| Step | Hyp | Ref | Expression | 
						
							| 1 |  | simpl |  |-  ( ( A e. RR /\ B e. RR+ ) -> A e. RR ) | 
						
							| 2 |  | rpregt0 |  |-  ( B e. RR+ -> ( B e. RR /\ 0 < B ) ) | 
						
							| 3 | 2 | adantl |  |-  ( ( A e. RR /\ B e. RR+ ) -> ( B e. RR /\ 0 < B ) ) | 
						
							| 4 |  | 1re |  |-  1 e. RR | 
						
							| 5 |  | 0lt1 |  |-  0 < 1 | 
						
							| 6 | 4 5 | pm3.2i |  |-  ( 1 e. RR /\ 0 < 1 ) | 
						
							| 7 | 6 | a1i |  |-  ( ( A e. RR /\ B e. RR+ ) -> ( 1 e. RR /\ 0 < 1 ) ) | 
						
							| 8 |  | lediv23 |  |-  ( ( A e. RR /\ ( B e. RR /\ 0 < B ) /\ ( 1 e. RR /\ 0 < 1 ) ) -> ( ( A / B ) <_ 1 <-> ( A / 1 ) <_ B ) ) | 
						
							| 9 | 1 3 7 8 | syl3anc |  |-  ( ( A e. RR /\ B e. RR+ ) -> ( ( A / B ) <_ 1 <-> ( A / 1 ) <_ B ) ) | 
						
							| 10 |  | recn |  |-  ( A e. RR -> A e. CC ) | 
						
							| 11 | 10 | div1d |  |-  ( A e. RR -> ( A / 1 ) = A ) | 
						
							| 12 | 11 | adantr |  |-  ( ( A e. RR /\ B e. RR+ ) -> ( A / 1 ) = A ) | 
						
							| 13 | 12 | breq1d |  |-  ( ( A e. RR /\ B e. RR+ ) -> ( ( A / 1 ) <_ B <-> A <_ B ) ) | 
						
							| 14 | 9 13 | bitrd |  |-  ( ( A e. RR /\ B e. RR+ ) -> ( ( A / B ) <_ 1 <-> A <_ B ) ) |