| Step |
Hyp |
Ref |
Expression |
| 1 |
|
2re |
⊢ 2 ∈ ℝ |
| 2 |
1
|
a1i |
⊢ ( 𝐴 ∈ ( ℤ≥ ‘ 2 ) → 2 ∈ ℝ ) |
| 3 |
|
eluzelre |
⊢ ( 𝐴 ∈ ( ℤ≥ ‘ 2 ) → 𝐴 ∈ ℝ ) |
| 4 |
|
peano2re |
⊢ ( 𝐴 ∈ ℝ → ( 𝐴 + 1 ) ∈ ℝ ) |
| 5 |
3 4
|
syl |
⊢ ( 𝐴 ∈ ( ℤ≥ ‘ 2 ) → ( 𝐴 + 1 ) ∈ ℝ ) |
| 6 |
2 5
|
remulcld |
⊢ ( 𝐴 ∈ ( ℤ≥ ‘ 2 ) → ( 2 · ( 𝐴 + 1 ) ) ∈ ℝ ) |
| 7 |
6
|
adantr |
⊢ ( ( 𝐴 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑀 ∈ ( ℤ≥ ‘ 3 ) ) → ( 2 · ( 𝐴 + 1 ) ) ∈ ℝ ) |
| 8 |
|
eluzge2nn0 |
⊢ ( 𝐴 ∈ ( ℤ≥ ‘ 2 ) → 𝐴 ∈ ℕ0 ) |
| 9 |
8
|
adantr |
⊢ ( ( 𝐴 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑀 ∈ ( ℤ≥ ‘ 3 ) ) → 𝐴 ∈ ℕ0 ) |
| 10 |
|
eluzge3nn |
⊢ ( 𝑀 ∈ ( ℤ≥ ‘ 3 ) → 𝑀 ∈ ℕ ) |
| 11 |
10
|
nnnn0d |
⊢ ( 𝑀 ∈ ( ℤ≥ ‘ 3 ) → 𝑀 ∈ ℕ0 ) |
| 12 |
11
|
adantl |
⊢ ( ( 𝐴 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑀 ∈ ( ℤ≥ ‘ 3 ) ) → 𝑀 ∈ ℕ0 ) |
| 13 |
9 12
|
nn0expcld |
⊢ ( ( 𝐴 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑀 ∈ ( ℤ≥ ‘ 3 ) ) → ( 𝐴 ↑ 𝑀 ) ∈ ℕ0 ) |
| 14 |
13
|
nn0red |
⊢ ( ( 𝐴 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑀 ∈ ( ℤ≥ ‘ 3 ) ) → ( 𝐴 ↑ 𝑀 ) ∈ ℝ ) |
| 15 |
|
peano2re |
⊢ ( ( 𝐴 ↑ 𝑀 ) ∈ ℝ → ( ( 𝐴 ↑ 𝑀 ) + 1 ) ∈ ℝ ) |
| 16 |
14 15
|
syl |
⊢ ( ( 𝐴 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑀 ∈ ( ℤ≥ ‘ 3 ) ) → ( ( 𝐴 ↑ 𝑀 ) + 1 ) ∈ ℝ ) |
| 17 |
2 3
|
remulcld |
⊢ ( 𝐴 ∈ ( ℤ≥ ‘ 2 ) → ( 2 · 𝐴 ) ∈ ℝ ) |
| 18 |
2 17
|
remulcld |
⊢ ( 𝐴 ∈ ( ℤ≥ ‘ 2 ) → ( 2 · ( 2 · 𝐴 ) ) ∈ ℝ ) |
| 19 |
18
|
adantr |
⊢ ( ( 𝐴 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑀 ∈ ( ℤ≥ ‘ 3 ) ) → ( 2 · ( 2 · 𝐴 ) ) ∈ ℝ ) |
| 20 |
|
1red |
⊢ ( 𝐴 ∈ ( ℤ≥ ‘ 2 ) → 1 ∈ ℝ ) |
| 21 |
|
eluz2nn |
⊢ ( 𝐴 ∈ ( ℤ≥ ‘ 2 ) → 𝐴 ∈ ℕ ) |
| 22 |
21
|
nnge1d |
⊢ ( 𝐴 ∈ ( ℤ≥ ‘ 2 ) → 1 ≤ 𝐴 ) |
| 23 |
20 3 3 22
|
leadd2dd |
⊢ ( 𝐴 ∈ ( ℤ≥ ‘ 2 ) → ( 𝐴 + 1 ) ≤ ( 𝐴 + 𝐴 ) ) |
| 24 |
|
eluzelcn |
