Step |
Hyp |
Ref |
Expression |
1 |
|
2re |
⊢ 2 ∈ ℝ |
2 |
1
|
a1i |
⊢ ( 𝐴 ∈ ( ℤ≥ ‘ 2 ) → 2 ∈ ℝ ) |
3 |
|
eluzelre |
⊢ ( 𝐴 ∈ ( ℤ≥ ‘ 2 ) → 𝐴 ∈ ℝ ) |
4 |
|
peano2re |
⊢ ( 𝐴 ∈ ℝ → ( 𝐴 + 1 ) ∈ ℝ ) |
5 |
3 4
|
syl |
⊢ ( 𝐴 ∈ ( ℤ≥ ‘ 2 ) → ( 𝐴 + 1 ) ∈ ℝ ) |
6 |
2 5
|
remulcld |
⊢ ( 𝐴 ∈ ( ℤ≥ ‘ 2 ) → ( 2 · ( 𝐴 + 1 ) ) ∈ ℝ ) |
7 |
6
|
adantr |
⊢ ( ( 𝐴 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑀 ∈ ( ℤ≥ ‘ 3 ) ) → ( 2 · ( 𝐴 + 1 ) ) ∈ ℝ ) |
8 |
|
eluzge2nn0 |
⊢ ( 𝐴 ∈ ( ℤ≥ ‘ 2 ) → 𝐴 ∈ ℕ0 ) |
9 |
8
|
adantr |
⊢ ( ( 𝐴 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑀 ∈ ( ℤ≥ ‘ 3 ) ) → 𝐴 ∈ ℕ0 ) |
10 |
|
eluzge3nn |
⊢ ( 𝑀 ∈ ( ℤ≥ ‘ 3 ) → 𝑀 ∈ ℕ ) |
11 |
10
|
nnnn0d |
⊢ ( 𝑀 ∈ ( ℤ≥ ‘ 3 ) → 𝑀 ∈ ℕ0 ) |
12 |
11
|
adantl |
⊢ ( ( 𝐴 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑀 ∈ ( ℤ≥ ‘ 3 ) ) → 𝑀 ∈ ℕ0 ) |
13 |
9 12
|
nn0expcld |
⊢ ( ( 𝐴 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑀 ∈ ( ℤ≥ ‘ 3 ) ) → ( 𝐴 ↑ 𝑀 ) ∈ ℕ0 ) |
14 |
13
|
nn0red |
⊢ ( ( 𝐴 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑀 ∈ ( ℤ≥ ‘ 3 ) ) → ( 𝐴 ↑ 𝑀 ) ∈ ℝ ) |
15 |
|
peano2re |
⊢ ( ( 𝐴 ↑ 𝑀 ) ∈ ℝ → ( ( 𝐴 ↑ 𝑀 ) + 1 ) ∈ ℝ ) |
16 |
14 15
|
syl |
⊢ ( ( 𝐴 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑀 ∈ ( ℤ≥ ‘ 3 ) ) → ( ( 𝐴 ↑ 𝑀 ) + 1 ) ∈ ℝ ) |
17 |
2 3
|
remulcld |
⊢ ( 𝐴 ∈ ( ℤ≥ ‘ 2 ) → ( 2 · 𝐴 ) ∈ ℝ ) |
18 |
2 17
|
remulcld |
⊢ ( 𝐴 ∈ ( ℤ≥ ‘ 2 ) → ( 2 · ( 2 · 𝐴 ) ) ∈ ℝ ) |
19 |
18
|
adantr |
⊢ ( ( 𝐴 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑀 ∈ ( ℤ≥ ‘ 3 ) ) → ( 2 · ( 2 · 𝐴 ) ) ∈ ℝ ) |
20 |
|
1red |
⊢ ( 𝐴 ∈ ( ℤ≥ ‘ 2 ) → 1 ∈ ℝ ) |
21 |
|
eluz2nn |
⊢ ( 𝐴 ∈ ( ℤ≥ ‘ 2 ) → 𝐴 ∈ ℕ ) |
22 |
21
|
nnge1d |
⊢ ( 𝐴 ∈ ( ℤ≥ ‘ 2 ) → 1 ≤ 𝐴 ) |
23 |
20 3 3 22
|
leadd2dd |
⊢ ( 𝐴 ∈ ( ℤ≥ ‘ 2 ) → ( 𝐴 + 1 ) ≤ ( 𝐴 + 𝐴 ) ) |
24 |
|
eluzelcn |
⊢ ( 𝐴 ∈ ( ℤ≥ ‘ 2 ) → 𝐴 ∈ ℂ ) |
