| Step | Hyp | Ref | Expression | 
						
							| 1 |  | olc |  |-  ( ( Q mod 8 ) = 7 -> ( ( Q mod 8 ) = 1 \/ ( Q mod 8 ) = 7 ) ) | 
						
							| 2 |  | ovex |  |-  ( Q mod 8 ) e. _V | 
						
							| 3 |  | elprg |  |-  ( ( Q mod 8 ) e. _V -> ( ( Q mod 8 ) e. { 1 , 7 } <-> ( ( Q mod 8 ) = 1 \/ ( Q mod 8 ) = 7 ) ) ) | 
						
							| 4 | 2 3 | mp1i |  |-  ( ( Q mod 8 ) = 7 -> ( ( Q mod 8 ) e. { 1 , 7 } <-> ( ( Q mod 8 ) = 1 \/ ( Q mod 8 ) = 7 ) ) ) | 
						
							| 5 | 1 4 | mpbird |  |-  ( ( Q mod 8 ) = 7 -> ( Q mod 8 ) e. { 1 , 7 } ) | 
						
							| 6 |  | 2lgs |  |-  ( Q e. Prime -> ( ( 2 /L Q ) = 1 <-> ( Q mod 8 ) e. { 1 , 7 } ) ) | 
						
							| 7 | 6 | ad2antlr |  |-  ( ( ( P e. Prime /\ Q e. Prime ) /\ Q = ( ( 2 x. P ) + 1 ) ) -> ( ( 2 /L Q ) = 1 <-> ( Q mod 8 ) e. { 1 , 7 } ) ) | 
						
							| 8 |  | 2z |  |-  2 e. ZZ | 
						
							| 9 |  | simpr |  |-  ( ( P e. Prime /\ Q e. Prime ) -> Q e. Prime ) | 
						
							| 10 | 9 | adantr |  |-  ( ( ( P e. Prime /\ Q e. Prime ) /\ Q = ( ( 2 x. P ) + 1 ) ) -> Q e. Prime ) | 
						
							| 11 |  | 2re |  |-  2 e. RR | 
						
							| 12 | 11 | a1i |  |-  ( ( ( P e. Prime /\ Q e. Prime ) /\ Q = ( ( 2 x. P ) + 1 ) ) -> 2 e. RR ) | 
						
							| 13 |  | 2m1e1 |  |-  ( 2 - 1 ) = 1 | 
						
							| 14 | 11 | a1i |  |-  ( P e. Prime -> 2 e. RR ) | 
						
							| 15 |  | prmnn |  |-  ( P e. Prime -> P e. NN ) | 
						
							| 16 | 15 | nnred |  |-  ( P e. Prime -> P e. RR ) | 
						
							| 17 |  | 1lt2 |  |-  1 < 2 | 
						
							| 18 | 17 | a1i |  |-  ( P e. Prime -> 1 < 2 ) | 
						
							| 19 |  | prmgt1 |  |-  ( P e. Prime -> 1 < P ) | 
						
							| 20 | 14 16 18 19 | mulgt1d |  |-  ( P e. Prime -> 1 < ( 2 x. P ) ) | 
						
							| 21 | 13 20 | eqbrtrid |  |-  ( P e. Prime -> ( 2 - 1 ) < ( 2 x. P ) ) | 
						
							| 22 |  | 1red |  |-  ( P e. Prime -> 1 e. RR ) | 
						
							| 23 |  | 2nn |  |-  2 e. NN | 
						
							| 24 | 23 | a1i |  |-  ( P e. Prime -> 2 e. NN ) | 
						
							| 25 | 24 15 | nnmulcld |  |-  ( P e. Prime -> ( 2 x. P ) e. NN ) | 
						
							| 26 | 25 | nnred |  |-  ( P e. Prime -> ( 2 x. P ) e. RR ) | 
						
							| 27 | 14 22 26 | ltsubaddd |  |-  ( P e. Prime -> ( ( 2 - 1 ) < ( 2 x. P ) <-> 2 < ( ( 2 x. P ) + 1 ) ) ) | 
						
							| 28 | 21 27 | mpbid |  |-  ( P e. Prime -> 2 < ( ( 2 x. P ) + 1 ) ) | 
						
							| 29 | 28 | ad2antrr |  |-  ( ( ( P e. Prime /\ Q e. Prime ) /\ Q = ( ( 2 x. P ) + 1 ) ) -> 2 < ( ( 2 x. P ) + 1 ) ) | 
						
							| 30 |  | breq2 |  |-  ( Q = ( ( 2 x. P ) + 1 ) -> ( 2 < Q <-> 2 < ( ( 2 x. P ) + 1 ) ) ) | 
						
