝑃  ∈  ℙ  ∧  𝑃  ≠  2 )  →  𝑃  ≠  2 ) | 
						
							| 148 | 147 | necomd | ⊢ ( ( 𝑃  ∈  ℙ  ∧  𝑃  ≠  2 )  →  2  ≠  𝑃 ) | 
						
							| 149 | 146 148 | sylbi | ⊢ ( 𝑃  ∈  ( ℙ  ∖  { 2 } )  →  2  ≠  𝑃 ) | 
						
							| 150 | 149 | adantl | ⊢ ( ( 𝑘  ∈  ℕ  ∧  𝑃  ∈  ( ℙ  ∖  { 2 } ) )  →  2  ≠  𝑃 ) | 
						
							| 151 | 150 | neneqd | ⊢ ( ( 𝑘  ∈  ℕ  ∧  𝑃  ∈  ( ℙ  ∖  { 2 } ) )  →  ¬  2  =  𝑃 ) | 
						
							| 152 |  | 2prm | ⊢ 2  ∈  ℙ | 
						
							| 153 | 11 | adantl | ⊢ ( ( 𝑘  ∈  ℕ  ∧  𝑃  ∈  ( ℙ  ∖  { 2 } ) )  →  𝑃  ∈  ℙ ) | 
						
							| 154 |  | simpl | ⊢ ( ( 𝑘  ∈  ℕ  ∧  𝑃  ∈  ( ℙ  ∖  { 2 } ) )  →  𝑘  ∈  ℕ ) | 
						
							| 155 |  | prmdvdsexpb | ⊢ ( ( 2  ∈  ℙ  ∧  𝑃  ∈  ℙ  ∧  𝑘  ∈  ℕ )  →  ( 2  ∥  ( 𝑃 ↑ 𝑘 )  ↔  2  =  𝑃 ) ) | 
						
							| 156 | 152 153 154 155 | mp3an2i | ⊢ ( ( 𝑘  ∈  ℕ  ∧  𝑃  ∈  ( ℙ  ∖  { 2 } ) )  →  ( 2  ∥  ( 𝑃 ↑ 𝑘 )  ↔  2  =  𝑃 ) ) | 
						
							| 157 | 151 156 | mtbird | ⊢ ( ( 𝑘  ∈  ℕ  ∧  𝑃  ∈  ( ℙ  ∖  { 2 } ) )  →  ¬  2  ∥  ( 𝑃 ↑ 𝑘 ) ) | 
						
							| 158 | 157 | ex | ⊢ ( 𝑘  ∈  ℕ  →  ( 𝑃  ∈  ( ℙ  ∖  { 2 } )  →  ¬  2  ∥  ( 𝑃 ↑ 𝑘 ) ) ) | 
						
							| 159 |  | n2dvds1 | ⊢ ¬  2  ∥  1 | 
						
							| 160 |  | oveq2 | ⊢ ( 𝑘  =  0  →  ( 𝑃 ↑ 𝑘 )  =  ( 𝑃 ↑ 0 ) ) | 
						
							| 161 | 98 | exp0d | ⊢ ( 𝑃  ∈  ( ℙ  ∖  { 2 } )  →  ( 𝑃 ↑ 0 )  =  1 ) | 
						
							| 162 | 160 161 | sylan9eq | ⊢ ( ( 𝑘  =  0  ∧  𝑃  ∈  ( ℙ  ∖  { 2 } ) )  →  ( 𝑃 ↑ 𝑘 )  =  1 ) | 
						
							| 163 | 162 | breq2d | ⊢ ( ( 𝑘  =  0  ∧  𝑃  ∈  ( ℙ  ∖  { 2 } ) )  →  ( 2  ∥  ( 𝑃 ↑ 𝑘 )  ↔  2  ∥  1 ) ) | 
						
							| 164 | 159 163 | mtbiri | ⊢ ( ( 𝑘  =  0  ∧  𝑃  ∈  ( ℙ  ∖  { 2 } ) )  →  ¬  2  ∥  ( 𝑃 ↑ 𝑘 ) ) | 
						