25 |
24
|
2timesd |
⊢ ( 𝐴 ∈ ( ℤ≥ ‘ 2 ) → ( 2 · 𝐴 ) = ( 𝐴 + 𝐴 ) ) |
26 |
23 25
|
breqtrrd |
⊢ ( 𝐴 ∈ ( ℤ≥ ‘ 2 ) → ( 𝐴 + 1 ) ≤ ( 2 · 𝐴 ) ) |
27 |
26
|
adantr |
⊢ ( ( 𝐴 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑀 ∈ ( ℤ≥ ‘ 3 ) ) → ( 𝐴 + 1 ) ≤ ( 2 · 𝐴 ) ) |
28 |
|
2pos |
⊢ 0 < 2 |
29 |
1 28
|
pm3.2i |
⊢ ( 2 ∈ ℝ ∧ 0 < 2 ) |
30 |
29
|
a1i |
⊢ ( 𝐴 ∈ ( ℤ≥ ‘ 2 ) → ( 2 ∈ ℝ ∧ 0 < 2 ) ) |
31 |
5 17 30
|
3jca |
⊢ ( 𝐴 ∈ ( ℤ≥ ‘ 2 ) → ( ( 𝐴 + 1 ) ∈ ℝ ∧ ( 2 · 𝐴 ) ∈ ℝ ∧ ( 2 ∈ ℝ ∧ 0 < 2 ) ) ) |
32 |
31
|
adantr |
⊢ ( ( 𝐴 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑀 ∈ ( ℤ≥ ‘ 3 ) ) → ( ( 𝐴 + 1 ) ∈ ℝ ∧ ( 2 · 𝐴 ) ∈ ℝ ∧ ( 2 ∈ ℝ ∧ 0 < 2 ) ) ) |
33 |
|
lemul2 |
⊢ ( ( ( 𝐴 + 1 ) ∈ ℝ ∧ ( 2 · 𝐴 ) ∈ ℝ ∧ ( 2 ∈ ℝ ∧ 0 < 2 ) ) → ( ( 𝐴 + 1 ) ≤ ( 2 · 𝐴 ) ↔ ( 2 · ( 𝐴 + 1 ) ) ≤ ( 2 · ( 2 · 𝐴 ) ) ) ) |
34 |
32 33
|
syl |
⊢ ( ( 𝐴 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑀 ∈ ( ℤ≥ ‘ 3 ) ) → ( ( 𝐴 + 1 ) ≤ ( 2 · 𝐴 ) ↔ ( 2 · ( 𝐴 + 1 ) ) ≤ ( 2 · ( 2 · 𝐴 ) ) ) ) |
35 |
27 34
|
mpbid |
⊢ ( ( 𝐴 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑀 ∈ ( ℤ≥ ‘ 3 ) ) → ( 2 · ( 𝐴 + 1 ) ) ≤ ( 2 · ( 2 · 𝐴 ) ) ) |
36 |
|
2cn |
⊢ 2 ∈ ℂ |
37 |
36
|
a1i |
⊢ ( ( 𝐴 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑀 ∈ ( ℤ≥ ‘ 3 ) ) → 2 ∈ ℂ ) |
38 |
24
|
adantr |
⊢ ( ( 𝐴 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑀 ∈ ( ℤ≥ ‘ 3 ) ) → 𝐴 ∈ ℂ ) |
39 |
37 37 38
|
mulassd |
⊢ ( ( 𝐴 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑀 ∈ ( ℤ≥ ‘ 3 ) ) → ( ( 2 · 2 ) · 𝐴 ) = ( 2 · ( 2 · 𝐴 ) ) ) |
40 |
|
sq2 |
⊢ ( 2 ↑ 2 ) = 4 |
41 |
|
4re |
⊢ 4 ∈ ℝ |
42 |
40 41
|
eqeltri |
⊢ ( 2 ↑ 2 ) ∈ ℝ |
43 |
42
|
a1i |
⊢ ( ( 𝐴 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑀 ∈ ( ℤ≥ ‘ 3 ) ) → ( 2 ↑ 2 ) ∈ ℝ ) |
44 |
|
nn0sqcl |
