Metamath Proof Explorer


Theorem lighneal

Description: If a power of a prime P (i.e. P ^ M ) is of the form 2 ^ N - 1 , then N must be prime and M must be 1 . Generalization of mersenne (where M = 1 is a prerequisite). Theorem of S. Ligh and L. Neal (1974) "A note on Mersenne mumbers", Mathematics Magazine, 47:4, 231-233. (Contributed by AV, 16-Aug-2021)

Ref Expression
Assertion lighneal PMN2N1=PMM=1N

Proof

Step Hyp Ref Expression
1 lighneallem1 P=2MN2N1PM
2 eqneqall 2N1=PM2N1PMM=1
3 1 2 syl5com P=2MN2N1=PMM=1
4 3 3exp P=2MN2N1=PMM=1
5 4 a1d P=2PMN2N1=PMM=1
6 eldifsn P2PP2
7 lighneallem2 P2MN2N2N1=PMM=1
8 7 3exp P2MN2N2N1=PMM=1
9 8 3exp P2MN2N2N1=PMM=1
10 9 com3r NP2M2N2N1=PMM=1
11 10 com24 N2NMP22N1=PMM=1
12 lighneallem3 P2MN¬2N2M2N1=PMM=1
13 12 3exp P2MN¬2N2M2N1=PMM=1
14 13 3exp P2MN¬2N2M2N1=PMM=1
15 14 com24 P2¬2N2MNM2N1=PMM=1
16 15 com14 M¬2N2MNP22N1=PMM=1
17 16 expcomd M2M¬2NNP22N1=PMM=1
18 lighneallem4 P2MN¬2N¬2M2N1=PMM=1
19 18 3exp P2MN¬2N¬2M2N1=PMM=1
20 19 3exp P2MN¬2N¬2M2N1=PMM=1
21 20 com24 P2¬2N¬2MNM2N1=PMM=1
22 21 com14 M¬2N¬2MNP22N1=PMM=1
23 22 expcomd M¬2M¬2NNP22N1=PMM=1
24 17 23 pm2.61d M¬2NNP22N1=PMM=1
25 24 com13 N¬2NMP22N1=PMM=1
26 11 25 pm2.61d NMP22N1=PMM=1
27 26 com13 P2MN2N1=PMM=1
28 6 27 sylbir PP2MN2N1=PMM=1
29 28 expcom P2PMN2N1=PMM=1
30 5 29 pm2.61ine PMN2N1=PMM=1
31 30 3imp1 PMN2N1=PMM=1
32 oveq2 M=1PM=P1
33 32 eqeq2d M=12N1=PM2N1=P1
34 33 adantl PMNM=12N1=PM2N1=P1
35 prmnn PP
36 35 nncnd PP
37 36 3ad2ant1 PMNP
38 37 exp1d PMNP1=P
39 38 eqeq2d PMN2N1=P12N1=P
40 nnz NN
41 40 3ad2ant3 PMNN
42 simpl1 PMN2N1=PP
43 eleq1 2N1=P2N1P
44 43 adantl PMN2N1=P2N1P
45 42 44 mpbird PMN2N1=P2N1
46 mersenne N2N1N
47 41 45 46 syl2an2r PMN2N1=PN
48 47 ex PMN2N1=PN
49 39 48 sylbid PMN2N1=P1N
50 49 adantr PMNM=12N1=P1N
51 34 50 sylbid PMNM=12N1=PMN
52 51 impancom PMN2N1=PMM=1N
53 31 52 jcai PMN2N1=PMM=1N