| Step | Hyp | Ref | Expression | 
						
							| 1 |  | 2re |  |-  2 e. RR | 
						
							| 2 | 1 | a1i |  |-  ( A e. ( ZZ>= ` 2 ) -> 2 e. RR ) | 
						
							| 3 |  | eluzelre |  |-  ( A e. ( ZZ>= ` 2 ) -> A e. RR ) | 
						
							| 4 |  | peano2re |  |-  ( A e. RR -> ( A + 1 ) e. RR ) | 
						
							| 5 | 3 4 | syl |  |-  ( A e. ( ZZ>= ` 2 ) -> ( A + 1 ) e. RR ) | 
						
							| 6 | 2 5 | remulcld |  |-  ( A e. ( ZZ>= ` 2 ) -> ( 2 x. ( A + 1 ) ) e. RR ) | 
						
							| 7 | 6 | adantr |  |-  ( ( A e. ( ZZ>= ` 2 ) /\ M e. ( ZZ>= ` 3 ) ) -> ( 2 x. ( A + 1 ) ) e. RR ) | 
						
							| 8 |  | eluzge2nn0 |  |-  ( A e. ( ZZ>= ` 2 ) -> A e. NN0 ) | 
						
							| 9 | 8 | adantr |  |-  ( ( A e. ( ZZ>= ` 2 ) /\ M e. ( ZZ>= ` 3 ) ) -> A e. NN0 ) | 
						
							| 10 |  | eluzge3nn |  |-  ( M e. ( ZZ>= ` 3 ) -> M e. NN ) | 
						
							| 11 | 10 | nnnn0d |  |-  ( M e. ( ZZ>= ` 3 ) -> M e. NN0 ) | 
						
							| 12 | 11 | adantl |  |-  ( ( A e. ( ZZ>= ` 2 ) /\ M e. ( ZZ>= ` 3 ) ) -> M e. NN0 ) | 
						
							| 13 | 9 12 | nn0expcld |  |-  ( ( A e. ( ZZ>= ` 2 ) /\ M e. ( ZZ>= ` 3 ) ) -> ( A ^ M ) e. NN0 ) | 
						
							| 14 | 13 | nn0red |  |-  ( ( A e. ( ZZ>= ` 2 ) /\ M e. ( ZZ>= ` 3 ) ) -> ( A ^ M ) e. RR ) | 
						
							| 15 |  | peano2re |  |-  ( ( A ^ M ) e. RR -> ( ( A ^ M ) + 1 ) e. RR ) | 
						
							| 16 | 14 15 | syl |  |-  ( ( A e. ( ZZ>= ` 2 ) /\ M e. ( ZZ>= ` 3 ) ) -> ( ( A ^ M ) + 1 ) e. RR ) | 
						
							| 17 | 2 3 | remulcld |  |-  ( A e. ( ZZ>= ` 2 ) -> ( 2 x. A ) e. RR ) | 
						
							| 18 | 2 17 | remulcld |  |-  ( A e. ( ZZ>= ` 2 ) -> ( 2 x. ( 2 x. A ) ) e. RR ) | 
						
							| 19 | 18 | adantr |  |-  ( ( A e. ( ZZ>= ` 2 ) /\ M e. ( ZZ>= ` 3 ) ) -> ( 2 x. ( 2 x. A ) ) e. RR ) | 
						
							| 20 |  | 1red |  |-  ( A e. ( ZZ>= ` 2 ) -> 1 e. RR ) | 
						
							| 21 |  | eluz2nn |  |-  ( A e. ( ZZ>= ` 2 ) -> A e. NN ) | 
						
							| 22 | 21 | nnge1d |  |-  ( A e. ( ZZ>= ` 2 ) -> 1 <_ A ) | 
						
							| 23 | 20 3 3 22 | leadd2dd |  |-  ( A e. ( ZZ>= ` 2 ) -> ( A + 1 ) <_ ( A + A ) ) | 
						