⊢ ( 𝐴 ∈ ℕ0 → ( 𝐴 ↑ 2 ) ∈ ℕ0 ) |
45 |
8 44
|
syl |
⊢ ( 𝐴 ∈ ( ℤ≥ ‘ 2 ) → ( 𝐴 ↑ 2 ) ∈ ℕ0 ) |
46 |
45
|
nn0red |
⊢ ( 𝐴 ∈ ( ℤ≥ ‘ 2 ) → ( 𝐴 ↑ 2 ) ∈ ℝ ) |
47 |
46
|
adantr |
⊢ ( ( 𝐴 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑀 ∈ ( ℤ≥ ‘ 3 ) ) → ( 𝐴 ↑ 2 ) ∈ ℝ ) |
48 |
|
nnm1nn0 |
⊢ ( 𝑀 ∈ ℕ → ( 𝑀 − 1 ) ∈ ℕ0 ) |
49 |
10 48
|
syl |
⊢ ( 𝑀 ∈ ( ℤ≥ ‘ 3 ) → ( 𝑀 − 1 ) ∈ ℕ0 ) |
50 |
49
|
adantl |
⊢ ( ( 𝐴 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑀 ∈ ( ℤ≥ ‘ 3 ) ) → ( 𝑀 − 1 ) ∈ ℕ0 ) |
51 |
9 50
|
nn0expcld |
⊢ ( ( 𝐴 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑀 ∈ ( ℤ≥ ‘ 3 ) ) → ( 𝐴 ↑ ( 𝑀 − 1 ) ) ∈ ℕ0 ) |
52 |
51
|
nn0red |
⊢ ( ( 𝐴 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑀 ∈ ( ℤ≥ ‘ 3 ) ) → ( 𝐴 ↑ ( 𝑀 − 1 ) ) ∈ ℝ ) |
53 |
|
2nn0 |
⊢ 2 ∈ ℕ0 |
54 |
53
|
a1i |
⊢ ( 𝐴 ∈ ( ℤ≥ ‘ 2 ) → 2 ∈ ℕ0 ) |
55 |
2 3 54
|
3jca |
⊢ ( 𝐴 ∈ ( ℤ≥ ‘ 2 ) → ( 2 ∈ ℝ ∧ 𝐴 ∈ ℝ ∧ 2 ∈ ℕ0 ) ) |
56 |
55
|
adantr |
⊢ ( ( 𝐴 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑀 ∈ ( ℤ≥ ‘ 3 ) ) → ( 2 ∈ ℝ ∧ 𝐴 ∈ ℝ ∧ 2 ∈ ℕ0 ) ) |
57 |
|
0le2 |
⊢ 0 ≤ 2 |
58 |
57
|
a1i |
⊢ ( ( 𝐴 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑀 ∈ ( ℤ≥ ‘ 3 ) ) → 0 ≤ 2 ) |
59 |
|
eluzle |
⊢ ( 𝐴 ∈ ( ℤ≥ ‘ 2 ) → 2 ≤ 𝐴 ) |
60 |
59
|
adantr |
⊢ ( ( 𝐴 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑀 ∈ ( ℤ≥ ‘ 3 ) ) → 2 ≤ 𝐴 ) |
61 |
|
leexp1a |
⊢ ( ( ( 2 ∈ ℝ ∧ 𝐴 ∈ ℝ ∧ 2 ∈ ℕ0 ) ∧ ( 0 ≤ 2 ∧ 2 ≤ 𝐴 ) ) → ( 2 ↑ 2 ) ≤ ( 𝐴 ↑ 2 ) ) |
62 |
56 58 60 61
|
syl12anc |
⊢ ( ( 𝐴 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑀 ∈ ( ℤ≥ ‘ 3 ) ) → ( 2 ↑ 2 ) ≤ ( 𝐴 ↑ 2 ) ) |
63 |
|
2p1e3 |
⊢ ( 2 + 1 ) = 3 |
64 |
|
eluzle |
⊢ ( 𝑀 ∈ ( ℤ≥ ‘ 3 ) → 3 ≤ 𝑀 ) |
65 |
63 64
|
eqbrtrid |
⊢ ( 𝑀 ∈ ( ℤ≥ ‘ 3 ) → ( 2 + 1 ) ≤ 𝑀 ) |
66 |
|
1red |
⊢ ( 𝑀 ∈ ( ℤ≥ ‘ 3 ) → 1 ∈ ℝ ) |
67 |
|
eluzelre |
