Metamath Proof Explorer


Theorem eluz2n0

Description: An integer greater than or equal to 2 is not 0. (Contributed by AV, 25-May-2020)

Ref Expression
Assertion eluz2n0 ( 𝑁 ∈ ( ℤ ‘ 2 ) → 𝑁 ≠ 0 )

Proof

Step Hyp Ref Expression
1 eluz2nn ( 𝑁 ∈ ( ℤ ‘ 2 ) → 𝑁 ∈ ℕ )
2 1 nnne0d ( 𝑁 ∈ ( ℤ ‘ 2 ) → 𝑁 ≠ 0 )