							| 24 |  | eluzelcn |  |-  ( A e. ( ZZ>= ` 2 ) -> A e. CC ) | 
						
							| 25 | 24 | 2timesd |  |-  ( A e. ( ZZ>= ` 2 ) -> ( 2 x. A ) = ( A + A ) ) | 
						
							| 26 | 23 25 | breqtrrd |  |-  ( A e. ( ZZ>= ` 2 ) -> ( A + 1 ) <_ ( 2 x. A ) ) | 
						
							| 27 | 26 | adantr |  |-  ( ( A e. ( ZZ>= ` 2 ) /\ M e. ( ZZ>= ` 3 ) ) -> ( A + 1 ) <_ ( 2 x. A ) ) | 
						
							| 28 |  | 2pos |  |-  0 < 2 | 
						
							| 29 | 1 28 | pm3.2i |  |-  ( 2 e. RR /\ 0 < 2 ) | 
						
							| 30 | 29 | a1i |  |-  ( A e. ( ZZ>= ` 2 ) -> ( 2 e. RR /\ 0 < 2 ) ) | 
						
							| 31 | 5 17 30 | 3jca |  |-  ( A e. ( ZZ>= ` 2 ) -> ( ( A + 1 ) e. RR /\ ( 2 x. A ) e. RR /\ ( 2 e. RR /\ 0 < 2 ) ) ) | 
						
							| 32 | 31 | adantr |  |-  ( ( A e. ( ZZ>= ` 2 ) /\ M e. ( ZZ>= ` 3 ) ) -> ( ( A + 1 ) e. RR /\ ( 2 x. A ) e. RR /\ ( 2 e. RR /\ 0 < 2 ) ) ) | 
						
							| 33 |  | lemul2 |  |-  ( ( ( A + 1 ) e. RR /\ ( 2 x. A ) e. RR /\ ( 2 e. RR /\ 0 < 2 ) ) -> ( ( A + 1 ) <_ ( 2 x. A ) <-> ( 2 x. ( A + 1 ) ) <_ ( 2 x. ( 2 x. A ) ) ) ) | 
						
							| 34 | 32 33 | syl |  |-  ( ( A e. ( ZZ>= ` 2 ) /\ M e. ( ZZ>= ` 3 ) ) -> ( ( A + 1 ) <_ ( 2 x. A ) <-> ( 2 x. ( A + 1 ) ) <_ ( 2 x. ( 2 x. A ) ) ) ) | 
						
							| 35 | 27 34 | mpbid |  |-  ( ( A e. ( ZZ>= ` 2 ) /\ M e. ( ZZ>= ` 3 ) ) -> ( 2 x. ( A + 1 ) ) <_ ( 2 x. ( 2 x. A ) ) ) | 
						
							| 36 |  | 2cn |  |-  2 e. CC | 
						
							| 37 | 36 | a1i |  |-  ( ( A e. ( ZZ>= ` 2 ) /\ M e. ( ZZ>= ` 3 ) ) -> 2 e. CC ) | 
						
							| 38 | 24 | adantr |  |-  ( ( A e. ( ZZ>= ` 2 ) /\ M e. ( ZZ>= ` 3 ) ) -> A e. CC ) | 
						
							| 39 | 37 37 38 | mulassd |  |-  ( ( A e. ( ZZ>= ` 2 ) /\ M e. ( ZZ>= ` 3 ) ) -> ( ( 2 x. 2 ) x. A ) = ( 2 x. ( 2 x. A ) ) ) | 
						
							| 40 |  | sq2 |  |-  ( 2 ^ 2 ) = 4 | 
						
							| 41 |  | 4re |  |-  4 e. RR | 
						
							| 42 | 40 41 | eqeltri |  |-  ( 2 ^ 2 ) e. RR | 
						
							| 43 | 42 | a1i |  |-  ( ( A e. ( ZZ>= ` 2 ) /\ M e. ( ZZ>= ` 3 ) ) -> ( 2 ^ 2 ) e. RR ) | 
						
