| Step |
Hyp |
Ref |
Expression |
| 1 |
|
eleq1 |
|- ( ( 2 x. n ) = N -> ( ( 2 x. n ) e. NN0 <-> N e. NN0 ) ) |
| 2 |
|
simpr |
|- ( ( ( 2 x. n ) e. NN0 /\ n e. ZZ ) -> n e. ZZ ) |
| 3 |
|
2rp |
|- 2 e. RR+ |
| 4 |
3
|
a1i |
|- ( ( ( 2 x. n ) e. NN0 /\ n e. ZZ ) -> 2 e. RR+ ) |
| 5 |
|
zre |
|- ( n e. ZZ -> n e. RR ) |
| 6 |
5
|
adantl |
|- ( ( ( 2 x. n ) e. NN0 /\ n e. ZZ ) -> n e. RR ) |
| 7 |
|
nn0ge0 |
|- ( ( 2 x. n ) e. NN0 -> 0 <_ ( 2 x. n ) ) |
| 8 |
7
|
adantr |
|- ( ( ( 2 x. n ) e. NN0 /\ n e. ZZ ) -> 0 <_ ( 2 x. n ) ) |
| 9 |
4 6 8
|
prodge0rd |
|- ( ( ( 2 x. n ) e. NN0 /\ n e. ZZ ) -> 0 <_ n ) |
| 10 |
|
elnn0z |
|- ( n e. NN0 <-> ( n e. ZZ /\ 0 <_ n ) ) |
| 11 |
2 9 10
|
sylanbrc |
|- ( ( ( 2 x. n ) e. NN0 /\ n e. ZZ ) -> n e. NN0 ) |
| 12 |
11
|
ex |
|- ( ( 2 x. n ) e. NN0 -> ( n e. ZZ -> n e. NN0 ) ) |
| 13 |
1 12
|
biimtrrdi |
|- ( ( 2 x. n ) = N -> ( N e. NN0 -> ( n e. ZZ -> n e. NN0 ) ) ) |
| 14 |
13
|
com13 |
|- ( n e. ZZ -> ( N e. NN0 -> ( ( 2 x. n ) = N -> n e. NN0 ) ) ) |
| 15 |
14
|
impcom |
|- ( ( N e. NN0 /\ n e. ZZ ) -> ( ( 2 x. n ) = N -> n e. NN0 ) ) |
| 16 |
15
|
pm4.71rd |
|- ( ( N e. NN0 /\ n e. ZZ ) -> ( ( 2 x. n ) = N <-> ( n e. NN0 /\ ( 2 x. n ) = N ) ) ) |
| 17 |
16
|
bicomd |
|- ( ( N e. NN0 /\ n e. ZZ ) -> ( ( n e. NN0 /\ ( 2 x. n ) = N ) <-> ( 2 x. n ) = N ) ) |
| 18 |
17
|
rexbidva |
|- ( N e. NN0 -> ( E. n e. ZZ ( n e. NN0 /\ ( 2 x. n ) = N ) <-> E. n e. ZZ ( 2 x. n ) = N ) ) |
| 19 |
|
nn0ssz |
|- NN0 C_ ZZ |
| 20 |
|
rexss |
|- ( NN0 C_ ZZ -> ( E. n e. NN0 ( 2 x. n ) = N <-> E. n e. ZZ ( n e. NN0 /\ ( 2 x. n ) = N ) ) ) |
| 21 |
19 20
|
mp1i |
|- ( N e. NN0 -> ( E. n e. NN0 ( 2 x. n ) = N <-> E. n e. ZZ ( n e. NN0 /\ ( 2 x. n ) = N ) ) ) |
| 22 |
|
even2n |
|- ( 2 || N <-> E. n e. ZZ ( 2 x. n ) = N ) |
| 23 |
22
|
a1i |
|- ( N e. NN0 -> ( 2 || N <-> E. n e. ZZ ( 2 x. n ) = N ) ) |
| 24 |
18 21 23
|
3bitr4rd |
|- ( N e. NN0 -> ( 2 || N <-> E. n e. NN0 ( 2 x. n ) = N ) ) |