							| 165 | 164 | ex | ⊢ ( 𝑘  =  0  →  ( 𝑃  ∈  ( ℙ  ∖  { 2 } )  →  ¬  2  ∥  ( 𝑃 ↑ 𝑘 ) ) ) | 
						
							| 166 | 158 165 | jaoi | ⊢ ( ( 𝑘  ∈  ℕ  ∨  𝑘  =  0 )  →  ( 𝑃  ∈  ( ℙ  ∖  { 2 } )  →  ¬  2  ∥  ( 𝑃 ↑ 𝑘 ) ) ) | 
						
							| 167 | 145 166 | sylbi | ⊢ ( 𝑘  ∈  ℕ0  →  ( 𝑃  ∈  ( ℙ  ∖  { 2 } )  →  ¬  2  ∥  ( 𝑃 ↑ 𝑘 ) ) ) | 
						
							| 168 | 167 109 | syl11 | ⊢ ( 𝑃  ∈  ( ℙ  ∖  { 2 } )  →  ( 𝑘  ∈  ( 0 ... ( 𝑀  −  1 ) )  →  ¬  2  ∥  ( 𝑃 ↑ 𝑘 ) ) ) | 
						
							| 169 | 168 | 3ad2ant1 | ⊢ ( ( 𝑃  ∈  ( ℙ  ∖  { 2 } )  ∧  𝑀  ∈  ℕ  ∧  𝑁  ∈  ℕ )  →  ( 𝑘  ∈  ( 0 ... ( 𝑀  −  1 ) )  →  ¬  2  ∥  ( 𝑃 ↑ 𝑘 ) ) ) | 
						
							| 170 | 169 | ad2antrr | ⊢ ( ( ( ( 𝑃  ∈  ( ℙ  ∖  { 2 } )  ∧  𝑀  ∈  ℕ  ∧  𝑁  ∈  ℕ )  ∧  𝑗  ∈  ℕ )  ∧  2  ∥  𝑀 )  →  ( 𝑘  ∈  ( 0 ... ( 𝑀  −  1 ) )  →  ¬  2  ∥  ( 𝑃 ↑ 𝑘 ) ) ) | 
						
							| 171 | 170 | imp | ⊢ ( ( ( ( ( 𝑃  ∈  ( ℙ  ∖  { 2 } )  ∧  𝑀  ∈  ℕ  ∧  𝑁  ∈  ℕ )  ∧  𝑗  ∈  ℕ )  ∧  2  ∥  𝑀 )  ∧  𝑘  ∈  ( 0 ... ( 𝑀  −  1 ) ) )  →  ¬  2  ∥  ( 𝑃 ↑ 𝑘 ) ) | 
						
							| 172 |  | nnm1nn0 | ⊢ ( 𝑀  ∈  ℕ  →  ( 𝑀  −  1 )  ∈  ℕ0 ) | 
						
							| 173 |  | hashfz0 | ⊢ ( ( 𝑀  −  1 )  ∈  ℕ0  →  ( ♯ ‘ ( 0 ... ( 𝑀  −  1 ) ) )  =  ( ( 𝑀  −  1 )  +  1 ) ) | 
						
							| 174 | 172 173 | syl | ⊢ ( 𝑀  ∈  ℕ  →  ( ♯ ‘ ( 0 ... ( 𝑀  −  1 ) ) )  =  ( ( 𝑀  −  1 )  +  1 ) ) | 
						
							| 175 |  | nncn | ⊢ ( 𝑀  ∈  ℕ  →  𝑀  ∈  ℂ ) | 
						
							| 176 |  | 1cnd | ⊢ ( 𝑀  ∈  ℕ  →  1  ∈  ℂ ) | 
						
							| 177 | 175 176 | npcand | ⊢ ( 𝑀  ∈  ℕ  →  ( ( 𝑀  −  1 )  +  1 )  =  𝑀 ) | 
						
							| 178 | 174 177 | eqtr2d | ⊢ ( 𝑀  ∈  ℕ  →  𝑀  =  ( ♯ ‘ ( 0 ... ( 𝑀  −  1 ) ) ) ) | 
						