							| 31 | 30 | adantl |  |-  ( ( ( P e. Prime /\ Q e. Prime ) /\ Q = ( ( 2 x. P ) + 1 ) ) -> ( 2 < Q <-> 2 < ( ( 2 x. P ) + 1 ) ) ) | 
						
							| 32 | 29 31 | mpbird |  |-  ( ( ( P e. Prime /\ Q e. Prime ) /\ Q = ( ( 2 x. P ) + 1 ) ) -> 2 < Q ) | 
						
							| 33 | 12 32 | gtned |  |-  ( ( ( P e. Prime /\ Q e. Prime ) /\ Q = ( ( 2 x. P ) + 1 ) ) -> Q =/= 2 ) | 
						
							| 34 |  | eldifsn |  |-  ( Q e. ( Prime \ { 2 } ) <-> ( Q e. Prime /\ Q =/= 2 ) ) | 
						
							| 35 | 10 33 34 | sylanbrc |  |-  ( ( ( P e. Prime /\ Q e. Prime ) /\ Q = ( ( 2 x. P ) + 1 ) ) -> Q e. ( Prime \ { 2 } ) ) | 
						
							| 36 |  | lgsqrmodndvds |  |-  ( ( 2 e. ZZ /\ Q e. ( Prime \ { 2 } ) ) -> ( ( 2 /L Q ) = 1 -> E. m e. ZZ ( ( ( m ^ 2 ) mod Q ) = ( 2 mod Q ) /\ -. Q || m ) ) ) | 
						
							| 37 | 8 35 36 | sylancr |  |-  ( ( ( P e. Prime /\ Q e. Prime ) /\ Q = ( ( 2 x. P ) + 1 ) ) -> ( ( 2 /L Q ) = 1 -> E. m e. ZZ ( ( ( m ^ 2 ) mod Q ) = ( 2 mod Q ) /\ -. Q || m ) ) ) | 
						
							| 38 |  | prmnn |  |-  ( Q e. Prime -> Q e. NN ) | 
						
							| 39 | 38 | nncnd |  |-  ( Q e. Prime -> Q e. CC ) | 
						
							| 40 | 39 | adantl |  |-  ( ( P e. Prime /\ Q e. Prime ) -> Q e. CC ) | 
						
							| 41 |  | 1cnd |  |-  ( ( P e. Prime /\ Q e. Prime ) -> 1 e. CC ) | 
						
							| 42 |  | 2cnd |  |-  ( P e. Prime -> 2 e. CC ) | 
						
							| 43 | 15 | nncnd |  |-  ( P e. Prime -> P e. CC ) | 
						
							| 44 | 42 43 | mulcld |  |-  ( P e. Prime -> ( 2 x. P ) e. CC ) | 
						
							| 45 | 44 | adantr |  |-  ( ( P e. Prime /\ Q e. Prime ) -> ( 2 x. P ) e. CC ) | 
						
							| 46 | 40 41 45 | subadd2d |  |-  ( ( P e. Prime /\ Q e. Prime ) -> ( ( Q - 1 ) = ( 2 x. P ) <-> ( ( 2 x. P ) + 1 ) = Q ) ) | 
						
							| 47 |  | prmz |  |-  ( Q e. Prime -> Q e. ZZ ) | 
						
							| 48 |  | peano2zm |  |-  ( Q e. ZZ -> ( Q - 1 ) e. ZZ ) | 
						
							| 49 | 47 48 | syl |  |-  ( Q e. Prime -> ( Q - 1 ) e. ZZ ) | 
						
							| 50 | 49 | zcnd |  |-  ( Q e. Prime -> ( Q - 1 ) e. CC ) | 
						
							| 51 | 50 | adantl |  |-  ( ( P e. Prime /\ Q e. Prime ) -> ( Q - 1 ) e. CC ) | 
						
							| 52 | 43 | adantr |  |-  ( ( P e. Prime /\ Q e. Prime ) -> P e. CC ) | 
						
							| 53 |  | 2cnne0 |  |-  ( 2 e. CC /\ 2 =/= 0 ) | 
						
							| 54 | 53 | a1i |  |-  ( ( P e. Prime /\ Q e. Prime ) -> ( 2 e. CC /\ 2 =/= 0 ) ) | 
						
							| 55 |  | divmul2 |  |-  ( ( ( Q - 1 ) e. CC /\ P e. CC /\ ( 2 e. CC /\ 2 =/= 0 ) ) -> ( ( ( Q - 1 ) / 2 ) = P <-> ( Q - 1 ) = ( 2 x. P ) ) ) | 
						
							| 56 | 51 52 54 55 | syl3anc |  |-  ( ( P e. Prime /\ Q e. Prime ) -> ( ( ( Q - 1 ) / 2 ) = P <-> ( Q - 1 ) = ( 2 x. P ) ) ) | 
						
