| Step | Hyp | Ref | Expression | 
						
							| 1 |  | eleq1 |  |-  ( ( ( 2 x. n ) + 1 ) = N -> ( ( ( 2 x. n ) + 1 ) e. ( ZZ>= ` 2 ) <-> N e. ( ZZ>= ` 2 ) ) ) | 
						
							| 2 |  | nn0z |  |-  ( n e. NN0 -> n e. ZZ ) | 
						
							| 3 | 2 | adantl |  |-  ( ( ( ( 2 x. n ) + 1 ) e. ( ZZ>= ` 2 ) /\ n e. NN0 ) -> n e. ZZ ) | 
						
							| 4 |  | eluz2 |  |-  ( ( ( 2 x. n ) + 1 ) e. ( ZZ>= ` 2 ) <-> ( 2 e. ZZ /\ ( ( 2 x. n ) + 1 ) e. ZZ /\ 2 <_ ( ( 2 x. n ) + 1 ) ) ) | 
						
							| 5 |  | 2re |  |-  2 e. RR | 
						
							| 6 | 5 | a1i |  |-  ( n e. NN0 -> 2 e. RR ) | 
						
							| 7 |  | 1red |  |-  ( n e. NN0 -> 1 e. RR ) | 
						
							| 8 |  | 2nn0 |  |-  2 e. NN0 | 
						
							| 9 | 8 | a1i |  |-  ( n e. NN0 -> 2 e. NN0 ) | 
						
							| 10 |  | id |  |-  ( n e. NN0 -> n e. NN0 ) | 
						
							| 11 | 9 10 | nn0mulcld |  |-  ( n e. NN0 -> ( 2 x. n ) e. NN0 ) | 
						
							| 12 | 11 | nn0red |  |-  ( n e. NN0 -> ( 2 x. n ) e. RR ) | 
						
							| 13 | 6 7 12 | lesubaddd |  |-  ( n e. NN0 -> ( ( 2 - 1 ) <_ ( 2 x. n ) <-> 2 <_ ( ( 2 x. n ) + 1 ) ) ) | 
						
							| 14 |  | 2m1e1 |  |-  ( 2 - 1 ) = 1 | 
						
							| 15 | 14 | breq1i |  |-  ( ( 2 - 1 ) <_ ( 2 x. n ) <-> 1 <_ ( 2 x. n ) ) | 
						
							| 16 |  | nn0re |  |-  ( n e. NN0 -> n e. RR ) | 
						
							| 17 |  | 2rp |  |-  2 e. RR+ | 
						
							| 18 | 17 | a1i |  |-  ( n e. NN0 -> 2 e. RR+ ) | 
						
							| 19 | 7 16 18 | ledivmuld |  |-  ( n e. NN0 -> ( ( 1 / 2 ) <_ n <-> 1 <_ ( 2 x. n ) ) ) | 
						
							| 20 |  | halfgt0 |  |-  0 < ( 1 / 2 ) | 
						
							| 21 |  | 0red |  |-  ( n e. NN0 -> 0 e. RR ) | 
						
							| 22 |  | halfre |  |-  ( 1 / 2 ) e. RR | 
						
							| 23 | 22 | a1i |  |-  ( n e. NN0 -> ( 1 / 2 ) e. RR ) | 
						
							| 24 |  | ltletr |  |-  ( ( 0 e. RR /\ ( 1 / 2 ) e. RR /\ n e. RR ) -> ( ( 0 < ( 1 / 2 ) /\ ( 1 / 2 ) <_ n ) -> 0 < n ) ) | 
						
							| 25 | 21 23 16 24 | syl3anc |  |-  ( n e. NN0 -> ( ( 0 < ( 1 / 2 ) /\ ( 1 / 2 ) <_ n ) -> 0 < n ) ) | 
						
							| 26 | 20 25 | mpani |  |-  ( n e. NN0 -> ( ( 1 / 2 ) <_ n -> 0 < n ) ) | 
						
							| 27 | 19 26 | sylbird |  |-  ( n e. NN0 -> ( 1 <_ ( 2 x. n ) -> 0 < n ) ) | 
						
							| 28 | 15 27 | biimtrid |  |-  ( n e. NN0 -> ( ( 2 - 1 ) <_ ( 2 x. n ) -> 0 < n ) ) | 
						
							| 29 | 13 28 | sylbird |  |-  ( n e. NN0 -> ( 2 <_ ( ( 2 x. n ) + 1 ) -> 0 < n ) ) | 
						
