| Step | Hyp | Ref | Expression | 
						
							| 1 |  | 2re | ⊢ 2  ∈  ℝ | 
						
							| 2 | 1 | a1i | ⊢ ( 𝐴  ∈  ( ℤ≥ ‘ 2 )  →  2  ∈  ℝ ) | 
						
							| 3 |  | eluzelre | ⊢ ( 𝐴  ∈  ( ℤ≥ ‘ 2 )  →  𝐴  ∈  ℝ ) | 
						
							| 4 |  | peano2re | ⊢ ( 𝐴  ∈  ℝ  →  ( 𝐴  +  1 )  ∈  ℝ ) | 
						
							| 5 | 3 4 | syl | ⊢ ( 𝐴  ∈  ( ℤ≥ ‘ 2 )  →  ( 𝐴  +  1 )  ∈  ℝ ) | 
						
							| 6 | 2 5 | remulcld | ⊢ ( 𝐴  ∈  ( ℤ≥ ‘ 2 )  →  ( 2  ·  ( 𝐴  +  1 ) )  ∈  ℝ ) | 
						
							| 7 | 6 | adantr | ⊢ ( ( 𝐴  ∈  ( ℤ≥ ‘ 2 )  ∧  𝑀  ∈  ( ℤ≥ ‘ 3 ) )  →  ( 2  ·  ( 𝐴  +  1 ) )  ∈  ℝ ) | 
						
							| 8 |  | eluzge2nn0 | ⊢ ( 𝐴  ∈  ( ℤ≥ ‘ 2 )  →  𝐴  ∈  ℕ0 ) | 
						
							| 9 | 8 | adantr | ⊢ ( ( 𝐴  ∈  ( ℤ≥ ‘ 2 )  ∧  𝑀  ∈  ( ℤ≥ ‘ 3 ) )  →  𝐴  ∈  ℕ0 ) | 
						
							| 10 |  | eluzge3nn | ⊢ ( 𝑀  ∈  ( ℤ≥ ‘ 3 )  →  𝑀  ∈  ℕ ) | 
						
							| 11 | 10 | nnnn0d | ⊢ ( 𝑀  ∈  ( ℤ≥ ‘ 3 )  →  𝑀  ∈  ℕ0 ) | 
						
							| 12 | 11 | adantl | ⊢ ( ( 𝐴  ∈  ( ℤ≥ ‘ 2 )  ∧  𝑀  ∈  ( ℤ≥ ‘ 3 ) )  →  𝑀  ∈  ℕ0 ) | 
						
							| 13 | 9 12 | nn0expcld | ⊢ ( ( 𝐴  ∈  ( ℤ≥ ‘ 2 )  ∧  𝑀  ∈  ( ℤ≥ ‘ 3 ) )  →  ( 𝐴 ↑ 𝑀 )  ∈  ℕ0 ) | 
						
							| 14 | 13 | nn0red | ⊢ ( ( 𝐴  ∈  ( ℤ≥ ‘ 2 )  ∧  𝑀  ∈  ( ℤ≥ ‘ 3 ) )  →  ( 𝐴 ↑ 𝑀 )  ∈  ℝ ) | 
						
							| 15 |  | peano2re | ⊢ ( ( 𝐴 ↑ 𝑀 )  ∈  ℝ  →  ( ( 𝐴 ↑ 𝑀 )  +  1 )  ∈  ℝ ) | 
						
							| 16 | 14 15 | syl | ⊢ ( ( 𝐴  ∈  ( ℤ≥ ‘ 2 )  ∧  𝑀  ∈  ( ℤ≥ ‘ 3 ) )  →  ( ( 𝐴 ↑ 𝑀 )  +  1 )  ∈  ℝ ) | 
						
