| Step | Hyp | Ref | Expression | 
						
							| 1 |  | eleq1 | ⊢ ( ( ( 2  ·  𝑛 )  +  1 )  =  𝑁  →  ( ( ( 2  ·  𝑛 )  +  1 )  ∈  ( ℤ≥ ‘ 2 )  ↔  𝑁  ∈  ( ℤ≥ ‘ 2 ) ) ) | 
						
							| 2 |  | nn0z | ⊢ ( 𝑛  ∈  ℕ0  →  𝑛  ∈  ℤ ) | 
						
							| 3 | 2 | adantl | ⊢ ( ( ( ( 2  ·  𝑛 )  +  1 )  ∈  ( ℤ≥ ‘ 2 )  ∧  𝑛  ∈  ℕ0 )  →  𝑛  ∈  ℤ ) | 
						
							| 4 |  | eluz2 | ⊢ ( ( ( 2  ·  𝑛 )  +  1 )  ∈  ( ℤ≥ ‘ 2 )  ↔  ( 2  ∈  ℤ  ∧  ( ( 2  ·  𝑛 )  +  1 )  ∈  ℤ  ∧  2  ≤  ( ( 2  ·  𝑛 )  +  1 ) ) ) | 
						
							| 5 |  | 2re | ⊢ 2  ∈  ℝ | 
						
							| 6 | 5 | a1i | ⊢ ( 𝑛  ∈  ℕ0  →  2  ∈  ℝ ) | 
						
							| 7 |  | 1red | ⊢ ( 𝑛  ∈  ℕ0  →  1  ∈  ℝ ) | 
						
							| 8 |  | 2nn0 | ⊢ 2  ∈  ℕ0 | 
						
							| 9 | 8 | a1i | ⊢ ( 𝑛  ∈  ℕ0  →  2  ∈  ℕ0 ) | 
						
							| 10 |  | id | ⊢ ( 𝑛  ∈  ℕ0  →  𝑛  ∈  ℕ0 ) | 
						
							| 11 | 9 10 | nn0mulcld | ⊢ ( 𝑛  ∈  ℕ0  →  ( 2  ·  𝑛 )  ∈  ℕ0 ) | 
						
							| 12 | 11 | nn0red | ⊢ ( 𝑛  ∈  ℕ0  →  ( 2  ·  𝑛 )  ∈  ℝ ) | 
						
							| 13 | 6 7 12 | lesubaddd | ⊢ ( 𝑛  ∈  ℕ0  →  ( ( 2  −  1 )  ≤  ( 2  ·  𝑛 )  ↔  2  ≤  ( ( 2  ·  𝑛 )  +  1 ) ) ) | 
						
							| 14 |  | 2m1e1 | ⊢ ( 2  −  1 )  =  1 | 
						
							| 15 | 14 | breq1i | ⊢ ( ( 2  −  1 )  ≤  ( 2  ·  𝑛 )  ↔  1  ≤  ( 2  ·  𝑛 ) ) | 
						
							| 16 |  | nn0re | ⊢ ( 𝑛  ∈  ℕ0  →  𝑛  ∈  ℝ ) | 
						
							| 17 |  | 2rp | ⊢ 2  ∈  ℝ+ | 
						
							| 18 | 17 | a1i | ⊢ ( 𝑛  ∈  ℕ0  →  2  ∈  ℝ+ ) | 
						
							| 19 | 7 16 18 | ledivmuld | ⊢ ( 𝑛  ∈  ℕ0  →  ( ( 1  /  2 )  ≤  𝑛  ↔  1  ≤  ( 2  ·  𝑛 ) ) ) | 
						