							| 179 | 178 | 3ad2ant2 | ⊢ ( ( 𝑃  ∈  ( ℙ  ∖  { 2 } )  ∧  𝑀  ∈  ℕ  ∧  𝑁  ∈  ℕ )  →  𝑀  =  ( ♯ ‘ ( 0 ... ( 𝑀  −  1 ) ) ) ) | 
						
							| 180 | 179 | adantr | ⊢ ( ( ( 𝑃  ∈  ( ℙ  ∖  { 2 } )  ∧  𝑀  ∈  ℕ  ∧  𝑁  ∈  ℕ )  ∧  𝑗  ∈  ℕ )  →  𝑀  =  ( ♯ ‘ ( 0 ... ( 𝑀  −  1 ) ) ) ) | 
						
							| 181 | 180 | breq2d | ⊢ ( ( ( 𝑃  ∈  ( ℙ  ∖  { 2 } )  ∧  𝑀  ∈  ℕ  ∧  𝑁  ∈  ℕ )  ∧  𝑗  ∈  ℕ )  →  ( 2  ∥  𝑀  ↔  2  ∥  ( ♯ ‘ ( 0 ... ( 𝑀  −  1 ) ) ) ) ) | 
						
							| 182 | 181 | biimpa | ⊢ ( ( ( ( 𝑃  ∈  ( ℙ  ∖  { 2 } )  ∧  𝑀  ∈  ℕ  ∧  𝑁  ∈  ℕ )  ∧  𝑗  ∈  ℕ )  ∧  2  ∥  𝑀 )  →  2  ∥  ( ♯ ‘ ( 0 ... ( 𝑀  −  1 ) ) ) ) | 
						
							| 183 | 143 144 171 182 | evensumodd | ⊢ ( ( ( ( 𝑃  ∈  ( ℙ  ∖  { 2 } )  ∧  𝑀  ∈  ℕ  ∧  𝑁  ∈  ℕ )  ∧  𝑗  ∈  ℕ )  ∧  2  ∥  𝑀 )  →  2  ∥  Σ 𝑘  ∈  ( 0 ... ( 𝑀  −  1 ) ) ( 𝑃 ↑ 𝑘 ) ) | 
						
							| 184 | 183 | olcd | ⊢ ( ( ( ( 𝑃  ∈  ( ℙ  ∖  { 2 } )  ∧  𝑀  ∈  ℕ  ∧  𝑁  ∈  ℕ )  ∧  𝑗  ∈  ℕ )  ∧  2  ∥  𝑀 )  →  ( 2  ∥  ( ( 𝑃  −  1 )  /  2 )  ∨  2  ∥  Σ 𝑘  ∈  ( 0 ... ( 𝑀  −  1 ) ) ( 𝑃 ↑ 𝑘 ) ) ) | 
						
							| 185 | 152 | a1i | ⊢ ( ( 𝑃  ∈  ( ℙ  ∖  { 2 } )  ∧  𝑀  ∈  ℕ )  →  2  ∈  ℙ ) | 
						
							| 186 |  | oddn2prm | ⊢ ( 𝑃  ∈  ( ℙ  ∖  { 2 } )  →  ¬  2  ∥  𝑃 ) | 
						
							| 187 |  | oddm1d2 | ⊢ ( 𝑃  ∈  ℤ  →  ( ¬  2  ∥  𝑃  ↔  ( ( 𝑃  −  1 )  /  2 )  ∈  ℤ ) ) | 
						
							| 188 | 15 187 | syl | ⊢ ( 𝑃  ∈  ( ℙ  ∖  { 2 } )  →  ( ¬  2  ∥  𝑃  ↔  ( ( 𝑃  −  1 )  /  2 )  ∈  ℤ ) ) | 
						
							| 189 | 186 188 | mpbid | ⊢ ( 𝑃  ∈  ( ℙ  ∖  { 2 } )  →  ( ( 𝑃  −  1 )  /  2 )  ∈  ℤ ) | 
						
							| 190 | 189 | adantr | ⊢ ( ( 𝑃  ∈  ( ℙ  ∖  { 2 } )  ∧  𝑀  ∈  ℕ )  →  ( ( 𝑃  −  1 )  /  2 )  ∈  ℤ ) | 
						