							| 44 |  | nn0sqcl |  |-  ( A e. NN0 -> ( A ^ 2 ) e. NN0 ) | 
						
							| 45 | 8 44 | syl |  |-  ( A e. ( ZZ>= ` 2 ) -> ( A ^ 2 ) e. NN0 ) | 
						
							| 46 | 45 | nn0red |  |-  ( A e. ( ZZ>= ` 2 ) -> ( A ^ 2 ) e. RR ) | 
						
							| 47 | 46 | adantr |  |-  ( ( A e. ( ZZ>= ` 2 ) /\ M e. ( ZZ>= ` 3 ) ) -> ( A ^ 2 ) e. RR ) | 
						
							| 48 |  | nnm1nn0 |  |-  ( M e. NN -> ( M - 1 ) e. NN0 ) | 
						
							| 49 | 10 48 | syl |  |-  ( M e. ( ZZ>= ` 3 ) -> ( M - 1 ) e. NN0 ) | 
						
							| 50 | 49 | adantl |  |-  ( ( A e. ( ZZ>= ` 2 ) /\ M e. ( ZZ>= ` 3 ) ) -> ( M - 1 ) e. NN0 ) | 
						
							| 51 | 9 50 | nn0expcld |  |-  ( ( A e. ( ZZ>= ` 2 ) /\ M e. ( ZZ>= ` 3 ) ) -> ( A ^ ( M - 1 ) ) e. NN0 ) | 
						
							| 52 | 51 | nn0red |  |-  ( ( A e. ( ZZ>= ` 2 ) /\ M e. ( ZZ>= ` 3 ) ) -> ( A ^ ( M - 1 ) ) e. RR ) | 
						
							| 53 |  | 2nn0 |  |-  2 e. NN0 | 
						
							| 54 | 53 | a1i |  |-  ( A e. ( ZZ>= ` 2 ) -> 2 e. NN0 ) | 
						
							| 55 | 2 3 54 | 3jca |  |-  ( A e. ( ZZ>= ` 2 ) -> ( 2 e. RR /\ A e. RR /\ 2 e. NN0 ) ) | 
						
							| 56 | 55 | adantr |  |-  ( ( A e. ( ZZ>= ` 2 ) /\ M e. ( ZZ>= ` 3 ) ) -> ( 2 e. RR /\ A e. RR /\ 2 e. NN0 ) ) | 
						
							| 57 |  | 0le2 |  |-  0 <_ 2 | 
						
							| 58 | 57 | a1i |  |-  ( ( A e. ( ZZ>= ` 2 ) /\ M e. ( ZZ>= ` 3 ) ) -> 0 <_ 2 ) | 
						
							| 59 |  | eluzle |  |-  ( A e. ( ZZ>= ` 2 ) -> 2 <_ A ) | 
						
							| 60 | 59 | adantr |  |-  ( ( A e. ( ZZ>= ` 2 ) /\ M e. ( ZZ>= ` 3 ) ) -> 2 <_ A ) | 
						
							| 61 |  | leexp1a |  |-  ( ( ( 2 e. RR /\ A e. RR /\ 2 e. NN0 ) /\ ( 0 <_ 2 /\ 2 <_ A ) ) -> ( 2 ^ 2 ) <_ ( A ^ 2 ) ) | 
						
							| 62 | 56 58 60 61 | syl12anc |  |-  ( ( A e. ( ZZ>= ` 2 ) /\ M e. ( ZZ>= ` 3 ) ) -> ( 2 ^ 2 ) <_ ( A ^ 2 ) ) | 
						