							| 17 | 2 3 | remulcld | ⊢ ( 𝐴  ∈  ( ℤ≥ ‘ 2 )  →  ( 2  ·  𝐴 )  ∈  ℝ ) | 
						
							| 18 | 2 17 | remulcld | ⊢ ( 𝐴  ∈  ( ℤ≥ ‘ 2 )  →  ( 2  ·  ( 2  ·  𝐴 ) )  ∈  ℝ ) | 
						
							| 19 | 18 | adantr | ⊢ ( ( 𝐴  ∈  ( ℤ≥ ‘ 2 )  ∧  𝑀  ∈  ( ℤ≥ ‘ 3 ) )  →  ( 2  ·  ( 2  ·  𝐴 ) )  ∈  ℝ ) | 
						
							| 20 |  | 1red | ⊢ ( 𝐴  ∈  ( ℤ≥ ‘ 2 )  →  1  ∈  ℝ ) | 
						
							| 21 |  | eluz2nn | ⊢ ( 𝐴  ∈  ( ℤ≥ ‘ 2 )  →  𝐴  ∈  ℕ ) | 
						
							| 22 | 21 | nnge1d | ⊢ ( 𝐴  ∈  ( ℤ≥ ‘ 2 )  →  1  ≤  𝐴 ) | 
						
							| 23 | 20 3 3 22 | leadd2dd | ⊢ ( 𝐴  ∈  ( ℤ≥ ‘ 2 )  →  ( 𝐴  +  1 )  ≤  ( 𝐴  +  𝐴 ) ) | 
						
							| 24 |  | eluzelcn | ⊢ ( 𝐴  ∈  ( ℤ≥ ‘ 2 )  →  𝐴  ∈  ℂ ) | 
						
							| 25 | 24 | 2timesd | ⊢ ( 𝐴  ∈  ( ℤ≥ ‘ 2 )  →  ( 2  ·  𝐴 )  =  ( 𝐴  +  𝐴 ) ) | 
						
							| 26 | 23 25 | breqtrrd | ⊢ ( 𝐴  ∈  ( ℤ≥ ‘ 2 )  →  ( 𝐴  +  1 )  ≤  ( 2  ·  𝐴 ) ) | 
						
							| 27 | 26 | adantr | ⊢ ( ( 𝐴  ∈  ( ℤ≥ ‘ 2 )  ∧  𝑀  ∈  ( ℤ≥ ‘ 3 ) )  →  ( 𝐴  +  1 )  ≤  ( 2  ·  𝐴 ) ) | 
						
							| 28 |  | 2pos | ⊢ 0  <  2 | 
						
							| 29 | 1 28 | pm3.2i | ⊢ ( 2  ∈  ℝ  ∧  0  <  2 ) | 
						
							| 30 | 29 | a1i | ⊢ ( 𝐴  ∈  ( ℤ≥ ‘ 2 )  →  ( 2  ∈  ℝ  ∧  0  <  2 ) ) | 
						
							| 31 | 5 17 30 | 3jca | ⊢ ( 𝐴  ∈  ( ℤ≥ ‘ 2 )  →  ( ( 𝐴  +  1 )  ∈  ℝ  ∧  ( 2  ·  𝐴 )  ∈  ℝ  ∧  ( 2  ∈  ℝ  ∧  0  <  2 ) ) ) | 
						
							| 32 | 31 | adantr | ⊢ ( ( 𝐴  ∈  ( ℤ≥ ‘ 2 )  ∧  𝑀  ∈  ( ℤ≥ ‘ 3 ) )  →  ( ( 𝐴  +  1 )  ∈  ℝ  ∧  ( 2  ·  𝐴 )  ∈  ℝ  ∧  ( 2  ∈  ℝ  ∧  0  <  2 ) ) ) | 
						
							| 33 |  | lemul2 | ⊢ ( ( ( 𝐴  +  1 )  ∈  ℝ  ∧  ( 2  ·  𝐴 )  ∈  ℝ  ∧  ( 2  ∈  ℝ  ∧  0  <  2 ) )  →  ( ( 𝐴  +  1 )  ≤  ( 2  ·  𝐴 )  ↔  ( 2  ·  ( 𝐴  +  1 ) )  ≤  ( 2  ·  ( 2  ·  𝐴 ) ) ) ) | 
						