							| 57 |  | eqcom |  |-  ( Q = ( ( 2 x. P ) + 1 ) <-> ( ( 2 x. P ) + 1 ) = Q ) | 
						
							| 58 | 57 | a1i |  |-  ( ( P e. Prime /\ Q e. Prime ) -> ( Q = ( ( 2 x. P ) + 1 ) <-> ( ( 2 x. P ) + 1 ) = Q ) ) | 
						
							| 59 | 46 56 58 | 3bitr4rd |  |-  ( ( P e. Prime /\ Q e. Prime ) -> ( Q = ( ( 2 x. P ) + 1 ) <-> ( ( Q - 1 ) / 2 ) = P ) ) | 
						
							| 60 | 59 | biimpa |  |-  ( ( ( P e. Prime /\ Q e. Prime ) /\ Q = ( ( 2 x. P ) + 1 ) ) -> ( ( Q - 1 ) / 2 ) = P ) | 
						
							| 61 |  | oveq2 |  |-  ( ( ( Q - 1 ) / 2 ) = P -> ( 2 ^ ( ( Q - 1 ) / 2 ) ) = ( 2 ^ P ) ) | 
						
							| 62 |  | zsqcl |  |-  ( m e. ZZ -> ( m ^ 2 ) e. ZZ ) | 
						
							| 63 | 62 | ad2antlr |  |-  ( ( ( ( ( P e. Prime /\ Q e. Prime ) /\ Q = ( ( 2 x. P ) + 1 ) ) /\ m e. ZZ ) /\ ( ( m ^ 2 ) mod Q ) = ( 2 mod Q ) ) -> ( m ^ 2 ) e. ZZ ) | 
						
							| 64 | 8 | a1i |  |-  ( ( ( ( ( P e. Prime /\ Q e. Prime ) /\ Q = ( ( 2 x. P ) + 1 ) ) /\ m e. ZZ ) /\ ( ( m ^ 2 ) mod Q ) = ( 2 mod Q ) ) -> 2 e. ZZ ) | 
						
							| 65 |  | oveq1 |  |-  ( Q = ( ( 2 x. P ) + 1 ) -> ( Q - 1 ) = ( ( ( 2 x. P ) + 1 ) - 1 ) ) | 
						
							| 66 | 65 | adantl |  |-  ( ( ( P e. Prime /\ Q e. Prime ) /\ Q = ( ( 2 x. P ) + 1 ) ) -> ( Q - 1 ) = ( ( ( 2 x. P ) + 1 ) - 1 ) ) | 
						
							| 67 | 66 | oveq1d |  |-  ( ( ( P e. Prime /\ Q e. Prime ) /\ Q = ( ( 2 x. P ) + 1 ) ) -> ( ( Q - 1 ) / 2 ) = ( ( ( ( 2 x. P ) + 1 ) - 1 ) / 2 ) ) | 
						
							| 68 |  | pncan1 |  |-  ( ( 2 x. P ) e. CC -> ( ( ( 2 x. P ) + 1 ) - 1 ) = ( 2 x. P ) ) | 
						
							| 69 | 44 68 | syl |  |-  ( P e. Prime -> ( ( ( 2 x. P ) + 1 ) - 1 ) = ( 2 x. P ) ) | 
						
							| 70 | 69 | oveq1d |  |-  ( P e. Prime -> ( ( ( ( 2 x. P ) + 1 ) - 1 ) / 2 ) = ( ( 2 x. P ) / 2 ) ) | 
						
							| 71 |  | 2ne0 |  |-  2 =/= 0 | 
						
							| 72 | 71 | a1i |  |-  ( P e. Prime -> 2 =/= 0 ) | 
						
							| 73 | 43 42 72 | divcan3d |  |-  ( P e. Prime -> ( ( 2 x. P ) / 2 ) = P ) | 
						
							| 74 | 70 73 | eqtrd |  |-  ( P e. Prime -> ( ( ( ( 2 x. P ) + 1 ) - 1 ) / 2 ) = P ) | 
						
							| 75 | 74 | ad2antrr |  |-  ( ( ( P e. Prime /\ Q e. Prime ) /\ Q = ( ( 2 x. P ) + 1 ) ) -> ( ( ( ( 2 x. P ) + 1 ) - 1 ) / 2 ) = P ) | 
						
							| 76 | 67 75 | eqtrd |  |-  ( ( ( P e. Prime /\ Q e. Prime ) /\ Q = ( ( 2 x. P ) + 1 ) ) -> ( ( Q - 1 ) / 2 ) = P ) | 
						
							| 77 | 15 | nnnn0d |  |-  ( P e. Prime -> P e. NN0 ) | 
						
							| 78 | 77 | ad2antrr |  |-  ( ( ( P e. Prime /\ Q e. Prime ) /\ Q = ( ( 2 x. P ) + 1 ) ) -> P e. NN0 ) | 
						