⊢ ( 𝐴 ∈ ( ℤ≥ ‘ 2 ) → 𝐴 ∈ ℂ ) |
| 25 |
24
|
2timesd |
⊢ ( 𝐴 ∈ ( ℤ≥ ‘ 2 ) → ( 2 · 𝐴 ) = ( 𝐴 + 𝐴 ) ) |
| 26 |
23 25
|
breqtrrd |
⊢ ( 𝐴 ∈ ( ℤ≥ ‘ 2 ) → ( 𝐴 + 1 ) ≤ ( 2 · 𝐴 ) ) |
| 27 |
26
|
adantr |
⊢ ( ( 𝐴 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑀 ∈ ( ℤ≥ ‘ 3 ) ) → ( 𝐴 + 1 ) ≤ ( 2 · 𝐴 ) ) |
| 28 |
|
2pos |
⊢ 0 < 2 |
| 29 |
1 28
|
pm3.2i |
⊢ ( 2 ∈ ℝ ∧ 0 < 2 ) |
| 30 |
29
|
a1i |
⊢ ( 𝐴 ∈ ( ℤ≥ ‘ 2 ) → ( 2 ∈ ℝ ∧ 0 < 2 ) ) |
| 31 |
5 17 30
|
3jca |
⊢ ( 𝐴 ∈ ( ℤ≥ ‘ 2 ) → ( ( 𝐴 + 1 ) ∈ ℝ ∧ ( 2 · 𝐴 ) ∈ ℝ ∧ ( 2 ∈ ℝ ∧ 0 < 2 ) ) ) |
| 32 |
31
|
adantr |
⊢ ( ( 𝐴 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑀 ∈ ( ℤ≥ ‘ 3 ) ) → ( ( 𝐴 + 1 ) ∈ ℝ ∧ ( 2 · 𝐴 ) ∈ ℝ ∧ ( 2 ∈ ℝ ∧ 0 < 2 ) ) ) |
| 33 |
|
lemul2 |
⊢ ( ( ( 𝐴 + 1 ) ∈ ℝ ∧ ( 2 · 𝐴 ) ∈ ℝ ∧ ( 2 ∈ ℝ ∧ 0 < 2 ) ) → ( ( 𝐴 + 1 ) ≤ ( 2 · 𝐴 ) ↔ ( 2 · ( 𝐴 + 1 ) ) ≤ ( 2 · ( 2 · 𝐴 ) ) ) ) |
| 34 |
32 33
|
syl |
⊢ ( ( 𝐴 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑀 ∈ ( ℤ≥ ‘ 3 ) ) → ( ( 𝐴 + 1 ) ≤ ( 2 · 𝐴 ) ↔ ( 2 · ( 𝐴 + 1 ) ) ≤ ( 2 · ( 2 · 𝐴 ) ) ) ) |
| 35 |
27 34
|
mpbid |
⊢ ( ( 𝐴 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑀 ∈ ( ℤ≥ ‘ 3 ) ) → ( 2 · ( 𝐴 + 1 ) ) ≤ ( 2 · ( 2 · 𝐴 ) ) ) |
| 36 |
|
2cn |
⊢ 2 ∈ ℂ |
| 37 |
36
|
a1i |
⊢ ( ( 𝐴 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑀 ∈ ( ℤ≥ ‘ 3 ) ) → 2 ∈ ℂ ) |
| 38 |
24
|
adantr |
⊢ ( ( 𝐴 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑀 ∈ ( ℤ≥ ‘ 3 ) ) → 𝐴 ∈ ℂ ) |
| 39 |
37 37 38
|
mulassd |
⊢ ( ( 𝐴 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑀 ∈ ( ℤ≥ ‘ 3 ) ) → ( ( 2 · 2 ) · 𝐴 ) = ( 2 · ( 2 · 𝐴 ) ) ) |
| 40 |
|
sq2 |
⊢ ( 2 ↑ 2 ) = 4 |
| 41 |
|
4re |
⊢ 4 ∈ ℝ |
| 42 |
40 41
|
eqeltri |
⊢ ( 2 ↑ 2 ) ∈ ℝ |
| 43 |
42
|
a1i |
⊢ ( ( 𝐴 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑀 ∈ ( ℤ≥ ‘ 3 ) ) → ( 2 ↑ 2 ) ∈ ℝ ) |
| 44 |
|
nn0sqcl |
