| Step | Hyp | Ref | Expression | 
						
							| 1 |  | lgsqrmod |  |-  ( ( A e. ZZ /\ P e. ( Prime \ { 2 } ) ) -> ( ( A /L P ) = 1 -> E. x e. ZZ ( ( x ^ 2 ) mod P ) = ( A mod P ) ) ) | 
						
							| 2 | 1 | imp |  |-  ( ( ( A e. ZZ /\ P e. ( Prime \ { 2 } ) ) /\ ( A /L P ) = 1 ) -> E. x e. ZZ ( ( x ^ 2 ) mod P ) = ( A mod P ) ) | 
						
							| 3 |  | eldifi |  |-  ( P e. ( Prime \ { 2 } ) -> P e. Prime ) | 
						
							| 4 |  | prmnn |  |-  ( P e. Prime -> P e. NN ) | 
						
							| 5 | 3 4 | syl |  |-  ( P e. ( Prime \ { 2 } ) -> P e. NN ) | 
						
							| 6 | 5 | ad3antlr |  |-  ( ( ( ( A e. ZZ /\ P e. ( Prime \ { 2 } ) ) /\ ( A /L P ) = 1 ) /\ x e. ZZ ) -> P e. NN ) | 
						
							| 7 |  | zsqcl |  |-  ( x e. ZZ -> ( x ^ 2 ) e. ZZ ) | 
						
							| 8 | 7 | adantl |  |-  ( ( ( ( A e. ZZ /\ P e. ( Prime \ { 2 } ) ) /\ ( A /L P ) = 1 ) /\ x e. ZZ ) -> ( x ^ 2 ) e. ZZ ) | 
						
							| 9 |  | simplll |  |-  ( ( ( ( A e. ZZ /\ P e. ( Prime \ { 2 } ) ) /\ ( A /L P ) = 1 ) /\ x e. ZZ ) -> A e. ZZ ) | 
						
							| 10 |  | moddvds |  |-  ( ( P e. NN /\ ( x ^ 2 ) e. ZZ /\ A e. ZZ ) -> ( ( ( x ^ 2 ) mod P ) = ( A mod P ) <-> P || ( ( x ^ 2 ) - A ) ) ) | 
						
							| 11 | 6 8 9 10 | syl3anc |  |-  ( ( ( ( A e. ZZ /\ P e. ( Prime \ { 2 } ) ) /\ ( A /L P ) = 1 ) /\ x e. ZZ ) -> ( ( ( x ^ 2 ) mod P ) = ( A mod P ) <-> P || ( ( x ^ 2 ) - A ) ) ) | 
						
							| 12 | 5 | nnzd |  |-  ( P e. ( Prime \ { 2 } ) -> P e. ZZ ) | 
						
							| 13 | 12 | ad3antlr |  |-  ( ( ( ( A e. ZZ /\ P e. ( Prime \ { 2 } ) ) /\ ( A /L P ) = 1 ) /\ x e. ZZ ) -> P e. ZZ ) | 
						
							| 14 | 13 8 9 | 3jca |  |-  ( ( ( ( A e. ZZ /\ P e. ( Prime \ { 2 } ) ) /\ ( A /L P ) = 1 ) /\ x e. ZZ ) -> ( P e. ZZ /\ ( x ^ 2 ) e. ZZ /\ A e. ZZ ) ) | 
						
							| 15 | 14 | adantl |  |-  ( ( P || x /\ ( ( ( A e. ZZ /\ P e. ( Prime \ { 2 } ) ) /\ ( A /L P ) = 1 ) /\ x e. ZZ ) ) -> ( P e. ZZ /\ ( x ^ 2 ) e. ZZ /\ A e. ZZ ) ) | 
						
							| 16 |  | dvdssub2 |  |-  ( ( ( P e. ZZ /\ ( x ^ 2 ) e. ZZ /\ A e. ZZ ) /\ P || ( ( x ^ 2 ) - A ) ) -> ( P || ( x ^ 2 ) <-> P || A ) ) | 
						
							| 17 | 15 16 | sylan |  |-  ( ( ( P || x /\ ( ( ( A e. ZZ /\ P e. ( Prime \ { 2 } ) ) /\ ( A /L P ) = 1 ) /\ x e. ZZ ) ) /\ P || ( ( x ^ 2 ) - A ) ) -> ( P || ( x ^ 2 ) <-> P || A ) ) | 
						
							| 18 | 17 | ex |  |-  ( ( P || x /\ ( ( ( A e. ZZ /\ P e. ( Prime \ { 2 } ) ) /\ ( A /L P ) = 1 ) /\ x e. ZZ ) ) -> ( P || ( ( x ^ 2 ) - A ) -> ( P || ( x ^ 2 ) <-> P || A ) ) ) | 
						
							| 19 |  | bicom |  |-  ( ( P || ( x ^ 2 ) <-> P || A ) <-> ( P || A <-> P || ( x ^ 2 ) ) ) | 
						