							| 79 | 76 78 | eqeltrd |  |-  ( ( ( P e. Prime /\ Q e. Prime ) /\ Q = ( ( 2 x. P ) + 1 ) ) -> ( ( Q - 1 ) / 2 ) e. NN0 ) | 
						
							| 80 | 38 | nnrpd |  |-  ( Q e. Prime -> Q e. RR+ ) | 
						
							| 81 | 80 | ad2antlr |  |-  ( ( ( P e. Prime /\ Q e. Prime ) /\ Q = ( ( 2 x. P ) + 1 ) ) -> Q e. RR+ ) | 
						
							| 82 | 79 81 | jca |  |-  ( ( ( P e. Prime /\ Q e. Prime ) /\ Q = ( ( 2 x. P ) + 1 ) ) -> ( ( ( Q - 1 ) / 2 ) e. NN0 /\ Q e. RR+ ) ) | 
						
							| 83 | 82 | ad2antrr |  |-  ( ( ( ( ( P e. Prime /\ Q e. Prime ) /\ Q = ( ( 2 x. P ) + 1 ) ) /\ m e. ZZ ) /\ ( ( m ^ 2 ) mod Q ) = ( 2 mod Q ) ) -> ( ( ( Q - 1 ) / 2 ) e. NN0 /\ Q e. RR+ ) ) | 
						
							| 84 |  | simpr |  |-  ( ( ( ( ( P e. Prime /\ Q e. Prime ) /\ Q = ( ( 2 x. P ) + 1 ) ) /\ m e. ZZ ) /\ ( ( m ^ 2 ) mod Q ) = ( 2 mod Q ) ) -> ( ( m ^ 2 ) mod Q ) = ( 2 mod Q ) ) | 
						
							| 85 |  | modexp |  |-  ( ( ( ( m ^ 2 ) e. ZZ /\ 2 e. ZZ ) /\ ( ( ( Q - 1 ) / 2 ) e. NN0 /\ Q e. RR+ ) /\ ( ( m ^ 2 ) mod Q ) = ( 2 mod Q ) ) -> ( ( ( m ^ 2 ) ^ ( ( Q - 1 ) / 2 ) ) mod Q ) = ( ( 2 ^ ( ( Q - 1 ) / 2 ) ) mod Q ) ) | 
						
							| 86 | 63 64 83 84 85 | syl211anc |  |-  ( ( ( ( ( P e. Prime /\ Q e. Prime ) /\ Q = ( ( 2 x. P ) + 1 ) ) /\ m e. ZZ ) /\ ( ( m ^ 2 ) mod Q ) = ( 2 mod Q ) ) -> ( ( ( m ^ 2 ) ^ ( ( Q - 1 ) / 2 ) ) mod Q ) = ( ( 2 ^ ( ( Q - 1 ) / 2 ) ) mod Q ) ) | 
						
							| 87 | 86 | ex |  |-  ( ( ( ( P e. Prime /\ Q e. Prime ) /\ Q = ( ( 2 x. P ) + 1 ) ) /\ m e. ZZ ) -> ( ( ( m ^ 2 ) mod Q ) = ( 2 mod Q ) -> ( ( ( m ^ 2 ) ^ ( ( Q - 1 ) / 2 ) ) mod Q ) = ( ( 2 ^ ( ( Q - 1 ) / 2 ) ) mod Q ) ) ) | 
						
							| 88 | 87 | adantr |  |-  ( ( ( ( ( P e. Prime /\ Q e. Prime ) /\ Q = ( ( 2 x. P ) + 1 ) ) /\ m e. ZZ ) /\ -. Q || m ) -> ( ( ( m ^ 2 ) mod Q ) = ( 2 mod Q ) -> ( ( ( m ^ 2 ) ^ ( ( Q - 1 ) / 2 ) ) mod Q ) = ( ( 2 ^ ( ( Q - 1 ) / 2 ) ) mod Q ) ) ) | 
						
							| 89 |  | 2cnd |  |-  ( Q e. Prime -> 2 e. CC ) | 
						
							| 90 | 71 | a1i |  |-  ( Q e. Prime -> 2 =/= 0 ) | 
						
							| 91 | 50 89 90 | divcan2d |  |-  ( Q e. Prime -> ( 2 x. ( ( Q - 1 ) / 2 ) ) = ( Q - 1 ) ) | 
						
							| 92 | 91 | eqcomd |  |-  ( Q e. Prime -> ( Q - 1 ) = ( 2 x. ( ( Q - 1 ) / 2 ) ) ) | 
						
							| 93 | 92 | oveq2d |  |-  ( Q e. Prime -> ( m ^ ( Q - 1 ) ) = ( m ^ ( 2 x. ( ( Q - 1 ) / 2 ) ) ) ) | 
						