							| 30 | 29 | com12 |  |-  ( 2 <_ ( ( 2 x. n ) + 1 ) -> ( n e. NN0 -> 0 < n ) ) | 
						
							| 31 | 30 | 3ad2ant3 |  |-  ( ( 2 e. ZZ /\ ( ( 2 x. n ) + 1 ) e. ZZ /\ 2 <_ ( ( 2 x. n ) + 1 ) ) -> ( n e. NN0 -> 0 < n ) ) | 
						
							| 32 | 4 31 | sylbi |  |-  ( ( ( 2 x. n ) + 1 ) e. ( ZZ>= ` 2 ) -> ( n e. NN0 -> 0 < n ) ) | 
						
							| 33 | 32 | imp |  |-  ( ( ( ( 2 x. n ) + 1 ) e. ( ZZ>= ` 2 ) /\ n e. NN0 ) -> 0 < n ) | 
						
							| 34 |  | elnnz |  |-  ( n e. NN <-> ( n e. ZZ /\ 0 < n ) ) | 
						
							| 35 | 3 33 34 | sylanbrc |  |-  ( ( ( ( 2 x. n ) + 1 ) e. ( ZZ>= ` 2 ) /\ n e. NN0 ) -> n e. NN ) | 
						
							| 36 | 35 | ex |  |-  ( ( ( 2 x. n ) + 1 ) e. ( ZZ>= ` 2 ) -> ( n e. NN0 -> n e. NN ) ) | 
						
							| 37 | 1 36 | biimtrrdi |  |-  ( ( ( 2 x. n ) + 1 ) = N -> ( N e. ( ZZ>= ` 2 ) -> ( n e. NN0 -> n e. NN ) ) ) | 
						
							| 38 | 37 | com13 |  |-  ( n e. NN0 -> ( N e. ( ZZ>= ` 2 ) -> ( ( ( 2 x. n ) + 1 ) = N -> n e. NN ) ) ) | 
						
							| 39 | 38 | impcom |  |-  ( ( N e. ( ZZ>= ` 2 ) /\ n e. NN0 ) -> ( ( ( 2 x. n ) + 1 ) = N -> n e. NN ) ) | 
						
							| 40 | 39 | pm4.71rd |  |-  ( ( N e. ( ZZ>= ` 2 ) /\ n e. NN0 ) -> ( ( ( 2 x. n ) + 1 ) = N <-> ( n e. NN /\ ( ( 2 x. n ) + 1 ) = N ) ) ) | 
						
							| 41 | 40 | bicomd |  |-  ( ( N e. ( ZZ>= ` 2 ) /\ n e. NN0 ) -> ( ( n e. NN /\ ( ( 2 x. n ) + 1 ) = N ) <-> ( ( 2 x. n ) + 1 ) = N ) ) | 
						
							| 42 | 41 | rexbidva |  |-  ( N e. ( ZZ>= ` 2 ) -> ( E. n e. NN0 ( n e. NN /\ ( ( 2 x. n ) + 1 ) = N ) <-> E. n e. NN0 ( ( 2 x. n ) + 1 ) = N ) ) | 
						
							| 43 |  | nnssnn0 |  |-  NN C_ NN0 | 
						
							| 44 |  | rexss |  |-  ( NN C_ NN0 -> ( E. n e. NN ( ( 2 x. n ) + 1 ) = N <-> E. n e. NN0 ( n e. NN /\ ( ( 2 x. n ) + 1 ) = N ) ) ) | 
						
							| 45 | 43 44 | mp1i |  |-  ( N e. ( ZZ>= ` 2 ) -> ( E. n e. NN ( ( 2 x. n ) + 1 ) = N <-> E. n e. NN0 ( n e. NN /\ ( ( 2 x. n ) + 1 ) = N ) ) ) | 
						
							| 46 |  | eluzge2nn0 |  |-  ( N e. ( ZZ>= ` 2 ) -> N e. NN0 ) | 
						
							| 47 |  | oddnn02np1 |  |-  ( N e. NN0 -> ( -. 2 || N <-> E. n e. NN0 ( ( 2 x. n ) + 1 ) = N ) ) | 
						
							| 48 | 46 47 | syl |  |-  ( N e. ( ZZ>= ` 2 ) -> ( -. 2 || N <-> E. n e. NN0 ( ( 2 x. n ) + 1 ) = N ) ) | 
						
							| 49 | 42 45 48 | 3bitr4rd |  |-  ( N e. ( ZZ>= ` 2 ) -> ( -. 2 || N <-> E. n e. NN ( ( 2 x. n ) + 1 ) = N ) ) |