Step |
Hyp |
Ref |
Expression |
1 |
|
lgsdchr.g |
|
2 |
|
lgsdchr.z |
|
3 |
|
lgsdchr.d |
|
4 |
|
lgsdchr.b |
|
5 |
|
lgsdchr.l |
|
6 |
|
lgsdchr.x |
|
7 |
|
nnnn0 |
|
8 |
7
|
adantr |
|
9 |
2 4 5
|
znzrhfo |
|
10 |
|
fof |
|
11 |
8 9 10
|
3syl |
|
12 |
11
|
ffvelrnda |
|
13 |
|
eqeq1 |
|
14 |
13
|
anbi1d |
|
15 |
14
|
rexbidv |
|
16 |
15
|
iotabidv |
|
17 |
|
iotaex |
|
18 |
16 6 17
|
fvmpt3i |
|
19 |
12 18
|
syl |
|
20 |
|
ovex |
|
21 |
|
simprr |
|
22 |
|
simplll |
|
23 |
22 7
|
syl |
|
24 |
|
simplr |
|
25 |
|
simprl |
|
26 |
2 5
|
zndvds |
|
27 |
23 24 25 26
|
syl3anc |
|
28 |
21 27
|
mpbid |
|
29 |
|
moddvds |
|
30 |
22 24 25 29
|
syl3anc |
|
31 |
28 30
|
mpbird |
|
32 |
31
|
oveq1d |
|
33 |
|
simpllr |
|
34 |
|
lgsmod |
|
35 |
24 22 33 34
|
syl3anc |
|
36 |
|
lgsmod |
|
37 |
25 22 33 36
|
syl3anc |
|
38 |
32 35 37
|
3eqtr3d |
|
39 |
38
|
eqeq2d |
|
40 |
39
|
biimprd |
|
41 |
40
|
anassrs |
|
42 |
41
|
expimpd |
|
43 |
42
|
rexlimdva |
|
44 |
|
fveq2 |
|
45 |
44
|
eqcomd |
|
46 |
45
|
biantrurd |
|
47 |
|
oveq1 |
|
48 |
47
|
eqeq2d |
|
49 |
46 48
|
bitr3d |
|
50 |
49
|
rspcev |
|
51 |
50
|
ex |
|
52 |
51
|
adantl |
|
53 |
43 52
|
impbid |
|
54 |
53
|
adantr |
|
55 |
54
|
iota5 |
|
56 |
20 55
|
mpan2 |
|
57 |
19 56
|
eqtrd |
|