							| 191 |  | fzfid | ⊢ ( ( 𝑃  ∈  ( ℙ  ∖  { 2 } )  ∧  𝑀  ∈  ℕ )  →  ( 0 ... ( 𝑀  −  1 ) )  ∈  Fin ) | 
						
							| 192 | 14 | ad2antrr | ⊢ ( ( ( 𝑃  ∈  ( ℙ  ∖  { 2 } )  ∧  𝑀  ∈  ℕ )  ∧  𝑘  ∈  ( 0 ... ( 𝑀  −  1 ) ) )  →  𝑃  ∈  ℕ0 ) | 
						
							| 193 | 109 | adantl | ⊢ ( ( ( 𝑃  ∈  ( ℙ  ∖  { 2 } )  ∧  𝑀  ∈  ℕ )  ∧  𝑘  ∈  ( 0 ... ( 𝑀  −  1 ) ) )  →  𝑘  ∈  ℕ0 ) | 
						
							| 194 | 192 193 | nn0expcld | ⊢ ( ( ( 𝑃  ∈  ( ℙ  ∖  { 2 } )  ∧  𝑀  ∈  ℕ )  ∧  𝑘  ∈  ( 0 ... ( 𝑀  −  1 ) ) )  →  ( 𝑃 ↑ 𝑘 )  ∈  ℕ0 ) | 
						
							| 195 | 194 | nn0zd | ⊢ ( ( ( 𝑃  ∈  ( ℙ  ∖  { 2 } )  ∧  𝑀  ∈  ℕ )  ∧  𝑘  ∈  ( 0 ... ( 𝑀  −  1 ) ) )  →  ( 𝑃 ↑ 𝑘 )  ∈  ℤ ) | 
						
							| 196 | 191 195 | fsumzcl | ⊢ ( ( 𝑃  ∈  ( ℙ  ∖  { 2 } )  ∧  𝑀  ∈  ℕ )  →  Σ 𝑘  ∈  ( 0 ... ( 𝑀  −  1 ) ) ( 𝑃 ↑ 𝑘 )  ∈  ℤ ) | 
						
							| 197 | 185 190 196 | 3jca | ⊢ ( ( 𝑃  ∈  ( ℙ  ∖  { 2 } )  ∧  𝑀  ∈  ℕ )  →  ( 2  ∈  ℙ  ∧  ( ( 𝑃  −  1 )  /  2 )  ∈  ℤ  ∧  Σ 𝑘  ∈  ( 0 ... ( 𝑀  −  1 ) ) ( 𝑃 ↑ 𝑘 )  ∈  ℤ ) ) | 
						
							| 198 | 197 | 3adant3 | ⊢ ( ( 𝑃  ∈  ( ℙ  ∖  { 2 } )  ∧  𝑀  ∈  ℕ  ∧  𝑁  ∈  ℕ )  →  ( 2  ∈  ℙ  ∧  ( ( 𝑃  −  1 )  /  2 )  ∈  ℤ  ∧  Σ 𝑘  ∈  ( 0 ... ( 𝑀  −  1 ) ) ( 𝑃 ↑ 𝑘 )  ∈  ℤ ) ) | 
						
							| 199 |  | euclemma | ⊢ ( ( 2  ∈  ℙ  ∧  ( ( 𝑃  −  1 )  /  2 )  ∈  ℤ  ∧  Σ 𝑘  ∈  ( 0 ... ( 𝑀  −  1 ) ) ( 𝑃 ↑ 𝑘 )  ∈  ℤ )  →  ( 2  ∥  ( ( ( 𝑃  −  1 )  /  2 )  ·  Σ 𝑘  ∈  ( 0 ... ( 𝑀  −  1 ) ) ( 𝑃 ↑ 𝑘 ) )  ↔  ( 2  ∥  ( ( 𝑃  −  1 )  /  2 )  ∨  2  ∥  Σ 𝑘  ∈  ( 0 ... ( 𝑀  −  1 ) ) ( 𝑃 ↑ 𝑘 ) ) ) ) | 
						