							| 34 | 32 33 | syl | ⊢ ( ( 𝐴  ∈  ( ℤ≥ ‘ 2 )  ∧  𝑀  ∈  ( ℤ≥ ‘ 3 ) )  →  ( ( 𝐴  +  1 )  ≤  ( 2  ·  𝐴 )  ↔  ( 2  ·  ( 𝐴  +  1 ) )  ≤  ( 2  ·  ( 2  ·  𝐴 ) ) ) ) | 
						
							| 35 | 27 34 | mpbid | ⊢ ( ( 𝐴  ∈  ( ℤ≥ ‘ 2 )  ∧  𝑀  ∈  ( ℤ≥ ‘ 3 ) )  →  ( 2  ·  ( 𝐴  +  1 ) )  ≤  ( 2  ·  ( 2  ·  𝐴 ) ) ) | 
						
							| 36 |  | 2cn | ⊢ 2  ∈  ℂ | 
						
							| 37 | 36 | a1i | ⊢ ( ( 𝐴  ∈  ( ℤ≥ ‘ 2 )  ∧  𝑀  ∈  ( ℤ≥ ‘ 3 ) )  →  2  ∈  ℂ ) | 
						
							| 38 | 24 | adantr | ⊢ ( ( 𝐴  ∈  ( ℤ≥ ‘ 2 )  ∧  𝑀  ∈  ( ℤ≥ ‘ 3 ) )  →  𝐴  ∈  ℂ ) | 
						
							| 39 | 37 37 38 | mulassd | ⊢ ( ( 𝐴  ∈  ( ℤ≥ ‘ 2 )  ∧  𝑀  ∈  ( ℤ≥ ‘ 3 ) )  →  ( ( 2  ·  2 )  ·  𝐴 )  =  ( 2  ·  ( 2  ·  𝐴 ) ) ) | 
						
							| 40 |  | sq2 | ⊢ ( 2 ↑ 2 )  =  4 | 
						
							| 41 |  | 4re | ⊢ 4  ∈  ℝ | 
						
							| 42 | 40 41 | eqeltri | ⊢ ( 2 ↑ 2 )  ∈  ℝ | 
						
							| 43 | 42 | a1i | ⊢ ( ( 𝐴  ∈  ( ℤ≥ ‘ 2 )  ∧  𝑀  ∈  ( ℤ≥ ‘ 3 ) )  →  ( 2 ↑ 2 )  ∈  ℝ ) | 
						
							| 44 |  | nn0sqcl | ⊢ ( 𝐴  ∈  ℕ0  →  ( 𝐴 ↑ 2 )  ∈  ℕ0 ) | 
						
							| 45 | 8 44 | syl | ⊢ ( 𝐴  ∈  ( ℤ≥ ‘ 2 )  →  ( 𝐴 ↑ 2 )  ∈  ℕ0 ) | 
						
							| 46 | 45 | nn0red | ⊢ ( 𝐴  ∈  ( ℤ≥ ‘ 2 )  →  ( 𝐴 ↑ 2 )  ∈  ℝ ) | 
						
							| 47 | 46 | adantr | ⊢ ( ( 𝐴  ∈  ( ℤ≥ ‘ 2 )  ∧  𝑀  ∈  ( ℤ≥ ‘ 3 ) )  →  ( 𝐴 ↑ 2 )  ∈  ℝ ) | 
						
