| Step | Hyp | Ref | Expression | 
						
							| 1 |  | eleq1 | ⊢ ( ( ( 2  ·  𝑛 )  +  1 )  =  𝑁  →  ( ( ( 2  ·  𝑛 )  +  1 )  ∈  ℕ0  ↔  𝑁  ∈  ℕ0 ) ) | 
						
							| 2 |  | elnn0z | ⊢ ( ( ( 2  ·  𝑛 )  +  1 )  ∈  ℕ0  ↔  ( ( ( 2  ·  𝑛 )  +  1 )  ∈  ℤ  ∧  0  ≤  ( ( 2  ·  𝑛 )  +  1 ) ) ) | 
						
							| 3 |  | 2tnp1ge0ge0 | ⊢ ( 𝑛  ∈  ℤ  →  ( 0  ≤  ( ( 2  ·  𝑛 )  +  1 )  ↔  0  ≤  𝑛 ) ) | 
						
							| 4 | 3 | biimpd | ⊢ ( 𝑛  ∈  ℤ  →  ( 0  ≤  ( ( 2  ·  𝑛 )  +  1 )  →  0  ≤  𝑛 ) ) | 
						
							| 5 | 4 | imdistani | ⊢ ( ( 𝑛  ∈  ℤ  ∧  0  ≤  ( ( 2  ·  𝑛 )  +  1 ) )  →  ( 𝑛  ∈  ℤ  ∧  0  ≤  𝑛 ) ) | 
						
							| 6 | 5 | expcom | ⊢ ( 0  ≤  ( ( 2  ·  𝑛 )  +  1 )  →  ( 𝑛  ∈  ℤ  →  ( 𝑛  ∈  ℤ  ∧  0  ≤  𝑛 ) ) ) | 
						
							| 7 |  | elnn0z | ⊢ ( 𝑛  ∈  ℕ0  ↔  ( 𝑛  ∈  ℤ  ∧  0  ≤  𝑛 ) ) | 
						
							| 8 | 6 7 | imbitrrdi | ⊢ ( 0  ≤  ( ( 2  ·  𝑛 )  +  1 )  →  ( 𝑛  ∈  ℤ  →  𝑛  ∈  ℕ0 ) ) | 
						
							| 9 | 2 8 | simplbiim | ⊢ ( ( ( 2  ·  𝑛 )  +  1 )  ∈  ℕ0  →  ( 𝑛  ∈  ℤ  →  𝑛  ∈  ℕ0 ) ) | 
						
							| 10 | 1 9 | biimtrrdi | ⊢ ( ( ( 2  ·  𝑛 )  +  1 )  =  𝑁  →  ( 𝑁  ∈  ℕ0  →  ( 𝑛  ∈  ℤ  →  𝑛  ∈  ℕ0 ) ) ) | 
						
							| 11 | 10 | com13 | ⊢ ( 𝑛  ∈  ℤ  →  ( 𝑁  ∈  ℕ0  →  ( ( ( 2  ·  𝑛 )  +  1 )  =  𝑁  →  𝑛  ∈  ℕ0 ) ) ) | 
						
							| 12 | 11 | impcom | ⊢ ( ( 𝑁  ∈  ℕ0  ∧  𝑛  ∈  ℤ )  →  ( ( ( 2  ·  𝑛 )  +  1 )  =  𝑁  →  𝑛  ∈  ℕ0 ) ) | 
						
							| 13 | 12 | pm4.71rd | ⊢ ( ( 𝑁  ∈  ℕ0  ∧  𝑛  ∈  ℤ )  →  ( ( ( 2  ·  𝑛 )  +  1 )  =  𝑁  ↔  ( 𝑛  ∈  ℕ0  ∧  ( ( 2  ·  𝑛 )  +  1 )  =  𝑁 ) ) ) | 
						
							| 14 | 13 | bicomd | ⊢ ( ( 𝑁  ∈  ℕ0  ∧  𝑛  ∈  ℤ )  →  ( ( 𝑛  ∈  ℕ0  ∧  ( ( 2  ·  𝑛 )  +  1 )  =  𝑁 )  ↔  ( ( 2  ·  𝑛 )  +  1 )  =  𝑁 ) ) | 
						
							| 15 | 14 | rexbidva | ⊢ ( 𝑁  ∈  ℕ0  →  ( ∃ 𝑛  ∈  ℤ ( 𝑛  ∈  ℕ0  ∧  ( ( 2  ·  𝑛 )  +  1 )  =  𝑁 )  ↔  ∃ 𝑛  ∈  ℤ ( ( 2  ·  𝑛 )  +  1 )  =  𝑁 ) ) | 
						
							| 16 |  | nn0ssz | ⊢ ℕ0  ⊆  ℤ | 
						
							| 17 |  | rexss | ⊢ ( ℕ0  ⊆  ℤ  →  ( ∃ 𝑛  ∈  ℕ0 ( ( 2  ·  𝑛 )  +  1 )  =  𝑁  ↔  ∃ 𝑛  ∈  ℤ ( 𝑛  ∈  ℕ0  ∧  ( ( 2  ·  𝑛 )  +  1 )  =  𝑁 ) ) ) | 
						
							| 18 | 16 17 | mp1i | ⊢ ( 𝑁  ∈  ℕ0  →  ( ∃ 𝑛  ∈  ℕ0 ( ( 2  ·  𝑛 )  +  1 )  =  𝑁  ↔  ∃ 𝑛  ∈  ℤ ( 𝑛  ∈  ℕ0  ∧  ( ( 2  ·  𝑛 )  +  1 )  =  𝑁 ) ) ) | 
						
							| 19 |  | nn0z | ⊢ ( 𝑁  ∈  ℕ0  →  𝑁  ∈  ℤ ) | 
						
							| 20 |  | odd2np1 | ⊢ ( 𝑁  ∈  ℤ  →  ( ¬  2  ∥  𝑁  ↔  ∃ 𝑛  ∈  ℤ ( ( 2  ·  𝑛 )  +  1 )  =  𝑁 ) ) | 
						
							| 21 | 19 20 | syl | ⊢ ( 𝑁  ∈  ℕ0  →  ( ¬  2  ∥  𝑁  ↔  ∃ 𝑛  ∈  ℤ ( ( 2  ·  𝑛 )  +  1 )  =  𝑁 ) ) | 
						
							| 22 | 15 18 21 | 3bitr4rd | ⊢ ( 𝑁  ∈  ℕ0  →  ( ¬  2  ∥  𝑁  ↔  ∃ 𝑛  ∈  ℕ0 ( ( 2  ·  𝑛 )  +  1 )  =  𝑁 ) ) |