							| 200 | 198 199 | syl | ⊢ ( ( 𝑃  ∈  ( ℙ  ∖  { 2 } )  ∧  𝑀  ∈  ℕ  ∧  𝑁  ∈  ℕ )  →  ( 2  ∥  ( ( ( 𝑃  −  1 )  /  2 )  ·  Σ 𝑘  ∈  ( 0 ... ( 𝑀  −  1 ) ) ( 𝑃 ↑ 𝑘 ) )  ↔  ( 2  ∥  ( ( 𝑃  −  1 )  /  2 )  ∨  2  ∥  Σ 𝑘  ∈  ( 0 ... ( 𝑀  −  1 ) ) ( 𝑃 ↑ 𝑘 ) ) ) ) | 
						
							| 201 | 200 | ad2antrr | ⊢ ( ( ( ( 𝑃  ∈  ( ℙ  ∖  { 2 } )  ∧  𝑀  ∈  ℕ  ∧  𝑁  ∈  ℕ )  ∧  𝑗  ∈  ℕ )  ∧  2  ∥  𝑀 )  →  ( 2  ∥  ( ( ( 𝑃  −  1 )  /  2 )  ·  Σ 𝑘  ∈  ( 0 ... ( 𝑀  −  1 ) ) ( 𝑃 ↑ 𝑘 ) )  ↔  ( 2  ∥  ( ( 𝑃  −  1 )  /  2 )  ∨  2  ∥  Σ 𝑘  ∈  ( 0 ... ( 𝑀  −  1 ) ) ( 𝑃 ↑ 𝑘 ) ) ) ) | 
						
							| 202 | 184 201 | mpbird | ⊢ ( ( ( ( 𝑃  ∈  ( ℙ  ∖  { 2 } )  ∧  𝑀  ∈  ℕ  ∧  𝑁  ∈  ℕ )  ∧  𝑗  ∈  ℕ )  ∧  2  ∥  𝑀 )  →  2  ∥  ( ( ( 𝑃  −  1 )  /  2 )  ·  Σ 𝑘  ∈  ( 0 ... ( 𝑀  −  1 ) ) ( 𝑃 ↑ 𝑘 ) ) ) | 
						
							| 203 | 202 | pm2.24d | ⊢ ( ( ( ( 𝑃  ∈  ( ℙ  ∖  { 2 } )  ∧  𝑀  ∈  ℕ  ∧  𝑁  ∈  ℕ )  ∧  𝑗  ∈  ℕ )  ∧  2  ∥  𝑀 )  →  ( ¬  2  ∥  ( ( ( 𝑃  −  1 )  /  2 )  ·  Σ 𝑘  ∈  ( 0 ... ( 𝑀  −  1 ) ) ( 𝑃 ↑ 𝑘 ) )  →  𝑀  =  1 ) ) | 
						
							| 204 | 203 | adantr | ⊢ ( ( ( ( ( 𝑃  ∈  ( ℙ  ∖  { 2 } )  ∧  𝑀  ∈  ℕ  ∧  𝑁  ∈  ℕ )  ∧  𝑗  ∈  ℕ )  ∧  2  ∥  𝑀 )  ∧  ( ( ( 𝑃  −  1 )  /  2 )  ·  Σ 𝑘  ∈  ( 0 ... ( 𝑀  −  1 ) ) ( 𝑃 ↑ 𝑘 ) )  =  ( ( 2 ↑ ( 2  ·  𝑗 ) )  −  1 ) )  →  ( ¬  2  ∥  ( ( ( 𝑃  −  1 )  /  2 )  ·  Σ 𝑘  ∈  ( 0 ... ( 𝑀  −  1 ) ) ( 𝑃 ↑ 𝑘 ) )  →  𝑀  =  1 ) ) | 
						
							| 205 | 142 204 | sylbird | ⊢ ( ( ( ( ( 𝑃  ∈  ( ℙ  ∖  { 2 } )  ∧  𝑀  ∈  ℕ  ∧  𝑁  ∈  ℕ )  ∧  𝑗  ∈  ℕ )  ∧  2  ∥  𝑀 )  ∧  ( ( ( 𝑃  −  1 )  /  2 )  ·  Σ 𝑘  ∈  ( 0 ... ( 𝑀  −  1 ) ) ( 𝑃 ↑ 𝑘 ) )  =  ( ( 2 ↑ ( 2  ·  𝑗 ) )  −  1 ) )  →  ( ¬  2  ∥  ( ( 2 ↑ ( 2  ·  𝑗 ) )  −  1 )  →  𝑀  =  1 ) ) | 
						
