Description: An integer greater than one is odd iff it is one plus twice a positive integer. (Contributed by AV, 16-Aug-2021) (Proof shortened by AV, 9-Jul-2022)
Ref | Expression | ||
---|---|---|---|
Assertion | oddge22np1 | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eleq1 | |
|
2 | nn0z | |
|
3 | 2 | adantl | |
4 | eluz2 | |
|
5 | 2re | |
|
6 | 5 | a1i | |
7 | 1red | |
|
8 | 2nn0 | |
|
9 | 8 | a1i | |
10 | id | |
|
11 | 9 10 | nn0mulcld | |
12 | 11 | nn0red | |
13 | 6 7 12 | lesubaddd | |
14 | 2m1e1 | |
|
15 | 14 | breq1i | |
16 | nn0re | |
|
17 | 2rp | |
|
18 | 17 | a1i | |
19 | 7 16 18 | ledivmuld | |
20 | halfgt0 | |
|
21 | 0red | |
|
22 | halfre | |
|
23 | 22 | a1i | |
24 | ltletr | |
|
25 | 21 23 16 24 | syl3anc | |
26 | 20 25 | mpani | |
27 | 19 26 | sylbird | |
28 | 15 27 | biimtrid | |
29 | 13 28 | sylbird | |
30 | 29 | com12 | |
31 | 30 | 3ad2ant3 | |
32 | 4 31 | sylbi | |
33 | 32 | imp | |
34 | elnnz | |
|
35 | 3 33 34 | sylanbrc | |
36 | 35 | ex | |
37 | 1 36 | syl6bir | |
38 | 37 | com13 | |
39 | 38 | impcom | |
40 | 39 | pm4.71rd | |
41 | 40 | bicomd | |
42 | 41 | rexbidva | |
43 | nnssnn0 | |
|
44 | rexss | |
|
45 | 43 44 | mp1i | |
46 | eluzge2nn0 | |
|
47 | oddnn02np1 | |
|
48 | 46 47 | syl | |
49 | 42 45 48 | 3bitr4rd | |