| Step |
Hyp |
Ref |
Expression |
| 1 |
|
lgsqrmod |
|
| 2 |
1
|
imp |
|
| 3 |
|
eldifi |
|
| 4 |
|
prmnn |
|
| 5 |
3 4
|
syl |
|
| 6 |
5
|
ad3antlr |
|
| 7 |
|
zsqcl |
|
| 8 |
7
|
adantl |
|
| 9 |
|
simplll |
|
| 10 |
|
moddvds |
|
| 11 |
6 8 9 10
|
syl3anc |
|
| 12 |
5
|
nnzd |
|
| 13 |
12
|
ad3antlr |
|
| 14 |
13 8 9
|
3jca |
|
| 15 |
14
|
adantl |
|
| 16 |
|
dvdssub2 |
|
| 17 |
15 16
|
sylan |
|
| 18 |
17
|
ex |
|
| 19 |
|
bicom |
|
| 20 |
3
|
ad3antlr |
|
| 21 |
|
simpr |
|
| 22 |
|
2nn |
|
| 23 |
22
|
a1i |
|
| 24 |
|
prmdvdsexp |
|
| 25 |
20 21 23 24
|
syl3anc |
|
| 26 |
25
|
biimparc |
|
| 27 |
|
bianir |
|
| 28 |
5
|
ad2antlr |
|
| 29 |
|
dvdsmod0 |
|
| 30 |
29
|
ex |
|
| 31 |
28 30
|
syl |
|
| 32 |
|
lgsprme0 |
|
| 33 |
3 32
|
sylan2 |
|
| 34 |
|
eqeq1 |
|
| 35 |
|
0ne1 |
|
| 36 |
|
eqneqall |
|
| 37 |
35 36
|
mpi |
|
| 38 |
34 37
|
biimtrdi |
|
| 39 |
33 38
|
biimtrrdi |
|
| 40 |
39
|
com23 |
|
| 41 |
40
|
imp |
|
| 42 |
31 41
|
syld |
|
| 43 |
42
|
ad2antrl |
|
| 44 |
27 43
|
syl5com |
|
| 45 |
44
|
ex |
|
| 46 |
45
|
com23 |
|
| 47 |
26 46
|
mpcom |
|
| 48 |
19 47
|
biimtrid |
|
| 49 |
18 48
|
syld |
|
| 50 |
49
|
ex |
|
| 51 |
|
2a1 |
|
| 52 |
50 51
|
pm2.61i |
|
| 53 |
11 52
|
sylbid |
|
| 54 |
53
|
ancld |
|
| 55 |
54
|
reximdva |
|
| 56 |
2 55
|
mpd |
|
| 57 |
56
|
ex |
|