Description: If a power of a prime P (i.e. P ^ M ) is of the form 2 ^ N - 1 , then N must be prime and M must be 1 . Generalization of mersenne (where M = 1 is a prerequisite). Theorem of S. Ligh and L. Neal (1974) "A note on Mersenne mumbers", Mathematics Magazine, 47:4, 231-233. (Contributed by AV, 16-Aug-2021)
Ref | Expression | ||
---|---|---|---|
Assertion | lighneal | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | lighneallem1 | |
|
2 | eqneqall | |
|
3 | 1 2 | syl5com | |
4 | 3 | 3exp | |
5 | 4 | a1d | |
6 | eldifsn | |
|
7 | lighneallem2 | |
|
8 | 7 | 3exp | |
9 | 8 | 3exp | |
10 | 9 | com3r | |
11 | 10 | com24 | |
12 | lighneallem3 | |
|
13 | 12 | 3exp | |
14 | 13 | 3exp | |
15 | 14 | com24 | |
16 | 15 | com14 | |
17 | 16 | expcomd | |
18 | lighneallem4 | |
|
19 | 18 | 3exp | |
20 | 19 | 3exp | |
21 | 20 | com24 | |
22 | 21 | com14 | |
23 | 22 | expcomd | |
24 | 17 23 | pm2.61d | |
25 | 24 | com13 | |
26 | 11 25 | pm2.61d | |
27 | 26 | com13 | |
28 | 6 27 | sylbir | |
29 | 28 | expcom | |
30 | 5 29 | pm2.61ine | |
31 | 30 | 3imp1 | |
32 | oveq2 | |
|
33 | 32 | eqeq2d | |
34 | 33 | adantl | |
35 | prmnn | |
|
36 | 35 | nncnd | |
37 | 36 | 3ad2ant1 | |
38 | 37 | exp1d | |
39 | 38 | eqeq2d | |
40 | nnz | |
|
41 | 40 | 3ad2ant3 | |
42 | simpl1 | |
|
43 | eleq1 | |
|
44 | 43 | adantl | |
45 | 42 44 | mpbird | |
46 | mersenne | |
|
47 | 41 45 46 | syl2an2r | |
48 | 47 | ex | |
49 | 39 48 | sylbid | |
50 | 49 | adantr | |
51 | 34 50 | sylbid | |
52 | 51 | impancom | |
53 | 31 52 | jcai | |