⊢ ( 𝑀 ∈ ( ℤ≥ ‘ 3 ) → 𝑀 ∈ ℝ ) |
68 |
|
leaddsub |
⊢ ( ( 2 ∈ ℝ ∧ 1 ∈ ℝ ∧ 𝑀 ∈ ℝ ) → ( ( 2 + 1 ) ≤ 𝑀 ↔ 2 ≤ ( 𝑀 − 1 ) ) ) |
69 |
1 66 67 68
|
mp3an2i |
⊢ ( 𝑀 ∈ ( ℤ≥ ‘ 3 ) → ( ( 2 + 1 ) ≤ 𝑀 ↔ 2 ≤ ( 𝑀 − 1 ) ) ) |
70 |
65 69
|
mpbid |
⊢ ( 𝑀 ∈ ( ℤ≥ ‘ 3 ) → 2 ≤ ( 𝑀 − 1 ) ) |
71 |
70
|
adantl |
⊢ ( ( 𝐴 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑀 ∈ ( ℤ≥ ‘ 3 ) ) → 2 ≤ ( 𝑀 − 1 ) ) |
72 |
3
|
adantr |
⊢ ( ( 𝐴 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑀 ∈ ( ℤ≥ ‘ 3 ) ) → 𝐴 ∈ ℝ ) |
73 |
|
2z |
⊢ 2 ∈ ℤ |
74 |
73
|
a1i |
⊢ ( ( 𝐴 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑀 ∈ ( ℤ≥ ‘ 3 ) ) → 2 ∈ ℤ ) |
75 |
|
eluzelz |
⊢ ( 𝑀 ∈ ( ℤ≥ ‘ 3 ) → 𝑀 ∈ ℤ ) |
76 |
|
peano2zm |
⊢ ( 𝑀 ∈ ℤ → ( 𝑀 − 1 ) ∈ ℤ ) |
77 |
75 76
|
syl |
⊢ ( 𝑀 ∈ ( ℤ≥ ‘ 3 ) → ( 𝑀 − 1 ) ∈ ℤ ) |
78 |
77
|
adantl |
⊢ ( ( 𝐴 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑀 ∈ ( ℤ≥ ‘ 3 ) ) → ( 𝑀 − 1 ) ∈ ℤ ) |
79 |
|
eluz2gt1 |
⊢ ( 𝐴 ∈ ( ℤ≥ ‘ 2 ) → 1 < 𝐴 ) |
80 |
79
|
adantr |
⊢ ( ( 𝐴 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑀 ∈ ( ℤ≥ ‘ 3 ) ) → 1 < 𝐴 ) |
81 |
72 74 78 80
|
leexp2d |
⊢ ( ( 𝐴 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑀 ∈ ( ℤ≥ ‘ 3 ) ) → ( 2 ≤ ( 𝑀 − 1 ) ↔ ( 𝐴 ↑ 2 ) ≤ ( 𝐴 ↑ ( 𝑀 − 1 ) ) ) ) |
82 |
71 81
|
mpbid |
⊢ ( ( 𝐴 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑀 ∈ ( ℤ≥ ‘ 3 ) ) → ( 𝐴 ↑ 2 ) ≤ ( 𝐴 ↑ ( 𝑀 − 1 ) ) ) |
83 |
43 47 52 62 82
|
letrd |
⊢ ( ( 𝐴 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑀 ∈ ( ℤ≥ ‘ 3 ) ) → ( 2 ↑ 2 ) ≤ ( 𝐴 ↑ ( 𝑀 − 1 ) ) ) |
84 |
36
|
sqvali |
⊢ ( 2 ↑ 2 ) = ( 2 · 2 ) |
85 |
84
|
eqcomi |
⊢ ( 2 · 2 ) = ( 2 ↑ 2 ) |
86 |
85
|
a1i |
⊢ ( ( 𝐴 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑀 ∈ ( ℤ≥ ‘ 3 ) ) → ( 2 · 2 ) = ( 2 ↑ 2 ) ) |
87 |
|
eluz2n0 |
⊢ ( 𝐴 ∈ ( ℤ≥ ‘ 2 ) → 𝐴 ≠ 0 ) |
88 |