							| 48 |  | nnm1nn0 | ⊢ ( 𝑀  ∈  ℕ  →  ( 𝑀  −  1 )  ∈  ℕ0 ) | 
						
							| 49 | 10 48 | syl | ⊢ ( 𝑀  ∈  ( ℤ≥ ‘ 3 )  →  ( 𝑀  −  1 )  ∈  ℕ0 ) | 
						
							| 50 | 49 | adantl | ⊢ ( ( 𝐴  ∈  ( ℤ≥ ‘ 2 )  ∧  𝑀  ∈  ( ℤ≥ ‘ 3 ) )  →  ( 𝑀  −  1 )  ∈  ℕ0 ) | 
						
							| 51 | 9 50 | nn0expcld | ⊢ ( ( 𝐴  ∈  ( ℤ≥ ‘ 2 )  ∧  𝑀  ∈  ( ℤ≥ ‘ 3 ) )  →  ( 𝐴 ↑ ( 𝑀  −  1 ) )  ∈  ℕ0 ) | 
						
							| 52 | 51 | nn0red | ⊢ ( ( 𝐴  ∈  ( ℤ≥ ‘ 2 )  ∧  𝑀  ∈  ( ℤ≥ ‘ 3 ) )  →  ( 𝐴 ↑ ( 𝑀  −  1 ) )  ∈  ℝ ) | 
						
							| 53 |  | 2nn0 | ⊢ 2  ∈  ℕ0 | 
						
							| 54 | 53 | a1i | ⊢ ( 𝐴  ∈  ( ℤ≥ ‘ 2 )  →  2  ∈  ℕ0 ) | 
						
							| 55 | 2 3 54 | 3jca | ⊢ ( 𝐴  ∈  ( ℤ≥ ‘ 2 )  →  ( 2  ∈  ℝ  ∧  𝐴  ∈  ℝ  ∧  2  ∈  ℕ0 ) ) | 
						
							| 56 | 55 | adantr | ⊢ ( ( 𝐴  ∈  ( ℤ≥ ‘ 2 )  ∧  𝑀  ∈  ( ℤ≥ ‘ 3 ) )  →  ( 2  ∈  ℝ  ∧  𝐴  ∈  ℝ  ∧  2  ∈  ℕ0 ) ) | 
						
							| 57 |  | 0le2 | ⊢ 0  ≤  2 | 
						
							| 58 | 57 | a1i | ⊢ ( ( 𝐴  ∈  ( ℤ≥ ‘ 2 )  ∧  𝑀  ∈  ( ℤ≥ ‘ 3 ) )  →  0  ≤  2 ) | 
						
							| 59 |  | eluzle | ⊢ ( 𝐴  ∈  ( ℤ≥ ‘ 2 )  →  2  ≤  𝐴 ) | 
						
							| 60 | 59 | adantr | ⊢ ( ( 𝐴  ∈  ( ℤ≥ ‘ 2 )  ∧  𝑀  ∈  ( ℤ≥ ‘ 3 ) )  →  2  ≤  𝐴 ) | 
						
							| 61 |  | leexp1a | ⊢ ( ( ( 2  ∈  ℝ  ∧  𝐴  ∈  ℝ  ∧  2  ∈  ℕ0 )  ∧  ( 0  ≤  2  ∧  2  ≤  𝐴 ) )  →  ( 2 ↑ 2 )  ≤  ( 𝐴 ↑ 2 ) ) | 
						
							| 62 | 56 58 60 61 | syl12anc | ⊢ ( ( 𝐴  ∈  ( ℤ≥ ‘ 2 )  ∧  𝑀  ∈  ( ℤ≥ ‘ 3 ) )  →  ( 2 ↑ 2 )  ≤  ( 𝐴 ↑ 2 ) ) | 
						