							| 94 | 93 | ad3antlr |  |-  ( ( ( ( P e. Prime /\ Q e. Prime ) /\ Q = ( ( 2 x. P ) + 1 ) ) /\ m e. ZZ ) -> ( m ^ ( Q - 1 ) ) = ( m ^ ( 2 x. ( ( Q - 1 ) / 2 ) ) ) ) | 
						
							| 95 |  | zcn |  |-  ( m e. ZZ -> m e. CC ) | 
						
							| 96 | 95 | adantl |  |-  ( ( ( ( P e. Prime /\ Q e. Prime ) /\ Q = ( ( 2 x. P ) + 1 ) ) /\ m e. ZZ ) -> m e. CC ) | 
						
							| 97 | 79 | adantr |  |-  ( ( ( ( P e. Prime /\ Q e. Prime ) /\ Q = ( ( 2 x. P ) + 1 ) ) /\ m e. ZZ ) -> ( ( Q - 1 ) / 2 ) e. NN0 ) | 
						
							| 98 |  | 2nn0 |  |-  2 e. NN0 | 
						
							| 99 | 98 | a1i |  |-  ( ( ( ( P e. Prime /\ Q e. Prime ) /\ Q = ( ( 2 x. P ) + 1 ) ) /\ m e. ZZ ) -> 2 e. NN0 ) | 
						
							| 100 | 96 97 99 | expmuld |  |-  ( ( ( ( P e. Prime /\ Q e. Prime ) /\ Q = ( ( 2 x. P ) + 1 ) ) /\ m e. ZZ ) -> ( m ^ ( 2 x. ( ( Q - 1 ) / 2 ) ) ) = ( ( m ^ 2 ) ^ ( ( Q - 1 ) / 2 ) ) ) | 
						
							| 101 | 94 100 | eqtr2d |  |-  ( ( ( ( P e. Prime /\ Q e. Prime ) /\ Q = ( ( 2 x. P ) + 1 ) ) /\ m e. ZZ ) -> ( ( m ^ 2 ) ^ ( ( Q - 1 ) / 2 ) ) = ( m ^ ( Q - 1 ) ) ) | 
						
							| 102 | 101 | oveq1d |  |-  ( ( ( ( P e. Prime /\ Q e. Prime ) /\ Q = ( ( 2 x. P ) + 1 ) ) /\ m e. ZZ ) -> ( ( ( m ^ 2 ) ^ ( ( Q - 1 ) / 2 ) ) mod Q ) = ( ( m ^ ( Q - 1 ) ) mod Q ) ) | 
						
							| 103 | 102 | adantr |  |-  ( ( ( ( ( P e. Prime /\ Q e. Prime ) /\ Q = ( ( 2 x. P ) + 1 ) ) /\ m e. ZZ ) /\ -. Q || m ) -> ( ( ( m ^ 2 ) ^ ( ( Q - 1 ) / 2 ) ) mod Q ) = ( ( m ^ ( Q - 1 ) ) mod Q ) ) | 
						
							| 104 |  | vfermltl |  |-  ( ( Q e. Prime /\ m e. ZZ /\ -. Q || m ) -> ( ( m ^ ( Q - 1 ) ) mod Q ) = 1 ) | 
						
							| 105 | 104 | ad5ant245 |  |-  ( ( ( ( ( P e. Prime /\ Q e. Prime ) /\ Q = ( ( 2 x. P ) + 1 ) ) /\ m e. ZZ ) /\ -. Q || m ) -> ( ( m ^ ( Q - 1 ) ) mod Q ) = 1 ) | 
						
							| 106 | 103 105 | eqtrd |  |-  ( ( ( ( ( P e. Prime /\ Q e. Prime ) /\ Q = ( ( 2 x. P ) + 1 ) ) /\ m e. ZZ ) /\ -. Q || m ) -> ( ( ( m ^ 2 ) ^ ( ( Q - 1 ) / 2 ) ) mod Q ) = 1 ) | 
						
							| 107 |  | oveq1 |  |-  ( ( 2 ^ ( ( Q - 1 ) / 2 ) ) = ( 2 ^ P ) -> ( ( 2 ^ ( ( Q - 1 ) / 2 ) ) mod Q ) = ( ( 2 ^ P ) mod Q ) ) | 
						
							| 108 | 106 107 | eqeqan12d |  |-  ( ( ( ( ( ( P e. Prime /\ Q e. Prime ) /\ Q = ( ( 2 x. P ) + 1 ) ) /\ m e. ZZ ) /\ -. Q || m ) /\ ( 2 ^ ( ( Q - 1 ) / 2 ) ) = ( 2 ^ P ) ) -> ( ( ( ( m ^ 2 ) ^ ( ( Q - 1 ) / 2 ) ) mod Q ) = ( ( 2 ^ ( ( Q - 1 ) / 2 ) ) mod Q ) <-> 1 = ( ( 2 ^ P ) mod Q ) ) ) | 
						