87
|
adantr |
⊢ ( ( 𝐴 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑀 ∈ ( ℤ≥ ‘ 3 ) ) → 𝐴 ≠ 0 ) |
89 |
75
|
adantl |
⊢ ( ( 𝐴 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑀 ∈ ( ℤ≥ ‘ 3 ) ) → 𝑀 ∈ ℤ ) |
90 |
38 88 89
|
expm1d |
⊢ ( ( 𝐴 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑀 ∈ ( ℤ≥ ‘ 3 ) ) → ( 𝐴 ↑ ( 𝑀 − 1 ) ) = ( ( 𝐴 ↑ 𝑀 ) / 𝐴 ) ) |
91 |
90
|
eqcomd |
⊢ ( ( 𝐴 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑀 ∈ ( ℤ≥ ‘ 3 ) ) → ( ( 𝐴 ↑ 𝑀 ) / 𝐴 ) = ( 𝐴 ↑ ( 𝑀 − 1 ) ) ) |
92 |
83 86 91
|
3brtr4d |
⊢ ( ( 𝐴 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑀 ∈ ( ℤ≥ ‘ 3 ) ) → ( 2 · 2 ) ≤ ( ( 𝐴 ↑ 𝑀 ) / 𝐴 ) ) |
93 |
1 1
|
remulcli |
⊢ ( 2 · 2 ) ∈ ℝ |
94 |
21
|
nngt0d |
⊢ ( 𝐴 ∈ ( ℤ≥ ‘ 2 ) → 0 < 𝐴 ) |
95 |
3 94
|
jca |
⊢ ( 𝐴 ∈ ( ℤ≥ ‘ 2 ) → ( 𝐴 ∈ ℝ ∧ 0 < 𝐴 ) ) |
96 |
95
|
adantr |
⊢ ( ( 𝐴 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑀 ∈ ( ℤ≥ ‘ 3 ) ) → ( 𝐴 ∈ ℝ ∧ 0 < 𝐴 ) ) |
97 |
|
lemuldiv |
⊢ ( ( ( 2 · 2 ) ∈ ℝ ∧ ( 𝐴 ↑ 𝑀 ) ∈ ℝ ∧ ( 𝐴 ∈ ℝ ∧ 0 < 𝐴 ) ) → ( ( ( 2 · 2 ) · 𝐴 ) ≤ ( 𝐴 ↑ 𝑀 ) ↔ ( 2 · 2 ) ≤ ( ( 𝐴 ↑ 𝑀 ) / 𝐴 ) ) ) |
98 |
93 14 96 97
|
mp3an2i |
⊢ ( ( 𝐴 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑀 ∈ ( ℤ≥ ‘ 3 ) ) → ( ( ( 2 · 2 ) · 𝐴 ) ≤ ( 𝐴 ↑ 𝑀 ) ↔ ( 2 · 2 ) ≤ ( ( 𝐴 ↑ 𝑀 ) / 𝐴 ) ) ) |
99 |
92 98
|
mpbird |
⊢ ( ( 𝐴 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑀 ∈ ( ℤ≥ ‘ 3 ) ) → ( ( 2 · 2 ) · 𝐴 ) ≤ ( 𝐴 ↑ 𝑀 ) ) |
100 |
39 99
|
eqbrtrrd |
⊢ ( ( 𝐴 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑀 ∈ ( ℤ≥ ‘ 3 ) ) → ( 2 · ( 2 · 𝐴 ) ) ≤ ( 𝐴 ↑ 𝑀 ) ) |
101 |
7 19 14 35 100
|
letrd |
⊢ ( ( 𝐴 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑀 ∈ ( ℤ≥ ‘ 3 ) ) → ( 2 · ( 𝐴 + 1 ) ) ≤ ( 𝐴 ↑ 𝑀 ) ) |
102 |
14
|
lep1d |
⊢ ( ( 𝐴 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑀 ∈ ( ℤ≥ ‘ 3 ) ) → ( 𝐴 ↑ 𝑀 ) ≤ ( ( 𝐴 ↑ 𝑀 ) + 1 ) ) |