							| 63 |  | 2p1e3 | ⊢ ( 2  +  1 )  =  3 | 
						
							| 64 |  | eluzle | ⊢ ( 𝑀  ∈  ( ℤ≥ ‘ 3 )  →  3  ≤  𝑀 ) | 
						
							| 65 | 63 64 | eqbrtrid | ⊢ ( 𝑀  ∈  ( ℤ≥ ‘ 3 )  →  ( 2  +  1 )  ≤  𝑀 ) | 
						
							| 66 |  | 1red | ⊢ ( 𝑀  ∈  ( ℤ≥ ‘ 3 )  →  1  ∈  ℝ ) | 
						
							| 67 |  | eluzelre | ⊢ ( 𝑀  ∈  ( ℤ≥ ‘ 3 )  →  𝑀  ∈  ℝ ) | 
						
							| 68 |  | leaddsub | ⊢ ( ( 2  ∈  ℝ  ∧  1  ∈  ℝ  ∧  𝑀  ∈  ℝ )  →  ( ( 2  +  1 )  ≤  𝑀  ↔  2  ≤  ( 𝑀  −  1 ) ) ) | 
						
							| 69 | 1 66 67 68 | mp3an2i | ⊢ ( 𝑀  ∈  ( ℤ≥ ‘ 3 )  →  ( ( 2  +  1 )  ≤  𝑀  ↔  2  ≤  ( 𝑀  −  1 ) ) ) | 
						
							| 70 | 65 69 | mpbid | ⊢ ( 𝑀  ∈  ( ℤ≥ ‘ 3 )  →  2  ≤  ( 𝑀  −  1 ) ) | 
						
							| 71 | 70 | adantl | ⊢ ( ( 𝐴  ∈  ( ℤ≥ ‘ 2 )  ∧  𝑀  ∈  ( ℤ≥ ‘ 3 ) )  →  2  ≤  ( 𝑀  −  1 ) ) | 
						
							| 72 | 3 | adantr | ⊢ ( ( 𝐴  ∈  ( ℤ≥ ‘ 2 )  ∧  𝑀  ∈  ( ℤ≥ ‘ 3 ) )  →  𝐴  ∈  ℝ ) | 
						
							| 73 |  | 2z | ⊢ 2  ∈  ℤ | 
						
							| 74 | 73 | a1i | ⊢ ( ( 𝐴  ∈  ( ℤ≥ ‘ 2 )  ∧  𝑀  ∈  ( ℤ≥ ‘ 3 ) )  →  2  ∈  ℤ ) | 
						
							| 75 |  | eluzelz | ⊢ ( 𝑀  ∈  ( ℤ≥ ‘ 3 )  →  𝑀  ∈  ℤ ) | 
						
							| 76 |  | peano2zm | ⊢ ( 𝑀  ∈  ℤ  →  ( 𝑀  −  1 )  ∈  ℤ ) | 
						
							| 77 | 75 76 | syl | ⊢ ( 𝑀  ∈  ( ℤ≥ ‘ 3 )  →  ( 𝑀  −  1 )  ∈  ℤ ) | 
						
							| 78 | 77 | adantl | ⊢ ( ( 𝐴  ∈  ( ℤ≥ ‘ 2 )  ∧  𝑀  ∈  ( ℤ≥ ‘ 3 ) )  →  ( 𝑀  −  1 )  ∈  ℤ ) | 
						
							| 79 |  | eluz2gt1 | ⊢ ( 𝐴  ∈  ( ℤ≥ ‘ 2 )  →  1  <  𝐴 ) | 
						
							| 80 | 79 | adantr | ⊢ ( ( 𝐴  ∈  ( ℤ≥ ‘ 2 )  ∧  𝑀  ∈  ( ℤ≥ ‘ 3 ) )  →  1  <  𝐴 ) | 
						
							| 81 | 72 74 78 80 | leexp2d | ⊢ ( ( 𝐴  ∈  ( ℤ≥ ‘ 2 )  ∧  𝑀  ∈  ( ℤ≥ ‘ 3 ) )  →  ( 2  ≤  ( 𝑀  −  1 )  ↔  ( 𝐴 ↑ 2 )  ≤  ( 𝐴 ↑ ( 𝑀  −  1 ) ) ) ) | 
						