							| 63 |  | 2p1e3 |  |-  ( 2 + 1 ) = 3 | 
						
							| 64 |  | eluzle |  |-  ( M e. ( ZZ>= ` 3 ) -> 3 <_ M ) | 
						
							| 65 | 63 64 | eqbrtrid |  |-  ( M e. ( ZZ>= ` 3 ) -> ( 2 + 1 ) <_ M ) | 
						
							| 66 |  | 1red |  |-  ( M e. ( ZZ>= ` 3 ) -> 1 e. RR ) | 
						
							| 67 |  | eluzelre |  |-  ( M e. ( ZZ>= ` 3 ) -> M e. RR ) | 
						
							| 68 |  | leaddsub |  |-  ( ( 2 e. RR /\ 1 e. RR /\ M e. RR ) -> ( ( 2 + 1 ) <_ M <-> 2 <_ ( M - 1 ) ) ) | 
						
							| 69 | 1 66 67 68 | mp3an2i |  |-  ( M e. ( ZZ>= ` 3 ) -> ( ( 2 + 1 ) <_ M <-> 2 <_ ( M - 1 ) ) ) | 
						
							| 70 | 65 69 | mpbid |  |-  ( M e. ( ZZ>= ` 3 ) -> 2 <_ ( M - 1 ) ) | 
						
							| 71 | 70 | adantl |  |-  ( ( A e. ( ZZ>= ` 2 ) /\ M e. ( ZZ>= ` 3 ) ) -> 2 <_ ( M - 1 ) ) | 
						
							| 72 | 3 | adantr |  |-  ( ( A e. ( ZZ>= ` 2 ) /\ M e. ( ZZ>= ` 3 ) ) -> A e. RR ) | 
						
							| 73 |  | 2z |  |-  2 e. ZZ | 
						
							| 74 | 73 | a1i |  |-  ( ( A e. ( ZZ>= ` 2 ) /\ M e. ( ZZ>= ` 3 ) ) -> 2 e. ZZ ) | 
						
							| 75 |  | eluzelz |  |-  ( M e. ( ZZ>= ` 3 ) -> M e. ZZ ) | 
						
							| 76 |  | peano2zm |  |-  ( M e. ZZ -> ( M - 1 ) e. ZZ ) | 
						
							| 77 | 75 76 | syl |  |-  ( M e. ( ZZ>= ` 3 ) -> ( M - 1 ) e. ZZ ) | 
						
							| 78 | 77 | adantl |  |-  ( ( A e. ( ZZ>= ` 2 ) /\ M e. ( ZZ>= ` 3 ) ) -> ( M - 1 ) e. ZZ ) | 
						
							| 79 |  | eluz2gt1 |  |-  ( A e. ( ZZ>= ` 2 ) -> 1 < A ) | 
						
							| 80 | 79 | adantr |  |-  ( ( A e. ( ZZ>= ` 2 ) /\ M e. ( ZZ>= ` 3 ) ) -> 1 < A ) | 
						
							| 81 | 72 74 78 80 | leexp2d |  |-  ( ( A e. ( ZZ>= ` 2 ) /\ M e. ( ZZ>= ` 3 ) ) -> ( 2 <_ ( M - 1 ) <-> ( A ^ 2 ) <_ ( A ^ ( M - 1 ) ) ) ) | 
						
							| 82 | 71 81 | mpbid |  |-  ( ( A e. ( ZZ>= ` 2 ) /\ M e. ( ZZ>= ` 3 ) ) -> ( A ^ 2 ) <_ ( A ^ ( M - 1 ) ) ) | 
						
							| 83 | 43 47 52 62 82 | letrd |  |-  ( ( A e. ( ZZ>= ` 2 ) /\ M e. ( ZZ>= ` 3 ) ) -> ( 2 ^ 2 ) <_ ( A ^ ( M - 1 ) ) ) | 
						