							| 20 | 3 | ad3antlr |  |-  ( ( ( ( A e. ZZ /\ P e. ( Prime \ { 2 } ) ) /\ ( A /L P ) = 1 ) /\ x e. ZZ ) -> P e. Prime ) | 
						
							| 21 |  | simpr |  |-  ( ( ( ( A e. ZZ /\ P e. ( Prime \ { 2 } ) ) /\ ( A /L P ) = 1 ) /\ x e. ZZ ) -> x e. ZZ ) | 
						
							| 22 |  | 2nn |  |-  2 e. NN | 
						
							| 23 | 22 | a1i |  |-  ( ( ( ( A e. ZZ /\ P e. ( Prime \ { 2 } ) ) /\ ( A /L P ) = 1 ) /\ x e. ZZ ) -> 2 e. NN ) | 
						
							| 24 |  | prmdvdsexp |  |-  ( ( P e. Prime /\ x e. ZZ /\ 2 e. NN ) -> ( P || ( x ^ 2 ) <-> P || x ) ) | 
						
							| 25 | 20 21 23 24 | syl3anc |  |-  ( ( ( ( A e. ZZ /\ P e. ( Prime \ { 2 } ) ) /\ ( A /L P ) = 1 ) /\ x e. ZZ ) -> ( P || ( x ^ 2 ) <-> P || x ) ) | 
						
							| 26 | 25 | biimparc |  |-  ( ( P || x /\ ( ( ( A e. ZZ /\ P e. ( Prime \ { 2 } ) ) /\ ( A /L P ) = 1 ) /\ x e. ZZ ) ) -> P || ( x ^ 2 ) ) | 
						
							| 27 |  | bianir |  |-  ( ( P || ( x ^ 2 ) /\ ( P || A <-> P || ( x ^ 2 ) ) ) -> P || A ) | 
						
							| 28 | 5 | ad2antlr |  |-  ( ( ( A e. ZZ /\ P e. ( Prime \ { 2 } ) ) /\ ( A /L P ) = 1 ) -> P e. NN ) | 
						
							| 29 |  | dvdsmod0 |  |-  ( ( P e. NN /\ P || A ) -> ( A mod P ) = 0 ) | 
						
							| 30 | 29 | ex |  |-  ( P e. NN -> ( P || A -> ( A mod P ) = 0 ) ) | 
						
							| 31 | 28 30 | syl |  |-  ( ( ( A e. ZZ /\ P e. ( Prime \ { 2 } ) ) /\ ( A /L P ) = 1 ) -> ( P || A -> ( A mod P ) = 0 ) ) | 
						
							| 32 |  | lgsprme0 |  |-  ( ( A e. ZZ /\ P e. Prime ) -> ( ( A /L P ) = 0 <-> ( A mod P ) = 0 ) ) | 
						
							| 33 | 3 32 | sylan2 |  |-  ( ( A e. ZZ /\ P e. ( Prime \ { 2 } ) ) -> ( ( A /L P ) = 0 <-> ( A mod P ) = 0 ) ) | 
						
							| 34 |  | eqeq1 |  |-  ( ( A /L P ) = 0 -> ( ( A /L P ) = 1 <-> 0 = 1 ) ) | 
						
							| 35 |  | 0ne1 |  |-  0 =/= 1 | 
						
							| 36 |  | eqneqall |  |-  ( 0 = 1 -> ( 0 =/= 1 -> -. P || x ) ) | 
						
							| 37 | 35 36 | mpi |  |-  ( 0 = 1 -> -. P || x ) | 
						
							| 38 | 34 37 | biimtrdi |  |-  ( ( A /L P ) = 0 -> ( ( A /L P ) = 1 -> -. P || x ) ) | 
						
							| 39 | 33 38 | biimtrrdi |  |-  ( ( A e. ZZ /\ P e. ( Prime \ { 2 } ) ) -> ( ( A mod P ) = 0 -> ( ( A /L P ) = 1 -> -. P || x ) ) ) | 
						
							| 40 | 39 | com23 |  |-  ( ( A e. ZZ /\ P e. ( Prime \ { 2 } ) ) -> ( ( A /L P ) = 1 -> ( ( A mod P ) = 0 -> -. P || x ) ) ) | 
						
							| 41 | 40 | imp |  |-  ( ( ( A e. ZZ /\ P e. ( Prime \ { 2 } ) ) /\ ( A /L P ) = 1 ) -> ( ( A mod P ) = 0 -> -. P || x ) ) | 
						
							| 42 | 31 41 | syld |  |-  ( ( ( A e. ZZ /\ P e. ( Prime \ { 2 } ) ) /\ ( A /L P ) = 1 ) -> ( P || A -> -. P || x ) ) | 
						
							| 43 | 42 | ad2antrl |  |-  ( ( P || x /\ ( ( ( A e. ZZ /\ P e. ( Prime \ { 2 } ) ) /\ ( A /L P ) = 1 ) /\ x e. ZZ ) ) -> ( P || A -> -. P || x ) ) | 
						