							| 206 | 205 | ex | ⊢ ( ( ( ( 𝑃  ∈  ( ℙ  ∖  { 2 } )  ∧  𝑀  ∈  ℕ  ∧  𝑁  ∈  ℕ )  ∧  𝑗  ∈  ℕ )  ∧  2  ∥  𝑀 )  →  ( ( ( ( 𝑃  −  1 )  /  2 )  ·  Σ 𝑘  ∈  ( 0 ... ( 𝑀  −  1 ) ) ( 𝑃 ↑ 𝑘 ) )  =  ( ( 2 ↑ ( 2  ·  𝑗 ) )  −  1 )  →  ( ¬  2  ∥  ( ( 2 ↑ ( 2  ·  𝑗 ) )  −  1 )  →  𝑀  =  1 ) ) ) | 
						
							| 207 | 139 206 | mpid | ⊢ ( ( ( ( 𝑃  ∈  ( ℙ  ∖  { 2 } )  ∧  𝑀  ∈  ℕ  ∧  𝑁  ∈  ℕ )  ∧  𝑗  ∈  ℕ )  ∧  2  ∥  𝑀 )  →  ( ( ( ( 𝑃  −  1 )  /  2 )  ·  Σ 𝑘  ∈  ( 0 ... ( 𝑀  −  1 ) ) ( 𝑃 ↑ 𝑘 ) )  =  ( ( 2 ↑ ( 2  ·  𝑗 ) )  −  1 )  →  𝑀  =  1 ) ) | 
						
							| 208 | 126 207 | sylbid | ⊢ ( ( ( ( 𝑃  ∈  ( ℙ  ∖  { 2 } )  ∧  𝑀  ∈  ℕ  ∧  𝑁  ∈  ℕ )  ∧  𝑗  ∈  ℕ )  ∧  2  ∥  𝑀 )  →  ( ( ( ( 𝑃  −  1 )  ·  Σ 𝑘  ∈  ( 0 ... ( 𝑀  −  1 ) ) ( 𝑃 ↑ 𝑘 ) )  /  2 )  =  ( ( 2 ↑ ( 2  ·  𝑗 ) )  −  1 )  →  𝑀  =  1 ) ) | 
						
							| 209 | 123 208 | sylbird | ⊢ ( ( ( ( 𝑃  ∈  ( ℙ  ∖  { 2 } )  ∧  𝑀  ∈  ℕ  ∧  𝑁  ∈  ℕ )  ∧  𝑗  ∈  ℕ )  ∧  2  ∥  𝑀 )  →  ( ( ( 𝑃  −  1 )  ·  Σ 𝑘  ∈  ( 0 ... ( 𝑀  −  1 ) ) ( 𝑃 ↑ 𝑘 ) )  =  ( 2  ·  ( ( 2 ↑ ( 2  ·  𝑗 ) )  −  1 ) )  →  𝑀  =  1 ) ) | 
						
							| 210 | 103 209 | sylbid | ⊢ ( ( ( ( 𝑃  ∈  ( ℙ  ∖  { 2 } )  ∧  𝑀  ∈  ℕ  ∧  𝑁  ∈  ℕ )  ∧  𝑗  ∈  ℕ )  ∧  2  ∥  𝑀 )  →  ( ( ( 𝑃 ↑ 𝑀 )  −  1 )  =  ( 2  ·  ( ( 2 ↑ ( 2  ·  𝑗 ) )  −  1 ) )  →  𝑀  =  1 ) ) | 
						
							| 211 | 96 210 | sylbird | ⊢ ( ( ( ( 𝑃  ∈  ( ℙ  ∖  { 2 } )  ∧  𝑀  ∈  ℕ  ∧  𝑁  ∈  ℕ )  ∧  𝑗  ∈  ℕ )  ∧  2  ∥  𝑀 )  →  ( ( ( 2  ·  ( ( 2 ↑ ( 2  ·  𝑗 ) )  −  1 ) )  +  1 )  =  ( 𝑃 ↑ 𝑀 )  →  𝑀  =  1 ) ) | 
						