103 |
7 14 16 101 102
|
letrd |
⊢ ( ( 𝐴 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑀 ∈ ( ℤ≥ ‘ 3 ) ) → ( 2 · ( 𝐴 + 1 ) ) ≤ ( ( 𝐴 ↑ 𝑀 ) + 1 ) ) |
104 |
|
nnnn0 |
⊢ ( 𝐴 ∈ ℕ → 𝐴 ∈ ℕ0 ) |
105 |
|
nn0p1gt0 |
⊢ ( 𝐴 ∈ ℕ0 → 0 < ( 𝐴 + 1 ) ) |
106 |
21 104 105
|
3syl |
⊢ ( 𝐴 ∈ ( ℤ≥ ‘ 2 ) → 0 < ( 𝐴 + 1 ) ) |
107 |
5 106
|
jca |
⊢ ( 𝐴 ∈ ( ℤ≥ ‘ 2 ) → ( ( 𝐴 + 1 ) ∈ ℝ ∧ 0 < ( 𝐴 + 1 ) ) ) |
108 |
107
|
adantr |
⊢ ( ( 𝐴 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑀 ∈ ( ℤ≥ ‘ 3 ) ) → ( ( 𝐴 + 1 ) ∈ ℝ ∧ 0 < ( 𝐴 + 1 ) ) ) |
109 |
|
lemuldiv |
⊢ ( ( 2 ∈ ℝ ∧ ( ( 𝐴 ↑ 𝑀 ) + 1 ) ∈ ℝ ∧ ( ( 𝐴 + 1 ) ∈ ℝ ∧ 0 < ( 𝐴 + 1 ) ) ) → ( ( 2 · ( 𝐴 + 1 ) ) ≤ ( ( 𝐴 ↑ 𝑀 ) + 1 ) ↔ 2 ≤ ( ( ( 𝐴 ↑ 𝑀 ) + 1 ) / ( 𝐴 + 1 ) ) ) ) |
110 |
1 16 108 109
|
mp3an2i |
⊢ ( ( 𝐴 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑀 ∈ ( ℤ≥ ‘ 3 ) ) → ( ( 2 · ( 𝐴 + 1 ) ) ≤ ( ( 𝐴 ↑ 𝑀 ) + 1 ) ↔ 2 ≤ ( ( ( 𝐴 ↑ 𝑀 ) + 1 ) / ( 𝐴 + 1 ) ) ) ) |
111 |
103 110
|
mpbid |
⊢ ( ( 𝐴 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑀 ∈ ( ℤ≥ ‘ 3 ) ) → 2 ≤ ( ( ( 𝐴 ↑ 𝑀 ) + 1 ) / ( 𝐴 + 1 ) ) ) |
112 |
111
|
3adant3 |
⊢ ( ( 𝐴 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑀 ∈ ( ℤ≥ ‘ 3 ) ∧ 𝑆 = ( ( ( 𝐴 ↑ 𝑀 ) + 1 ) / ( 𝐴 + 1 ) ) ) → 2 ≤ ( ( ( 𝐴 ↑ 𝑀 ) + 1 ) / ( 𝐴 + 1 ) ) ) |
113 |
|
breq2 |
⊢ ( 𝑆 = ( ( ( 𝐴 ↑ 𝑀 ) + 1 ) / ( 𝐴 + 1 ) ) → ( 2 ≤ 𝑆 ↔ 2 ≤ ( ( ( 𝐴 ↑ 𝑀 ) + 1 ) / ( 𝐴 + 1 ) ) ) ) |
114 |
113
|
3ad2ant3 |
⊢ ( ( 𝐴 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑀 ∈ ( ℤ≥ ‘ 3 ) ∧ 𝑆 = ( ( ( 𝐴 ↑ 𝑀 ) + 1 ) / ( 𝐴 + 1 ) ) ) → ( 2 ≤ 𝑆 ↔ 2 ≤ ( ( ( 𝐴 ↑ 𝑀 ) + 1 ) / ( 𝐴 + 1 ) ) ) ) |
115 |
112 114
|
mpbird |
⊢ ( ( 𝐴 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑀 ∈ ( ℤ≥ ‘ 3 ) ∧ 𝑆 = ( ( ( 𝐴 ↑ 𝑀 ) + 1 ) / ( 𝐴 + 1 ) ) ) → 2 ≤ 𝑆 ) |