							| 109 |  | id |  |-  ( 1 = ( ( 2 ^ P ) mod Q ) -> 1 = ( ( 2 ^ P ) mod Q ) ) | 
						
							| 110 | 109 | eqcomd |  |-  ( 1 = ( ( 2 ^ P ) mod Q ) -> ( ( 2 ^ P ) mod Q ) = 1 ) | 
						
							| 111 | 38 | nnred |  |-  ( Q e. Prime -> Q e. RR ) | 
						
							| 112 |  | prmgt1 |  |-  ( Q e. Prime -> 1 < Q ) | 
						
							| 113 |  | 1mod |  |-  ( ( Q e. RR /\ 1 < Q ) -> ( 1 mod Q ) = 1 ) | 
						
							| 114 | 111 112 113 | syl2anc |  |-  ( Q e. Prime -> ( 1 mod Q ) = 1 ) | 
						
							| 115 | 114 | eqcomd |  |-  ( Q e. Prime -> 1 = ( 1 mod Q ) ) | 
						
							| 116 | 115 | ad3antlr |  |-  ( ( ( ( P e. Prime /\ Q e. Prime ) /\ Q = ( ( 2 x. P ) + 1 ) ) /\ m e. ZZ ) -> 1 = ( 1 mod Q ) ) | 
						
							| 117 | 110 116 | sylan9eqr |  |-  ( ( ( ( ( P e. Prime /\ Q e. Prime ) /\ Q = ( ( 2 x. P ) + 1 ) ) /\ m e. ZZ ) /\ 1 = ( ( 2 ^ P ) mod Q ) ) -> ( ( 2 ^ P ) mod Q ) = ( 1 mod Q ) ) | 
						
							| 118 | 38 | ad4antlr |  |-  ( ( ( ( ( P e. Prime /\ Q e. Prime ) /\ Q = ( ( 2 x. P ) + 1 ) ) /\ m e. ZZ ) /\ 1 = ( ( 2 ^ P ) mod Q ) ) -> Q e. NN ) | 
						
							| 119 |  | zexpcl |  |-  ( ( 2 e. ZZ /\ P e. NN0 ) -> ( 2 ^ P ) e. ZZ ) | 
						
							| 120 | 8 77 119 | sylancr |  |-  ( P e. Prime -> ( 2 ^ P ) e. ZZ ) | 
						
							| 121 | 120 | ad4antr |  |-  ( ( ( ( ( P e. Prime /\ Q e. Prime ) /\ Q = ( ( 2 x. P ) + 1 ) ) /\ m e. ZZ ) /\ 1 = ( ( 2 ^ P ) mod Q ) ) -> ( 2 ^ P ) e. ZZ ) | 
						
							| 122 |  | 1zzd |  |-  ( ( ( ( ( P e. Prime /\ Q e. Prime ) /\ Q = ( ( 2 x. P ) + 1 ) ) /\ m e. ZZ ) /\ 1 = ( ( 2 ^ P ) mod Q ) ) -> 1 e. ZZ ) | 
						
							| 123 |  | moddvds |  |-  ( ( Q e. NN /\ ( 2 ^ P ) e. ZZ /\ 1 e. ZZ ) -> ( ( ( 2 ^ P ) mod Q ) = ( 1 mod Q ) <-> Q || ( ( 2 ^ P ) - 1 ) ) ) | 
						
							| 124 | 118 121 122 123 | syl3anc |  |-  ( ( ( ( ( P e. Prime /\ Q e. Prime ) /\ Q = ( ( 2 x. P ) + 1 ) ) /\ m e. ZZ ) /\ 1 = ( ( 2 ^ P ) mod Q ) ) -> ( ( ( 2 ^ P ) mod Q ) = ( 1 mod Q ) <-> Q || ( ( 2 ^ P ) - 1 ) ) ) | 
						
							| 125 | 117 124 | mpbid |  |-  ( ( ( ( ( P e. Prime /\ Q e. Prime ) /\ Q = ( ( 2 x. P ) + 1 ) ) /\ m e. ZZ ) /\ 1 = ( ( 2 ^ P ) mod Q ) ) -> Q || ( ( 2 ^ P ) - 1 ) ) | 
						
							| 126 | 125 | ex |  |-  ( ( ( ( P e. Prime /\ Q e. Prime ) /\ Q = ( ( 2 x. P ) + 1 ) ) /\ m e. ZZ ) -> ( 1 = ( ( 2 ^ P ) mod Q ) -> Q || ( ( 2 ^ P ) - 1 ) ) ) | 
						