							| 212 | 211 | adantr | ⊢ ( ( ( ( ( 𝑃  ∈  ( ℙ  ∖  { 2 } )  ∧  𝑀  ∈  ℕ  ∧  𝑁  ∈  ℕ )  ∧  𝑗  ∈  ℕ )  ∧  2  ∥  𝑀 )  ∧  ( ( 2  ·  𝑗 )  +  1 )  =  𝑁 )  →  ( ( ( 2  ·  ( ( 2 ↑ ( 2  ·  𝑗 ) )  −  1 ) )  +  1 )  =  ( 𝑃 ↑ 𝑀 )  →  𝑀  =  1 ) ) | 
						
							| 213 | 84 212 | sylbid | ⊢ ( ( ( ( ( 𝑃  ∈  ( ℙ  ∖  { 2 } )  ∧  𝑀  ∈  ℕ  ∧  𝑁  ∈  ℕ )  ∧  𝑗  ∈  ℕ )  ∧  2  ∥  𝑀 )  ∧  ( ( 2  ·  𝑗 )  +  1 )  =  𝑁 )  →  ( ( ( 2 ↑ 𝑁 )  −  1 )  =  ( 𝑃 ↑ 𝑀 )  →  𝑀  =  1 ) ) | 
						
							| 214 | 213 | exp31 | ⊢ ( ( ( 𝑃  ∈  ( ℙ  ∖  { 2 } )  ∧  𝑀  ∈  ℕ  ∧  𝑁  ∈  ℕ )  ∧  𝑗  ∈  ℕ )  →  ( 2  ∥  𝑀  →  ( ( ( 2  ·  𝑗 )  +  1 )  =  𝑁  →  ( ( ( 2 ↑ 𝑁 )  −  1 )  =  ( 𝑃 ↑ 𝑀 )  →  𝑀  =  1 ) ) ) ) | 
						
							| 215 | 214 | com23 | ⊢ ( ( ( 𝑃  ∈  ( ℙ  ∖  { 2 } )  ∧  𝑀  ∈  ℕ  ∧  𝑁  ∈  ℕ )  ∧  𝑗  ∈  ℕ )  →  ( ( ( 2  ·  𝑗 )  +  1 )  =  𝑁  →  ( 2  ∥  𝑀  →  ( ( ( 2 ↑ 𝑁 )  −  1 )  =  ( 𝑃 ↑ 𝑀 )  →  𝑀  =  1 ) ) ) ) | 
						
							| 216 | 215 | rexlimdva | ⊢ ( ( 𝑃  ∈  ( ℙ  ∖  { 2 } )  ∧  𝑀  ∈  ℕ  ∧  𝑁  ∈  ℕ )  →  ( ∃ 𝑗  ∈  ℕ ( ( 2  ·  𝑗 )  +  1 )  =  𝑁  →  ( 2  ∥  𝑀  →  ( ( ( 2 ↑ 𝑁 )  −  1 )  =  ( 𝑃 ↑ 𝑀 )  →  𝑀  =  1 ) ) ) ) | 
						
							| 217 | 216 | com34 | ⊢ ( ( 𝑃  ∈  ( ℙ  ∖  { 2 } )  ∧  𝑀  ∈  ℕ  ∧  𝑁  ∈  ℕ )  →  ( ∃ 𝑗  ∈  ℕ ( ( 2  ·  𝑗 )  +  1 )  =  𝑁  →  ( ( ( 2 ↑ 𝑁 )  −  1 )  =  ( 𝑃 ↑ 𝑀 )  →  ( 2  ∥  𝑀  →  𝑀  =  1 ) ) ) ) | 
						