							| 82 | 71 81 | mpbid | ⊢ ( ( 𝐴  ∈  ( ℤ≥ ‘ 2 )  ∧  𝑀  ∈  ( ℤ≥ ‘ 3 ) )  →  ( 𝐴 ↑ 2 )  ≤  ( 𝐴 ↑ ( 𝑀  −  1 ) ) ) | 
						
							| 83 | 43 47 52 62 82 | letrd | ⊢ ( ( 𝐴  ∈  ( ℤ≥ ‘ 2 )  ∧  𝑀  ∈  ( ℤ≥ ‘ 3 ) )  →  ( 2 ↑ 2 )  ≤  ( 𝐴 ↑ ( 𝑀  −  1 ) ) ) | 
						
							| 84 | 36 | sqvali | ⊢ ( 2 ↑ 2 )  =  ( 2  ·  2 ) | 
						
							| 85 | 84 | eqcomi | ⊢ ( 2  ·  2 )  =  ( 2 ↑ 2 ) | 
						
							| 86 | 85 | a1i | ⊢ ( ( 𝐴  ∈  ( ℤ≥ ‘ 2 )  ∧  𝑀  ∈  ( ℤ≥ ‘ 3 ) )  →  ( 2  ·  2 )  =  ( 2 ↑ 2 ) ) | 
						
							| 87 |  | eluz2n0 | ⊢ ( 𝐴  ∈  ( ℤ≥ ‘ 2 )  →  𝐴  ≠  0 ) | 
						
							| 88 | 87 | adantr | ⊢ ( ( 𝐴  ∈  ( ℤ≥ ‘ 2 )  ∧  𝑀  ∈  ( ℤ≥ ‘ 3 ) )  →  𝐴  ≠  0 ) | 
						
							| 89 | 75 | adantl | ⊢ ( ( 𝐴  ∈  ( ℤ≥ ‘ 2 )  ∧  𝑀  ∈  ( ℤ≥ ‘ 3 ) )  →  𝑀  ∈  ℤ ) | 
						
							| 90 | 38 88 89 | expm1d | ⊢ ( ( 𝐴  ∈  ( ℤ≥ ‘ 2 )  ∧  𝑀  ∈  ( ℤ≥ ‘ 3 ) )  →  ( 𝐴 ↑ ( 𝑀  −  1 ) )  =  ( ( 𝐴 ↑ 𝑀 )  /  𝐴 ) ) | 
						
							| 91 | 90 | eqcomd | ⊢ ( ( 𝐴  ∈  ( ℤ≥ ‘ 2 )  ∧  𝑀  ∈  ( ℤ≥ ‘ 3 ) )  →  ( ( 𝐴 ↑ 𝑀 )  /  𝐴 )  =  ( 𝐴 ↑ ( 𝑀  −  1 ) ) ) | 
						
							| 92 | 83 86 91 | 3brtr4d | ⊢ ( ( 𝐴  ∈  ( ℤ≥ ‘ 2 )  ∧  𝑀  ∈  ( ℤ≥ ‘ 3 ) )  →  ( 2  ·  2 )  ≤  ( ( 𝐴 ↑ 𝑀 )  /  𝐴 ) ) | 
						
							| 93 | 1 1 | remulcli | ⊢ ( 2  ·  2 )  ∈  ℝ | 
						
							| 94 | 21 | nngt0d | ⊢ ( 𝐴  ∈  ( ℤ≥ ‘ 2 )  →  0  <  𝐴 ) | 
						
							| 95 | 3 94 | jca | ⊢ ( 𝐴  ∈  ( ℤ≥ ‘ 2 )  →  ( 𝐴  ∈  ℝ  ∧  0  <  𝐴 ) ) | 
						
							| 96 | 95 | adantr | ⊢ ( ( 𝐴  ∈  ( ℤ≥ ‘ 2 )  ∧  𝑀  ∈  ( ℤ≥ ‘ 3 ) )  →  ( 𝐴  ∈  ℝ  ∧  0  <  𝐴 ) ) | 
						