							| 84 | 36 | sqvali |  |-  ( 2 ^ 2 ) = ( 2 x. 2 ) | 
						
							| 85 | 84 | eqcomi |  |-  ( 2 x. 2 ) = ( 2 ^ 2 ) | 
						
							| 86 | 85 | a1i |  |-  ( ( A e. ( ZZ>= ` 2 ) /\ M e. ( ZZ>= ` 3 ) ) -> ( 2 x. 2 ) = ( 2 ^ 2 ) ) | 
						
							| 87 |  | eluz2n0 |  |-  ( A e. ( ZZ>= ` 2 ) -> A =/= 0 ) | 
						
							| 88 | 87 | adantr |  |-  ( ( A e. ( ZZ>= ` 2 ) /\ M e. ( ZZ>= ` 3 ) ) -> A =/= 0 ) | 
						
							| 89 | 75 | adantl |  |-  ( ( A e. ( ZZ>= ` 2 ) /\ M e. ( ZZ>= ` 3 ) ) -> M e. ZZ ) | 
						
							| 90 | 38 88 89 | expm1d |  |-  ( ( A e. ( ZZ>= ` 2 ) /\ M e. ( ZZ>= ` 3 ) ) -> ( A ^ ( M - 1 ) ) = ( ( A ^ M ) / A ) ) | 
						
							| 91 | 90 | eqcomd |  |-  ( ( A e. ( ZZ>= ` 2 ) /\ M e. ( ZZ>= ` 3 ) ) -> ( ( A ^ M ) / A ) = ( A ^ ( M - 1 ) ) ) | 
						
							| 92 | 83 86 91 | 3brtr4d |  |-  ( ( A e. ( ZZ>= ` 2 ) /\ M e. ( ZZ>= ` 3 ) ) -> ( 2 x. 2 ) <_ ( ( A ^ M ) / A ) ) | 
						
							| 93 | 1 1 | remulcli |  |-  ( 2 x. 2 ) e. RR | 
						
							| 94 | 21 | nngt0d |  |-  ( A e. ( ZZ>= ` 2 ) -> 0 < A ) | 
						
							| 95 | 3 94 | jca |  |-  ( A e. ( ZZ>= ` 2 ) -> ( A e. RR /\ 0 < A ) ) | 
						
							| 96 | 95 | adantr |  |-  ( ( A e. ( ZZ>= ` 2 ) /\ M e. ( ZZ>= ` 3 ) ) -> ( A e. RR /\ 0 < A ) ) | 
						
							| 97 |  | lemuldiv |  |-  ( ( ( 2 x. 2 ) e. RR /\ ( A ^ M ) e. RR /\ ( A e. RR /\ 0 < A ) ) -> ( ( ( 2 x. 2 ) x. A ) <_ ( A ^ M ) <-> ( 2 x. 2 ) <_ ( ( A ^ M ) / A ) ) ) | 
						
							| 98 | 93 14 96 97 | mp3an2i |  |-  ( ( A e. ( ZZ>= ` 2 ) /\ M e. ( ZZ>= ` 3 ) ) -> ( ( ( 2 x. 2 ) x. A ) <_ ( A ^ M ) <-> ( 2 x. 2 ) <_ ( ( A ^ M ) / A ) ) ) | 
						
							| 99 | 92 98 | mpbird |  |-  ( ( A e. ( ZZ>= ` 2 ) /\ M e. ( ZZ>= ` 3 ) ) -> ( ( 2 x. 2 ) x. A ) <_ ( A ^ M ) ) | 
						
							| 100 | 39 99 | eqbrtrrd |  |-  ( ( A e. ( ZZ>= ` 2 ) /\ M e. ( ZZ>= ` 3 ) ) -> ( 2 x. ( 2 x. A ) ) <_ ( A ^ M ) ) | 
						
							| 101 | 7 19 14 35 100 | letrd |  |-  ( ( A e. ( ZZ>= ` 2 ) /\ M e. ( ZZ>= ` 3 ) ) -> ( 2 x. ( A + 1 ) ) <_ ( A ^ M ) ) | 
						