							| 218 | 217 | adantr | ⊢ ( ( ( 𝑃  ∈  ( ℙ  ∖  { 2 } )  ∧  𝑀  ∈  ℕ  ∧  𝑁  ∈  ℕ )  ∧  ¬  𝑁  =  1 )  →  ( ∃ 𝑗  ∈  ℕ ( ( 2  ·  𝑗 )  +  1 )  =  𝑁  →  ( ( ( 2 ↑ 𝑁 )  −  1 )  =  ( 𝑃 ↑ 𝑀 )  →  ( 2  ∥  𝑀  →  𝑀  =  1 ) ) ) ) | 
						
							| 219 | 45 218 | sylbid | ⊢ ( ( ( 𝑃  ∈  ( ℙ  ∖  { 2 } )  ∧  𝑀  ∈  ℕ  ∧  𝑁  ∈  ℕ )  ∧  ¬  𝑁  =  1 )  →  ( ¬  2  ∥  𝑁  →  ( ( ( 2 ↑ 𝑁 )  −  1 )  =  ( 𝑃 ↑ 𝑀 )  →  ( 2  ∥  𝑀  →  𝑀  =  1 ) ) ) ) | 
						
							| 220 | 219 | com24 | ⊢ ( ( ( 𝑃  ∈  ( ℙ  ∖  { 2 } )  ∧  𝑀  ∈  ℕ  ∧  𝑁  ∈  ℕ )  ∧  ¬  𝑁  =  1 )  →  ( 2  ∥  𝑀  →  ( ( ( 2 ↑ 𝑁 )  −  1 )  =  ( 𝑃 ↑ 𝑀 )  →  ( ¬  2  ∥  𝑁  →  𝑀  =  1 ) ) ) ) | 
						
							| 221 | 220 | ex | ⊢ ( ( 𝑃  ∈  ( ℙ  ∖  { 2 } )  ∧  𝑀  ∈  ℕ  ∧  𝑁  ∈  ℕ )  →  ( ¬  𝑁  =  1  →  ( 2  ∥  𝑀  →  ( ( ( 2 ↑ 𝑁 )  −  1 )  =  ( 𝑃 ↑ 𝑀 )  →  ( ¬  2  ∥  𝑁  →  𝑀  =  1 ) ) ) ) ) | 
						
							| 222 | 221 | com25 | ⊢ ( ( 𝑃  ∈  ( ℙ  ∖  { 2 } )  ∧  𝑀  ∈  ℕ  ∧  𝑁  ∈  ℕ )  →  ( ¬  2  ∥  𝑁  →  ( 2  ∥  𝑀  →  ( ( ( 2 ↑ 𝑁 )  −  1 )  =  ( 𝑃 ↑ 𝑀 )  →  ( ¬  𝑁  =  1  →  𝑀  =  1 ) ) ) ) ) | 
						
							| 223 | 222 | impd | ⊢ ( ( 𝑃  ∈  ( ℙ  ∖  { 2 } )  ∧  𝑀  ∈  ℕ  ∧  𝑁  ∈  ℕ )  →  ( ( ¬  2  ∥  𝑁  ∧  2  ∥  𝑀 )  →  ( ( ( 2 ↑ 𝑁 )  −  1 )  =  ( 𝑃 ↑ 𝑀 )  →  ( ¬  𝑁  =  1  →  𝑀  =  1 ) ) ) ) | 
						
							| 224 | 223 | 3imp | ⊢ ( ( ( 𝑃  ∈  ( ℙ  ∖  { 2 } )  ∧  𝑀  ∈  ℕ  ∧  𝑁  ∈  ℕ )  ∧  ( ¬  2  ∥  𝑁  ∧  2  ∥  𝑀 )  ∧  ( ( 2 ↑ 𝑁 )  −  1 )  =  ( 𝑃 ↑ 𝑀 ) )  →  ( ¬  𝑁  =  1  →  𝑀  =  1 ) ) | 
						
							| 225 | 38 224 | pm2.61d | ⊢ ( ( ( 𝑃  ∈  ( ℙ  ∖  { 2 } )  ∧  𝑀  ∈  ℕ  ∧  𝑁  ∈  ℕ )  ∧  ( ¬  2  ∥  𝑁  ∧  2  ∥  𝑀 )  ∧  ( ( 2 ↑ 𝑁 )  −  1 )  =  ( 𝑃 ↑ 𝑀 ) )  →  𝑀  =  1 ) |