							| 20 |  | halfgt0 | ⊢ 0  <  ( 1  /  2 ) | 
						
							| 21 |  | 0red | ⊢ ( 𝑛  ∈  ℕ0  →  0  ∈  ℝ ) | 
						
							| 22 |  | halfre | ⊢ ( 1  /  2 )  ∈  ℝ | 
						
							| 23 | 22 | a1i | ⊢ ( 𝑛  ∈  ℕ0  →  ( 1  /  2 )  ∈  ℝ ) | 
						
							| 24 |  | ltletr | ⊢ ( ( 0  ∈  ℝ  ∧  ( 1  /  2 )  ∈  ℝ  ∧  𝑛  ∈  ℝ )  →  ( ( 0  <  ( 1  /  2 )  ∧  ( 1  /  2 )  ≤  𝑛 )  →  0  <  𝑛 ) ) | 
						
							| 25 | 21 23 16 24 | syl3anc | ⊢ ( 𝑛  ∈  ℕ0  →  ( ( 0  <  ( 1  /  2 )  ∧  ( 1  /  2 )  ≤  𝑛 )  →  0  <  𝑛 ) ) | 
						
							| 26 | 20 25 | mpani | ⊢ ( 𝑛  ∈  ℕ0  →  ( ( 1  /  2 )  ≤  𝑛  →  0  <  𝑛 ) ) | 
						
							| 27 | 19 26 | sylbird | ⊢ ( 𝑛  ∈  ℕ0  →  ( 1  ≤  ( 2  ·  𝑛 )  →  0  <  𝑛 ) ) | 
						
							| 28 | 15 27 | biimtrid | ⊢ ( 𝑛  ∈  ℕ0  →  ( ( 2  −  1 )  ≤  ( 2  ·  𝑛 )  →  0  <  𝑛 ) ) | 
						
							| 29 | 13 28 | sylbird | ⊢ ( 𝑛  ∈  ℕ0  →  ( 2  ≤  ( ( 2  ·  𝑛 )  +  1 )  →  0  <  𝑛 ) ) | 
						
							| 30 | 29 | com12 | ⊢ ( 2  ≤  ( ( 2  ·  𝑛 )  +  1 )  →  ( 𝑛  ∈  ℕ0  →  0  <  𝑛 ) ) | 
						
							| 31 | 30 | 3ad2ant3 | ⊢ ( ( 2  ∈  ℤ  ∧  ( ( 2  ·  𝑛 )  +  1 )  ∈  ℤ  ∧  2  ≤  ( ( 2  ·  𝑛 )  +  1 ) )  →  ( 𝑛  ∈  ℕ0  →  0  <  𝑛 ) ) | 
						
							| 32 | 4 31 | sylbi | ⊢ ( ( ( 2  ·  𝑛 )  +  1 )  ∈  ( ℤ≥ ‘ 2 )  →  ( 𝑛  ∈  ℕ0  →  0  <  𝑛 ) ) | 
						
							| 33 | 32 | imp | ⊢ ( ( ( ( 2  ·  𝑛 )  +  1 )  ∈  ( ℤ≥ ‘ 2 )  ∧  𝑛  ∈  ℕ0 )  →  0  <  𝑛 ) | 
						
							| 34 |  | elnnz | ⊢ ( 𝑛  ∈  ℕ  ↔  ( 𝑛  ∈  ℤ  ∧  0  <  𝑛 ) ) | 
						
							| 35 | 3 33 34 | sylanbrc | ⊢ ( ( ( ( 2  ·  𝑛 )  +  1 )  ∈  ( ℤ≥ ‘ 2 )  ∧  𝑛  ∈  ℕ0 )  →  𝑛  ∈  ℕ ) | 
						
							| 36 | 35 | ex | ⊢ ( ( ( 2  ·  𝑛 )  +  1 )  ∈  ( ℤ≥ ‘ 2 )  →  ( 𝑛  ∈  ℕ0  →  𝑛  ∈  ℕ ) ) | 
						
							| 37 | 1 36 | biimtrrdi | ⊢ ( ( ( 2  ·  𝑛 )  +  1 )  =  𝑁  →  ( 𝑁  ∈  ( ℤ≥ ‘ 2 )  →  ( 𝑛  ∈  ℕ0  →  𝑛  ∈  ℕ ) ) ) | 
						