							| 97 |  | lemuldiv | ⊢ ( ( ( 2  ·  2 )  ∈  ℝ  ∧  ( 𝐴 ↑ 𝑀 )  ∈  ℝ  ∧  ( 𝐴  ∈  ℝ  ∧  0  <  𝐴 ) )  →  ( ( ( 2  ·  2 )  ·  𝐴 )  ≤  ( 𝐴 ↑ 𝑀 )  ↔  ( 2  ·  2 )  ≤  ( ( 𝐴 ↑ 𝑀 )  /  𝐴 ) ) ) | 
						
							| 98 | 93 14 96 97 | mp3an2i | ⊢ ( ( 𝐴  ∈  ( ℤ≥ ‘ 2 )  ∧  𝑀  ∈  ( ℤ≥ ‘ 3 ) )  →  ( ( ( 2  ·  2 )  ·  𝐴 )  ≤  ( 𝐴 ↑ 𝑀 )  ↔  ( 2  ·  2 )  ≤  ( ( 𝐴 ↑ 𝑀 )  /  𝐴 ) ) ) | 
						
							| 99 | 92 98 | mpbird | ⊢ ( ( 𝐴  ∈  ( ℤ≥ ‘ 2 )  ∧  𝑀  ∈  ( ℤ≥ ‘ 3 ) )  →  ( ( 2  ·  2 )  ·  𝐴 )  ≤  ( 𝐴 ↑ 𝑀 ) ) | 
						
							| 100 | 39 99 | eqbrtrrd | ⊢ ( ( 𝐴  ∈  ( ℤ≥ ‘ 2 )  ∧  𝑀  ∈  ( ℤ≥ ‘ 3 ) )  →  ( 2  ·  ( 2  ·  𝐴 ) )  ≤  ( 𝐴 ↑ 𝑀 ) ) | 
						
							| 101 | 7 19 14 35 100 | letrd | ⊢ ( ( 𝐴  ∈  ( ℤ≥ ‘ 2 )  ∧  𝑀  ∈  ( ℤ≥ ‘ 3 ) )  →  ( 2  ·  ( 𝐴  +  1 ) )  ≤  ( 𝐴 ↑ 𝑀 ) ) | 
						
							| 102 | 14 | lep1d | ⊢ ( ( 𝐴  ∈  ( ℤ≥ ‘ 2 )  ∧  𝑀  ∈  ( ℤ≥ ‘ 3 ) )  →  ( 𝐴 ↑ 𝑀 )  ≤  ( ( 𝐴 ↑ 𝑀 )  +  1 ) ) | 
						
							| 103 | 7 14 16 101 102 | letrd | ⊢ ( ( 𝐴  ∈  ( ℤ≥ ‘ 2 )  ∧  𝑀  ∈  ( ℤ≥ ‘ 3 ) )  →  ( 2  ·  ( 𝐴  +  1 ) )  ≤  ( ( 𝐴 ↑ 𝑀 )  +  1 ) ) | 
						
							| 104 |  | nnnn0 | ⊢ ( 𝐴  ∈  ℕ  →  𝐴  ∈  ℕ0 ) | 
						
							| 105 |  | nn0p1gt0 | ⊢ ( 𝐴  ∈  ℕ0  →  0  <  ( 𝐴  +  1 ) ) | 
						
							| 106 | 21 104 105 | 3syl | ⊢ ( 𝐴  ∈  ( ℤ≥ ‘ 2 )  →  0  <  ( 𝐴  +  1 ) ) | 
						
							| 107 | 5 106 | jca | ⊢ ( 𝐴  ∈  ( ℤ≥ ‘ 2 )  →  ( ( 𝐴  +  1 )  ∈  ℝ  ∧  0  <  ( 𝐴  +  1 ) ) ) | 
						