							| 44 | 27 43 | syl5com |  |-  ( ( P || ( x ^ 2 ) /\ ( P || A <-> P || ( x ^ 2 ) ) ) -> ( ( P || x /\ ( ( ( A e. ZZ /\ P e. ( Prime \ { 2 } ) ) /\ ( A /L P ) = 1 ) /\ x e. ZZ ) ) -> -. P || x ) ) | 
						
							| 45 | 44 | ex |  |-  ( P || ( x ^ 2 ) -> ( ( P || A <-> P || ( x ^ 2 ) ) -> ( ( P || x /\ ( ( ( A e. ZZ /\ P e. ( Prime \ { 2 } ) ) /\ ( A /L P ) = 1 ) /\ x e. ZZ ) ) -> -. P || x ) ) ) | 
						
							| 46 | 45 | com23 |  |-  ( P || ( x ^ 2 ) -> ( ( P || x /\ ( ( ( A e. ZZ /\ P e. ( Prime \ { 2 } ) ) /\ ( A /L P ) = 1 ) /\ x e. ZZ ) ) -> ( ( P || A <-> P || ( x ^ 2 ) ) -> -. P || x ) ) ) | 
						
							| 47 | 26 46 | mpcom |  |-  ( ( P || x /\ ( ( ( A e. ZZ /\ P e. ( Prime \ { 2 } ) ) /\ ( A /L P ) = 1 ) /\ x e. ZZ ) ) -> ( ( P || A <-> P || ( x ^ 2 ) ) -> -. P || x ) ) | 
						
							| 48 | 19 47 | biimtrid |  |-  ( ( P || x /\ ( ( ( A e. ZZ /\ P e. ( Prime \ { 2 } ) ) /\ ( A /L P ) = 1 ) /\ x e. ZZ ) ) -> ( ( P || ( x ^ 2 ) <-> P || A ) -> -. P || x ) ) | 
						
							| 49 | 18 48 | syld |  |-  ( ( P || x /\ ( ( ( A e. ZZ /\ P e. ( Prime \ { 2 } ) ) /\ ( A /L P ) = 1 ) /\ x e. ZZ ) ) -> ( P || ( ( x ^ 2 ) - A ) -> -. P || x ) ) | 
						
							| 50 | 49 | ex |  |-  ( P || x -> ( ( ( ( A e. ZZ /\ P e. ( Prime \ { 2 } ) ) /\ ( A /L P ) = 1 ) /\ x e. ZZ ) -> ( P || ( ( x ^ 2 ) - A ) -> -. P || x ) ) ) | 
						
							| 51 |  | 2a1 |  |-  ( -. P || x -> ( ( ( ( A e. ZZ /\ P e. ( Prime \ { 2 } ) ) /\ ( A /L P ) = 1 ) /\ x e. ZZ ) -> ( P || ( ( x ^ 2 ) - A ) -> -. P || x ) ) ) | 
						
							| 52 | 50 51 | pm2.61i |  |-  ( ( ( ( A e. ZZ /\ P e. ( Prime \ { 2 } ) ) /\ ( A /L P ) = 1 ) /\ x e. ZZ ) -> ( P || ( ( x ^ 2 ) - A ) -> -. P || x ) ) | 
						
							| 53 | 11 52 | sylbid |  |-  ( ( ( ( A e. ZZ /\ P e. ( Prime \ { 2 } ) ) /\ ( A /L P ) = 1 ) /\ x e. ZZ ) -> ( ( ( x ^ 2 ) mod P ) = ( A mod P ) -> -. P || x ) ) | 
						
							| 54 | 53 | ancld |  |-  ( ( ( ( A e. ZZ /\ P e. ( Prime \ { 2 } ) ) /\ ( A /L P ) = 1 ) /\ x e. ZZ ) -> ( ( ( x ^ 2 ) mod P ) = ( A mod P ) -> ( ( ( x ^ 2 ) mod P ) = ( A mod P ) /\ -. P || x ) ) ) | 
						
							| 55 | 54 | reximdva |  |-  ( ( ( A e. ZZ /\ P e. ( Prime \ { 2 } ) ) /\ ( A /L P ) = 1 ) -> ( E. x e. ZZ ( ( x ^ 2 ) mod P ) = ( A mod P ) -> E. x e. ZZ ( ( ( x ^ 2 ) mod P ) = ( A mod P ) /\ -. P || x ) ) ) | 
						
							| 56 | 2 55 | mpd |  |-  ( ( ( A e. ZZ /\ P e. ( Prime \ { 2 } ) ) /\ ( A /L P ) = 1 ) -> E. x e. ZZ ( ( ( x ^ 2 ) mod P ) = ( A mod P ) /\ -. P || x ) ) | 
						
							| 57 | 56 | ex |  |-  ( ( A e. ZZ /\ P e. ( Prime \ { 2 } ) ) -> ( ( A /L P ) = 1 -> E. x e. ZZ ( ( ( x ^ 2 ) mod P ) = ( A mod P ) /\ -. P || x ) ) ) |