							| 127 | 126 | ad2antrr |  |-  ( ( ( ( ( ( P e. Prime /\ Q e. Prime ) /\ Q = ( ( 2 x. P ) + 1 ) ) /\ m e. ZZ ) /\ -. Q || m ) /\ ( 2 ^ ( ( Q - 1 ) / 2 ) ) = ( 2 ^ P ) ) -> ( 1 = ( ( 2 ^ P ) mod Q ) -> Q || ( ( 2 ^ P ) - 1 ) ) ) | 
						
							| 128 | 108 127 | sylbid |  |-  ( ( ( ( ( ( P e. Prime /\ Q e. Prime ) /\ Q = ( ( 2 x. P ) + 1 ) ) /\ m e. ZZ ) /\ -. Q || m ) /\ ( 2 ^ ( ( Q - 1 ) / 2 ) ) = ( 2 ^ P ) ) -> ( ( ( ( m ^ 2 ) ^ ( ( Q - 1 ) / 2 ) ) mod Q ) = ( ( 2 ^ ( ( Q - 1 ) / 2 ) ) mod Q ) -> Q || ( ( 2 ^ P ) - 1 ) ) ) | 
						
							| 129 | 128 | ex |  |-  ( ( ( ( ( P e. Prime /\ Q e. Prime ) /\ Q = ( ( 2 x. P ) + 1 ) ) /\ m e. ZZ ) /\ -. Q || m ) -> ( ( 2 ^ ( ( Q - 1 ) / 2 ) ) = ( 2 ^ P ) -> ( ( ( ( m ^ 2 ) ^ ( ( Q - 1 ) / 2 ) ) mod Q ) = ( ( 2 ^ ( ( Q - 1 ) / 2 ) ) mod Q ) -> Q || ( ( 2 ^ P ) - 1 ) ) ) ) | 
						
							| 130 | 129 | com23 |  |-  ( ( ( ( ( P e. Prime /\ Q e. Prime ) /\ Q = ( ( 2 x. P ) + 1 ) ) /\ m e. ZZ ) /\ -. Q || m ) -> ( ( ( ( m ^ 2 ) ^ ( ( Q - 1 ) / 2 ) ) mod Q ) = ( ( 2 ^ ( ( Q - 1 ) / 2 ) ) mod Q ) -> ( ( 2 ^ ( ( Q - 1 ) / 2 ) ) = ( 2 ^ P ) -> Q || ( ( 2 ^ P ) - 1 ) ) ) ) | 
						
							| 131 | 88 130 | syld |  |-  ( ( ( ( ( P e. Prime /\ Q e. Prime ) /\ Q = ( ( 2 x. P ) + 1 ) ) /\ m e. ZZ ) /\ -. Q || m ) -> ( ( ( m ^ 2 ) mod Q ) = ( 2 mod Q ) -> ( ( 2 ^ ( ( Q - 1 ) / 2 ) ) = ( 2 ^ P ) -> Q || ( ( 2 ^ P ) - 1 ) ) ) ) | 
						
							| 132 | 131 | ex |  |-  ( ( ( ( P e. Prime /\ Q e. Prime ) /\ Q = ( ( 2 x. P ) + 1 ) ) /\ m e. ZZ ) -> ( -. Q || m -> ( ( ( m ^ 2 ) mod Q ) = ( 2 mod Q ) -> ( ( 2 ^ ( ( Q - 1 ) / 2 ) ) = ( 2 ^ P ) -> Q || ( ( 2 ^ P ) - 1 ) ) ) ) ) | 
						
							| 133 | 132 | com23 |  |-  ( ( ( ( P e. Prime /\ Q e. Prime ) /\ Q = ( ( 2 x. P ) + 1 ) ) /\ m e. ZZ ) -> ( ( ( m ^ 2 ) mod Q ) = ( 2 mod Q ) -> ( -. Q || m -> ( ( 2 ^ ( ( Q - 1 ) / 2 ) ) = ( 2 ^ P ) -> Q || ( ( 2 ^ P ) - 1 ) ) ) ) ) | 
						
							| 134 | 133 | impd |  |-  ( ( ( ( P e. Prime /\ Q e. Prime ) /\ Q = ( ( 2 x. P ) + 1 ) ) /\ m e. ZZ ) -> ( ( ( ( m ^ 2 ) mod Q ) = ( 2 mod Q ) /\ -. Q || m ) -> ( ( 2 ^ ( ( Q - 1 ) / 2 ) ) = ( 2 ^ P ) -> Q || ( ( 2 ^ P ) - 1 ) ) ) ) | 
						