							| 102 | 14 | lep1d |  |-  ( ( A e. ( ZZ>= ` 2 ) /\ M e. ( ZZ>= ` 3 ) ) -> ( A ^ M ) <_ ( ( A ^ M ) + 1 ) ) | 
						
							| 103 | 7 14 16 101 102 | letrd |  |-  ( ( A e. ( ZZ>= ` 2 ) /\ M e. ( ZZ>= ` 3 ) ) -> ( 2 x. ( A + 1 ) ) <_ ( ( A ^ M ) + 1 ) ) | 
						
							| 104 |  | nnnn0 |  |-  ( A e. NN -> A e. NN0 ) | 
						
							| 105 |  | nn0p1gt0 |  |-  ( A e. NN0 -> 0 < ( A + 1 ) ) | 
						
							| 106 | 21 104 105 | 3syl |  |-  ( A e. ( ZZ>= ` 2 ) -> 0 < ( A + 1 ) ) | 
						
							| 107 | 5 106 | jca |  |-  ( A e. ( ZZ>= ` 2 ) -> ( ( A + 1 ) e. RR /\ 0 < ( A + 1 ) ) ) | 
						
							| 108 | 107 | adantr |  |-  ( ( A e. ( ZZ>= ` 2 ) /\ M e. ( ZZ>= ` 3 ) ) -> ( ( A + 1 ) e. RR /\ 0 < ( A + 1 ) ) ) | 
						
							| 109 |  | lemuldiv |  |-  ( ( 2 e. RR /\ ( ( A ^ M ) + 1 ) e. RR /\ ( ( A + 1 ) e. RR /\ 0 < ( A + 1 ) ) ) -> ( ( 2 x. ( A + 1 ) ) <_ ( ( A ^ M ) + 1 ) <-> 2 <_ ( ( ( A ^ M ) + 1 ) / ( A + 1 ) ) ) ) | 
						
							| 110 | 1 16 108 109 | mp3an2i |  |-  ( ( A e. ( ZZ>= ` 2 ) /\ M e. ( ZZ>= ` 3 ) ) -> ( ( 2 x. ( A + 1 ) ) <_ ( ( A ^ M ) + 1 ) <-> 2 <_ ( ( ( A ^ M ) + 1 ) / ( A + 1 ) ) ) ) | 
						
							| 111 | 103 110 | mpbid |  |-  ( ( A e. ( ZZ>= ` 2 ) /\ M e. ( ZZ>= ` 3 ) ) -> 2 <_ ( ( ( A ^ M ) + 1 ) / ( A + 1 ) ) ) | 
						
							| 112 | 111 | 3adant3 |  |-  ( ( A e. ( ZZ>= ` 2 ) /\ M e. ( ZZ>= ` 3 ) /\ S = ( ( ( A ^ M ) + 1 ) / ( A + 1 ) ) ) -> 2 <_ ( ( ( A ^ M ) + 1 ) / ( A + 1 ) ) ) | 
						
							| 113 |  | breq2 |  |-  ( S = ( ( ( A ^ M ) + 1 ) / ( A + 1 ) ) -> ( 2 <_ S <-> 2 <_ ( ( ( A ^ M ) + 1 ) / ( A + 1 ) ) ) ) | 
						
							| 114 | 113 | 3ad2ant3 |  |-  ( ( A e. ( ZZ>= ` 2 ) /\ M e. ( ZZ>= ` 3 ) /\ S = ( ( ( A ^ M ) + 1 ) / ( A + 1 ) ) ) -> ( 2 <_ S <-> 2 <_ ( ( ( A ^ M ) + 1 ) / ( A + 1 ) ) ) ) | 
						
							| 115 | 112 114 | mpbird |  |-  ( ( A e. ( ZZ>= ` 2 ) /\ M e. ( ZZ>= ` 3 ) /\ S = ( ( ( A ^ M ) + 1 ) / ( A + 1 ) ) ) -> 2 <_ S ) |