							| 108 | 107 | adantr | ⊢ ( ( 𝐴  ∈  ( ℤ≥ ‘ 2 )  ∧  𝑀  ∈  ( ℤ≥ ‘ 3 ) )  →  ( ( 𝐴  +  1 )  ∈  ℝ  ∧  0  <  ( 𝐴  +  1 ) ) ) | 
						
							| 109 |  | lemuldiv | ⊢ ( ( 2  ∈  ℝ  ∧  ( ( 𝐴 ↑ 𝑀 )  +  1 )  ∈  ℝ  ∧  ( ( 𝐴  +  1 )  ∈  ℝ  ∧  0  <  ( 𝐴  +  1 ) ) )  →  ( ( 2  ·  ( 𝐴  +  1 ) )  ≤  ( ( 𝐴 ↑ 𝑀 )  +  1 )  ↔  2  ≤  ( ( ( 𝐴 ↑ 𝑀 )  +  1 )  /  ( 𝐴  +  1 ) ) ) ) | 
						
							| 110 | 1 16 108 109 | mp3an2i | ⊢ ( ( 𝐴  ∈  ( ℤ≥ ‘ 2 )  ∧  𝑀  ∈  ( ℤ≥ ‘ 3 ) )  →  ( ( 2  ·  ( 𝐴  +  1 ) )  ≤  ( ( 𝐴 ↑ 𝑀 )  +  1 )  ↔  2  ≤  ( ( ( 𝐴 ↑ 𝑀 )  +  1 )  /  ( 𝐴  +  1 ) ) ) ) | 
						
							| 111 | 103 110 | mpbid | ⊢ ( ( 𝐴  ∈  ( ℤ≥ ‘ 2 )  ∧  𝑀  ∈  ( ℤ≥ ‘ 3 ) )  →  2  ≤  ( ( ( 𝐴 ↑ 𝑀 )  +  1 )  /  ( 𝐴  +  1 ) ) ) | 
						
							| 112 | 111 | 3adant3 | ⊢ ( ( 𝐴  ∈  ( ℤ≥ ‘ 2 )  ∧  𝑀  ∈  ( ℤ≥ ‘ 3 )  ∧  𝑆  =  ( ( ( 𝐴 ↑ 𝑀 )  +  1 )  /  ( 𝐴  +  1 ) ) )  →  2  ≤  ( ( ( 𝐴 ↑ 𝑀 )  +  1 )  /  ( 𝐴  +  1 ) ) ) | 
						
							| 113 |  | breq2 | ⊢ ( 𝑆  =  ( ( ( 𝐴 ↑ 𝑀 )  +  1 )  /  ( 𝐴  +  1 ) )  →  ( 2  ≤  𝑆  ↔  2  ≤  ( ( ( 𝐴 ↑ 𝑀 )  +  1 )  /  ( 𝐴  +  1 ) ) ) ) | 
						
							| 114 | 113 | 3ad2ant3 | ⊢ ( ( 𝐴  ∈  ( ℤ≥ ‘ 2 )  ∧  𝑀  ∈  ( ℤ≥ ‘ 3 )  ∧  𝑆  =  ( ( ( 𝐴 ↑ 𝑀 )  +  1 )  /  ( 𝐴  +  1 ) ) )  →  ( 2  ≤  𝑆  ↔  2  ≤  ( ( ( 𝐴 ↑ 𝑀 )  +  1 )  /  ( 𝐴  +  1 ) ) ) ) | 
						
							| 115 | 112 114 | mpbird | ⊢ ( ( 𝐴  ∈  ( ℤ≥ ‘ 2 )  ∧  𝑀  ∈  ( ℤ≥ ‘ 3 )  ∧  𝑆  =  ( ( ( 𝐴 ↑ 𝑀 )  +  1 )  /  ( 𝐴  +  1 ) ) )  →  2  ≤  𝑆 ) |