⊢ ( 𝐴 ∈ ℕ0 → ( 𝐴 ↑ 2 ) ∈ ℕ0 ) |
| 45 |
8 44
|
syl |
⊢ ( 𝐴 ∈ ( ℤ≥ ‘ 2 ) → ( 𝐴 ↑ 2 ) ∈ ℕ0 ) |
| 46 |
45
|
nn0red |
⊢ ( 𝐴 ∈ ( ℤ≥ ‘ 2 ) → ( 𝐴 ↑ 2 ) ∈ ℝ ) |
| 47 |
46
|
adantr |
⊢ ( ( 𝐴 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑀 ∈ ( ℤ≥ ‘ 3 ) ) → ( 𝐴 ↑ 2 ) ∈ ℝ ) |
| 48 |
|
nnm1nn0 |
⊢ ( 𝑀 ∈ ℕ → ( 𝑀 − 1 ) ∈ ℕ0 ) |
| 49 |
10 48
|
syl |
⊢ ( 𝑀 ∈ ( ℤ≥ ‘ 3 ) → ( 𝑀 − 1 ) ∈ ℕ0 ) |
| 50 |
49
|
adantl |
⊢ ( ( 𝐴 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑀 ∈ ( ℤ≥ ‘ 3 ) ) → ( 𝑀 − 1 ) ∈ ℕ0 ) |
| 51 |
9 50
|
nn0expcld |
⊢ ( ( 𝐴 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑀 ∈ ( ℤ≥ ‘ 3 ) ) → ( 𝐴 ↑ ( 𝑀 − 1 ) ) ∈ ℕ0 ) |
| 52 |
51
|
nn0red |
⊢ ( ( 𝐴 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑀 ∈ ( ℤ≥ ‘ 3 ) ) → ( 𝐴 ↑ ( 𝑀 − 1 ) ) ∈ ℝ ) |
| 53 |
|
2nn0 |
⊢ 2 ∈ ℕ0 |
| 54 |
53
|
a1i |
⊢ ( 𝐴 ∈ ( ℤ≥ ‘ 2 ) → 2 ∈ ℕ0 ) |
| 55 |
2 3 54
|
3jca |
⊢ ( 𝐴 ∈ ( ℤ≥ ‘ 2 ) → ( 2 ∈ ℝ ∧ 𝐴 ∈ ℝ ∧ 2 ∈ ℕ0 ) ) |
| 56 |
55
|
adantr |
⊢ ( ( 𝐴 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑀 ∈ ( ℤ≥ ‘ 3 ) ) → ( 2 ∈ ℝ ∧ 𝐴 ∈ ℝ ∧ 2 ∈ ℕ0 ) ) |
| 57 |
|
0le2 |
⊢ 0 ≤ 2 |
| 58 |
57
|
a1i |
⊢ ( ( 𝐴 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑀 ∈ ( ℤ≥ ‘ 3 ) ) → 0 ≤ 2 ) |
| 59 |
|
eluzle |
⊢ ( 𝐴 ∈ ( ℤ≥ ‘ 2 ) → 2 ≤ 𝐴 ) |
| 60 |
59
|
adantr |
⊢ ( ( 𝐴 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑀 ∈ ( ℤ≥ ‘ 3 ) ) → 2 ≤ 𝐴 ) |
| 61 |
|
leexp1a |
⊢ ( ( ( 2 ∈ ℝ ∧ 𝐴 ∈ ℝ ∧ 2 ∈ ℕ0 ) ∧ ( 0 ≤ 2 ∧ 2 ≤ 𝐴 ) ) → ( 2 ↑ 2 ) ≤ ( 𝐴 ↑ 2 ) ) |
| 62 |
56 58 60 61
|
syl12anc |
⊢ ( ( 𝐴 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑀 ∈ ( ℤ≥ ‘ 3 ) ) → ( 2 ↑ 2 ) ≤ ( 𝐴 ↑ 2 ) ) |
| 63 |
|
2p1e3 |
⊢ ( 2 + 1 ) = 3 |
| 64 |
|
eluzle |
⊢ ( 𝑀 ∈ ( ℤ≥ ‘ 3 ) → 3 ≤ 𝑀 ) |
| 65 |
63 64
|
eqbrtrid |
⊢ ( 𝑀 ∈ ( ℤ≥ ‘ 3 ) → ( 2 + 1 ) ≤ 𝑀 ) |
| 66 |
|
1red |
⊢ ( 𝑀 ∈ ( ℤ≥ ‘ 3 ) → 1 ∈ ℝ ) |
| 67 |
|