							| 135 | 134 | com23 |  |-  ( ( ( ( P e. Prime /\ Q e. Prime ) /\ Q = ( ( 2 x. P ) + 1 ) ) /\ m e. ZZ ) -> ( ( 2 ^ ( ( Q - 1 ) / 2 ) ) = ( 2 ^ P ) -> ( ( ( ( m ^ 2 ) mod Q ) = ( 2 mod Q ) /\ -. Q || m ) -> Q || ( ( 2 ^ P ) - 1 ) ) ) ) | 
						
							| 136 | 135 | ex |  |-  ( ( ( P e. Prime /\ Q e. Prime ) /\ Q = ( ( 2 x. P ) + 1 ) ) -> ( m e. ZZ -> ( ( 2 ^ ( ( Q - 1 ) / 2 ) ) = ( 2 ^ P ) -> ( ( ( ( m ^ 2 ) mod Q ) = ( 2 mod Q ) /\ -. Q || m ) -> Q || ( ( 2 ^ P ) - 1 ) ) ) ) ) | 
						
							| 137 | 136 | com23 |  |-  ( ( ( P e. Prime /\ Q e. Prime ) /\ Q = ( ( 2 x. P ) + 1 ) ) -> ( ( 2 ^ ( ( Q - 1 ) / 2 ) ) = ( 2 ^ P ) -> ( m e. ZZ -> ( ( ( ( m ^ 2 ) mod Q ) = ( 2 mod Q ) /\ -. Q || m ) -> Q || ( ( 2 ^ P ) - 1 ) ) ) ) ) | 
						
							| 138 | 61 137 | syl5 |  |-  ( ( ( P e. Prime /\ Q e. Prime ) /\ Q = ( ( 2 x. P ) + 1 ) ) -> ( ( ( Q - 1 ) / 2 ) = P -> ( m e. ZZ -> ( ( ( ( m ^ 2 ) mod Q ) = ( 2 mod Q ) /\ -. Q || m ) -> Q || ( ( 2 ^ P ) - 1 ) ) ) ) ) | 
						
							| 139 | 60 138 | mpd |  |-  ( ( ( P e. Prime /\ Q e. Prime ) /\ Q = ( ( 2 x. P ) + 1 ) ) -> ( m e. ZZ -> ( ( ( ( m ^ 2 ) mod Q ) = ( 2 mod Q ) /\ -. Q || m ) -> Q || ( ( 2 ^ P ) - 1 ) ) ) ) | 
						
							| 140 | 139 | rexlimdv |  |-  ( ( ( P e. Prime /\ Q e. Prime ) /\ Q = ( ( 2 x. P ) + 1 ) ) -> ( E. m e. ZZ ( ( ( m ^ 2 ) mod Q ) = ( 2 mod Q ) /\ -. Q || m ) -> Q || ( ( 2 ^ P ) - 1 ) ) ) | 
						
							| 141 | 37 140 | syld |  |-  ( ( ( P e. Prime /\ Q e. Prime ) /\ Q = ( ( 2 x. P ) + 1 ) ) -> ( ( 2 /L Q ) = 1 -> Q || ( ( 2 ^ P ) - 1 ) ) ) | 
						
							| 142 | 7 141 | sylbird |  |-  ( ( ( P e. Prime /\ Q e. Prime ) /\ Q = ( ( 2 x. P ) + 1 ) ) -> ( ( Q mod 8 ) e. { 1 , 7 } -> Q || ( ( 2 ^ P ) - 1 ) ) ) | 
						
							| 143 | 5 142 | syl5 |  |-  ( ( ( P e. Prime /\ Q e. Prime ) /\ Q = ( ( 2 x. P ) + 1 ) ) -> ( ( Q mod 8 ) = 7 -> Q || ( ( 2 ^ P ) - 1 ) ) ) | 
						
							| 144 | 143 | ex |  |-  ( ( P e. Prime /\ Q e. Prime ) -> ( Q = ( ( 2 x. P ) + 1 ) -> ( ( Q mod 8 ) = 7 -> Q || ( ( 2 ^ P ) - 1 ) ) ) ) | 
						
							| 145 | 144 | com23 |  |-  ( ( P e. Prime /\ Q e. Prime ) -> ( ( Q mod 8 ) = 7 -> ( Q = ( ( 2 x. P ) + 1 ) -> Q || ( ( 2 ^ P ) - 1 ) ) ) ) | 
						
							| 146 | 145 | ex |  |-  ( P e. Prime -> ( Q e. Prime -> ( ( Q mod 8 ) = 7 -> ( Q = ( ( 2 x. P ) + 1 ) -> Q || ( ( 2 ^ P ) - 1 ) ) ) ) ) | 
						
							| 147 | 146 | 3imp2 |  |-  ( ( P e. Prime /\ ( Q e. Prime /\ ( Q mod 8 ) = 7 /\ Q = ( ( 2 x. P ) + 1 ) ) ) -> Q || ( ( 2 ^ P ) - 1 ) ) |