							| 38 | 37 | com13 | ⊢ ( 𝑛  ∈  ℕ0  →  ( 𝑁  ∈  ( ℤ≥ ‘ 2 )  →  ( ( ( 2  ·  𝑛 )  +  1 )  =  𝑁  →  𝑛  ∈  ℕ ) ) ) | 
						
							| 39 | 38 | impcom | ⊢ ( ( 𝑁  ∈  ( ℤ≥ ‘ 2 )  ∧  𝑛  ∈  ℕ0 )  →  ( ( ( 2  ·  𝑛 )  +  1 )  =  𝑁  →  𝑛  ∈  ℕ ) ) | 
						
							| 40 | 39 | pm4.71rd | ⊢ ( ( 𝑁  ∈  ( ℤ≥ ‘ 2 )  ∧  𝑛  ∈  ℕ0 )  →  ( ( ( 2  ·  𝑛 )  +  1 )  =  𝑁  ↔  ( 𝑛  ∈  ℕ  ∧  ( ( 2  ·  𝑛 )  +  1 )  =  𝑁 ) ) ) | 
						
							| 41 | 40 | bicomd | ⊢ ( ( 𝑁  ∈  ( ℤ≥ ‘ 2 )  ∧  𝑛  ∈  ℕ0 )  →  ( ( 𝑛  ∈  ℕ  ∧  ( ( 2  ·  𝑛 )  +  1 )  =  𝑁 )  ↔  ( ( 2  ·  𝑛 )  +  1 )  =  𝑁 ) ) | 
						
							| 42 | 41 | rexbidva | ⊢ ( 𝑁  ∈  ( ℤ≥ ‘ 2 )  →  ( ∃ 𝑛  ∈  ℕ0 ( 𝑛  ∈  ℕ  ∧  ( ( 2  ·  𝑛 )  +  1 )  =  𝑁 )  ↔  ∃ 𝑛  ∈  ℕ0 ( ( 2  ·  𝑛 )  +  1 )  =  𝑁 ) ) | 
						
							| 43 |  | nnssnn0 | ⊢ ℕ  ⊆  ℕ0 | 
						
							| 44 |  | rexss | ⊢ ( ℕ  ⊆  ℕ0  →  ( ∃ 𝑛  ∈  ℕ ( ( 2  ·  𝑛 )  +  1 )  =  𝑁  ↔  ∃ 𝑛  ∈  ℕ0 ( 𝑛  ∈  ℕ  ∧  ( ( 2  ·  𝑛 )  +  1 )  =  𝑁 ) ) ) | 
						
							| 45 | 43 44 | mp1i | ⊢ ( 𝑁  ∈  ( ℤ≥ ‘ 2 )  →  ( ∃ 𝑛  ∈  ℕ ( ( 2  ·  𝑛 )  +  1 )  =  𝑁  ↔  ∃ 𝑛  ∈  ℕ0 ( 𝑛  ∈  ℕ  ∧  ( ( 2  ·  𝑛 )  +  1 )  =  𝑁 ) ) ) | 
						
							| 46 |  | eluzge2nn0 | ⊢ ( 𝑁  ∈  ( ℤ≥ ‘ 2 )  →  𝑁  ∈  ℕ0 ) | 
						
							| 47 |  | oddnn02np1 | ⊢ ( 𝑁  ∈  ℕ0  →  ( ¬  2  ∥  𝑁  ↔  ∃ 𝑛  ∈  ℕ0 ( ( 2  ·  𝑛 )  +  1 )  =  𝑁 ) ) | 
						
							| 48 | 46 47 | syl | ⊢ ( 𝑁  ∈  ( ℤ≥ ‘ 2 )  →  ( ¬  2  ∥  𝑁  ↔  ∃ 𝑛  ∈  ℕ0 ( ( 2  ·  𝑛 )  +  1 )  =  𝑁 ) ) | 
						
							| 49 | 42 45 48 | 3bitr4rd | ⊢ ( 𝑁  ∈  ( ℤ≥ ‘ 2 )  →  ( ¬  2  ∥  𝑁  ↔  ∃ 𝑛  ∈  ℕ ( ( 2  ·  𝑛 )  +  1 )  =  𝑁 ) ) |