eluzelre |
⊢ ( 𝑀 ∈ ( ℤ≥ ‘ 3 ) → 𝑀 ∈ ℝ ) |
| 68 |
|
leaddsub |
⊢ ( ( 2 ∈ ℝ ∧ 1 ∈ ℝ ∧ 𝑀 ∈ ℝ ) → ( ( 2 + 1 ) ≤ 𝑀 ↔ 2 ≤ ( 𝑀 − 1 ) ) ) |
| 69 |
1 66 67 68
|
mp3an2i |
⊢ ( 𝑀 ∈ ( ℤ≥ ‘ 3 ) → ( ( 2 + 1 ) ≤ 𝑀 ↔ 2 ≤ ( 𝑀 − 1 ) ) ) |
| 70 |
65 69
|
mpbid |
⊢ ( 𝑀 ∈ ( ℤ≥ ‘ 3 ) → 2 ≤ ( 𝑀 − 1 ) ) |
| 71 |
70
|
adantl |
⊢ ( ( 𝐴 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑀 ∈ ( ℤ≥ ‘ 3 ) ) → 2 ≤ ( 𝑀 − 1 ) ) |
| 72 |
3
|
adantr |
⊢ ( ( 𝐴 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑀 ∈ ( ℤ≥ ‘ 3 ) ) → 𝐴 ∈ ℝ ) |
| 73 |
|
2z |
⊢ 2 ∈ ℤ |
| 74 |
73
|
a1i |
⊢ ( ( 𝐴 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑀 ∈ ( ℤ≥ ‘ 3 ) ) → 2 ∈ ℤ ) |
| 75 |
|
eluzelz |
⊢ ( 𝑀 ∈ ( ℤ≥ ‘ 3 ) → 𝑀 ∈ ℤ ) |
| 76 |
|
peano2zm |
⊢ ( 𝑀 ∈ ℤ → ( 𝑀 − 1 ) ∈ ℤ ) |
| 77 |
75 76
|
syl |
⊢ ( 𝑀 ∈ ( ℤ≥ ‘ 3 ) → ( 𝑀 − 1 ) ∈ ℤ ) |
| 78 |
77
|
adantl |
⊢ ( ( 𝐴 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑀 ∈ ( ℤ≥ ‘ 3 ) ) → ( 𝑀 − 1 ) ∈ ℤ ) |
| 79 |
|
eluz2gt1 |
⊢ ( 𝐴 ∈ ( ℤ≥ ‘ 2 ) → 1 < 𝐴 ) |
| 80 |
79
|
adantr |
⊢ ( ( 𝐴 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑀 ∈ ( ℤ≥ ‘ 3 ) ) → 1 < 𝐴 ) |
| 81 |
72 74 78 80
|
leexp2d |
⊢ ( ( 𝐴 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑀 ∈ ( ℤ≥ ‘ 3 ) ) → ( 2 ≤ ( 𝑀 − 1 ) ↔ ( 𝐴 ↑ 2 ) ≤ ( 𝐴 ↑ ( 𝑀 − 1 ) ) ) ) |
| 82 |
71 81
|
mpbid |
⊢ ( ( 𝐴 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑀 ∈ ( ℤ≥ ‘ 3 ) ) → ( 𝐴 ↑ 2 ) ≤ ( 𝐴 ↑ ( 𝑀 − 1 ) ) ) |
| 83 |
43 47 52 62 82
|
letrd |
⊢ ( ( 𝐴 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑀 ∈ ( ℤ≥ ‘ 3 ) ) → ( 2 ↑ 2 ) ≤ ( 𝐴 ↑ ( 𝑀 − 1 ) ) ) |
| 84 |
36
|
sqvali |
⊢ ( 2 ↑ 2 ) = ( 2 · 2 ) |
| 85 |
84
|
eqcomi |
⊢ ( 2 · 2 ) = ( 2 ↑ 2 ) |
| 86 |
85
|
a1i |
⊢ ( ( 𝐴 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑀 ∈ ( ℤ≥ ‘ 3 ) ) → ( 2 · 2 ) = ( 2 ↑ 2 ) ) |
| 87 |
|
eluz2n0 |
⊢ ( 𝐴 ∈ ( ℤ≥ ‘ 2 ) → 𝐴 ≠ 0 ) |
| 88 |
87
|
adantr |
⊢ ( ( 𝐴 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑀 ∈ ( ℤ≥ ‘ 3 ) ) → 𝐴 ≠ 0 ) |
| 89 |
75
|
adantl |
⊢ ( ( 𝐴 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑀 ∈ ( ℤ≥ ‘ 3 ) ) → 𝑀 ∈ ℤ ) |
| 90 |
38 88 89
|
expm1d |
⊢ ( ( 𝐴 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑀 ∈ ( ℤ≥ ‘ 3 ) ) → ( 𝐴 ↑ ( 𝑀 − 1 ) ) = ( ( 𝐴 ↑ 𝑀 ) / 𝐴 ) ) |
| 91 |
90
|
eqcomd |
⊢ ( ( 𝐴 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑀 ∈ ( ℤ≥ ‘ 3 ) ) → ( ( 𝐴 ↑ 𝑀 ) / 𝐴 ) = ( 𝐴 ↑ ( 𝑀 − 1 ) ) ) |
| 92 |
83 86 91
|
3brtr4d |
⊢ ( ( 𝐴 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑀 ∈ ( ℤ≥ ‘ 3 ) ) → ( 2 · 2 ) ≤ ( ( 𝐴 ↑ 𝑀 ) / 𝐴 ) ) |
| 93 |
1 1
|
remulcli |
⊢ ( 2 · 2 ) ∈ ℝ |
| 94 |
21
|
nngt0d |
⊢ ( 𝐴 ∈ ( ℤ≥ ‘ 2 ) → 0 < 𝐴 ) |
| 95 |
3 94
|
jca |
⊢ ( 𝐴 ∈ ( ℤ≥ ‘ 2 ) → ( 𝐴 ∈ ℝ ∧ 0 < 𝐴 ) ) |
| 96 |
95
|
adantr |
⊢ ( ( 𝐴 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑀 ∈ ( ℤ≥ ‘ 3 ) ) → ( 𝐴 ∈ ℝ ∧ 0 < 𝐴 ) ) |
| 97 |
|
lemuldiv |
⊢ ( ( ( 2 · 2 ) ∈ ℝ ∧ ( 𝐴 ↑ 𝑀 ) ∈ ℝ ∧ ( 𝐴 ∈ ℝ ∧ 0 < 𝐴 ) ) → ( ( ( 2 · 2 ) · 𝐴 ) ≤ ( 𝐴 ↑ 𝑀 ) ↔ ( 2 · 2 ) ≤ ( ( 𝐴 ↑ 𝑀 ) / 𝐴 ) ) ) |
| 98 |
93 14 96 97
|
mp3an2i |
⊢ ( ( 𝐴 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑀 ∈ ( ℤ≥ ‘ 3 ) ) → ( ( ( 2 · 2 ) · 𝐴 ) ≤ ( 𝐴 ↑ 𝑀 ) ↔ ( 2 · 2 ) ≤ ( ( 𝐴 ↑ 𝑀 ) / 𝐴 ) ) ) |
| 99 |
92 98
|
mpbird |
⊢ ( ( 𝐴 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑀 ∈ ( ℤ≥ ‘ 3 ) ) → ( ( 2 · 2 ) · 𝐴 ) ≤ ( 𝐴 ↑ 𝑀 ) ) |
| 100 |
39 99
|
eqbrtrrd |
⊢ ( ( 𝐴 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑀 ∈ ( ℤ≥ ‘ 3 ) ) → ( 2 · ( 2 · 𝐴 ) ) ≤ ( 𝐴 ↑ 𝑀 ) ) |
| 101 |
7 19 14 35 100
|
letrd |
⊢ ( ( 𝐴 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑀 ∈ ( ℤ≥ ‘ 3 ) ) → ( 2 · ( 𝐴 + 1 ) ) ≤ ( 𝐴 ↑ 𝑀 ) ) |
| 102 |
14
|
lep1d |
⊢ ( ( 𝐴 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑀 ∈ ( ℤ≥ ‘ 3 ) ) → ( 𝐴 ↑ 𝑀 ) ≤ ( ( 𝐴 ↑ 𝑀 ) + 1 ) ) |
| 103 |
7 14 16 101 102
|
letrd |
⊢ ( ( 𝐴 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑀 ∈ ( ℤ≥ ‘ 3 ) ) → ( 2 · ( 𝐴 + 1 ) ) ≤ ( ( 𝐴 ↑ 𝑀 ) + 1 ) ) |
| 104 |
|
nnnn0 |
⊢ ( 𝐴 ∈ ℕ → 𝐴 ∈ ℕ0 ) |
| 105 |
|
nn0p1gt0 |
⊢ ( 𝐴 ∈ ℕ0 → 0 < ( 𝐴 + 1 ) ) |
| 106 |
21 104 105
|
3syl |
⊢ ( 𝐴 ∈ ( ℤ≥ ‘ 2 ) → 0 < ( 𝐴 + 1 ) ) |
| 107 |
5 106
|
jca |
⊢ ( 𝐴 ∈ ( ℤ≥ ‘ 2 ) → ( ( 𝐴 + 1 ) ∈ ℝ ∧ 0 < ( 𝐴 + 1 ) ) ) |
| 108 |
107
|
adantr |
⊢ ( ( 𝐴 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑀 ∈ ( ℤ≥ ‘ 3 ) ) → ( ( 𝐴 + 1 ) ∈ ℝ ∧ 0 < ( 𝐴 + 1 ) ) ) |
| 109 |
|
lemuldiv |
⊢ ( ( 2 ∈ ℝ ∧ ( ( 𝐴 ↑ 𝑀 ) + 1 ) ∈ ℝ ∧ ( ( 𝐴 + 1 ) ∈ ℝ ∧ 0 < ( 𝐴 + 1 ) ) ) → ( ( 2 · ( 𝐴 + 1 ) ) ≤ ( ( 𝐴 ↑ 𝑀 ) + 1 ) ↔ 2 ≤ ( ( ( 𝐴 ↑ 𝑀 ) + 1 ) / ( 𝐴 + 1 ) ) ) ) |
| 110 |
1 16 108 109
|
mp3an2i |
⊢ ( ( 𝐴 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑀 ∈ ( ℤ≥ ‘ 3 ) ) → ( ( 2 · ( 𝐴 + 1 ) ) ≤ ( ( 𝐴 ↑ 𝑀 ) + 1 ) ↔ 2 ≤ ( ( ( 𝐴 ↑ 𝑀 ) + 1 ) / ( 𝐴 + 1 ) ) ) ) |
| 111 |
103 110
|
mpbid |
⊢ ( ( 𝐴 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑀 ∈ ( ℤ≥ ‘ 3 ) ) → 2 ≤ ( ( ( 𝐴 ↑ 𝑀 ) + 1 ) / ( 𝐴 + 1 ) ) ) |
| 112 |
111
|
3adant3 |
⊢ ( ( 𝐴 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑀 ∈ ( ℤ≥ ‘ 3 ) ∧ 𝑆 = ( ( ( 𝐴 ↑ 𝑀 ) + 1 ) / ( 𝐴 + 1 ) ) ) → 2 ≤ ( ( ( 𝐴 ↑ 𝑀 ) + 1 ) / ( 𝐴 + 1 ) ) ) |
| 113 |
|
breq2 |
⊢ ( 𝑆 = ( ( ( 𝐴 ↑ 𝑀 ) + 1 ) / ( 𝐴 + 1 ) ) → ( 2 ≤ 𝑆 ↔ 2 ≤ ( ( ( 𝐴 ↑ 𝑀 ) + 1 ) / ( 𝐴 + 1 ) ) ) ) |
| 114 |
113
|
3ad2ant3 |
⊢ ( ( 𝐴 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑀 ∈ ( ℤ≥ ‘ 3 ) ∧ 𝑆 = ( ( ( 𝐴 ↑ 𝑀 ) + 1 ) / ( 𝐴 + 1 ) ) ) → ( 2 ≤ 𝑆 ↔ 2 ≤ ( ( ( 𝐴 ↑ 𝑀 ) + 1 ) / ( 𝐴 + 1 ) ) ) ) |
| 115 |
112 114
|
mpbird |
⊢ ( ( 𝐴 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑀 ∈ ( ℤ≥ ‘ 3 ) ∧ 𝑆 = ( ( ( 𝐴 ↑ 𝑀 ) + 1 ) / ( 𝐴 + 1 ) ) ) → 2 ≤ 𝑆 ) |