| Step |
Hyp |
Ref |
Expression |
| 1 |
|
lgsdchr.g |
|- G = ( DChr ` N ) |
| 2 |
|
lgsdchr.z |
|- Z = ( Z/nZ ` N ) |
| 3 |
|
lgsdchr.d |
|- D = ( Base ` G ) |
| 4 |
|
lgsdchr.b |
|- B = ( Base ` Z ) |
| 5 |
|
lgsdchr.l |
|- L = ( ZRHom ` Z ) |
| 6 |
|
lgsdchr.x |
|- X = ( y e. B |-> ( iota h E. m e. ZZ ( y = ( L ` m ) /\ h = ( m /L N ) ) ) ) |
| 7 |
|
nnnn0 |
|- ( N e. NN -> N e. NN0 ) |
| 8 |
7
|
adantr |
|- ( ( N e. NN /\ -. 2 || N ) -> N e. NN0 ) |
| 9 |
2 4 5
|
znzrhfo |
|- ( N e. NN0 -> L : ZZ -onto-> B ) |
| 10 |
|
fof |
|- ( L : ZZ -onto-> B -> L : ZZ --> B ) |
| 11 |
8 9 10
|
3syl |
|- ( ( N e. NN /\ -. 2 || N ) -> L : ZZ --> B ) |
| 12 |
11
|
ffvelcdmda |
|- ( ( ( N e. NN /\ -. 2 || N ) /\ A e. ZZ ) -> ( L ` A ) e. B ) |
| 13 |
|
eqeq1 |
|- ( y = ( L ` A ) -> ( y = ( L ` m ) <-> ( L ` A ) = ( L ` m ) ) ) |
| 14 |
13
|
anbi1d |
|- ( y = ( L ` A ) -> ( ( y = ( L ` m ) /\ h = ( m /L N ) ) <-> ( ( L ` A ) = ( L ` m ) /\ h = ( m /L N ) ) ) ) |
| 15 |
14
|
rexbidv |
|- ( y = ( L ` A ) -> ( E. m e. ZZ ( y = ( L ` m ) /\ h = ( m /L N ) ) <-> E. m e. ZZ ( ( L ` A ) = ( L ` m ) /\ h = ( m /L N ) ) ) ) |
| 16 |
15
|
iotabidv |
|- ( y = ( L ` A ) -> ( iota h E. m e. ZZ ( y = ( L ` m ) /\ h = ( m /L N ) ) ) = ( iota h E. m e. ZZ ( ( L ` A ) = ( L ` m ) /\ h = ( m /L N ) ) ) ) |
| 17 |
|
iotaex |
|- ( iota h E. m e. ZZ ( y = ( L ` m ) /\ h = ( m /L N ) ) ) e. _V |
| 18 |
16 6 17
|
fvmpt3i |
|- ( ( L ` A ) e. B -> ( X ` ( L ` A ) ) = ( iota h E. m e. ZZ ( ( L ` A ) = ( L ` m ) /\ h = ( m /L N ) ) ) ) |
| 19 |
12 18
|
syl |
|- ( ( ( N e. NN /\ -. 2 || N ) /\ A e. ZZ ) -> ( X ` ( L ` A ) ) = ( iota h E. m e. ZZ ( ( L ` A ) = ( L ` m ) /\ h = ( m /L N ) ) ) ) |
| 20 |
|
ovex |
|- ( A /L N ) e. _V |
| 21 |
|
simprr |
|- ( ( ( ( N e. NN /\ -. 2 || N ) /\ A e. ZZ ) /\ ( m e. ZZ /\ ( L ` A ) = ( L ` m ) ) ) -> ( L ` A ) = ( L ` m ) ) |
| 22 |
|
simplll |
|- ( ( ( ( N e. NN /\ -. 2 || N ) /\ A e. ZZ ) /\ ( m e. ZZ /\ ( L ` A ) = ( L ` m ) ) ) -> N e. NN ) |
| 23 |
22 7
|
syl |
|- ( ( ( ( N e. NN /\ -. 2 || N ) /\ A e. ZZ ) /\ ( m e. ZZ /\ ( L ` A ) = ( L ` m ) ) ) -> N e. NN0 ) |
| 24 |
|
simplr |
|- ( ( ( ( N e. NN /\ -. 2 || N ) /\ A e. ZZ ) /\ ( m e. ZZ /\ ( L ` A ) = ( L ` m ) ) ) -> A e. ZZ ) |
| 25 |
|
simprl |
|- ( ( ( ( N e. NN /\ -. 2 || N ) /\ A e. ZZ ) /\ ( m e. ZZ /\ ( L ` A ) = ( L ` m ) ) ) -> m e. ZZ ) |
| 26 |
2 5
|
zndvds |
|- ( ( N e. NN0 /\ A e. ZZ /\ m e. ZZ ) -> ( ( L ` A ) = ( L ` m ) <-> N || ( A - m ) ) ) |
| 27 |
23 24 25 26
|
syl3anc |
|- ( ( ( ( N e. NN /\ -. 2 || N ) /\ A e. ZZ ) /\ ( m e. ZZ /\ ( L ` A ) = ( L ` m ) ) ) -> ( ( L ` A ) = ( L ` m ) <-> N || ( A - m ) ) ) |
| 28 |
21 27
|
mpbid |
|- ( ( ( ( N e. NN /\ -. 2 || N ) /\ A e. ZZ ) /\ ( m e. ZZ /\ ( L ` A ) = ( L ` m ) ) ) -> N || ( A - m ) ) |
| 29 |
|
moddvds |
|- ( ( N e. NN /\ A e. ZZ /\ m e. ZZ ) -> ( ( A mod N ) = ( m mod N ) <-> N || ( A - m ) ) ) |
| 30 |
22 24 25 29
|
syl3anc |
|- ( ( ( ( N e. NN /\ -. 2 || N ) /\ A e. ZZ ) /\ ( m e. ZZ /\ ( L ` A ) = ( L ` m ) ) ) -> ( ( A mod N ) = ( m mod N ) <-> N || ( A - m ) ) ) |
| 31 |
28 30
|
mpbird |
|- ( ( ( ( N e. NN /\ -. 2 || N ) /\ A e. ZZ ) /\ ( m e. ZZ /\ ( L ` A ) = ( L ` m ) ) ) -> ( A mod N ) = ( m mod N ) ) |
| 32 |
31
|
oveq1d |
|- ( ( ( ( N e. NN /\ -. 2 || N ) /\ A e. ZZ ) /\ ( m e. ZZ /\ ( L ` A ) = ( L ` m ) ) ) -> ( ( A mod N ) /L N ) = ( ( m mod N ) /L N ) ) |
| 33 |
|
simpllr |
|- ( ( ( ( N e. NN /\ -. 2 || N ) /\ A e. ZZ ) /\ ( m e. ZZ /\ ( L ` A ) = ( L ` m ) ) ) -> -. 2 || N ) |
| 34 |
|
lgsmod |
|- ( ( A e. ZZ /\ N e. NN /\ -. 2 || N ) -> ( ( A mod N ) /L N ) = ( A /L N ) ) |
| 35 |
24 22 33 34
|
syl3anc |
|- ( ( ( ( N e. NN /\ -. 2 || N ) /\ A e. ZZ ) /\ ( m e. ZZ /\ ( L ` A ) = ( L ` m ) ) ) -> ( ( A mod N ) /L N ) = ( A /L N ) ) |
| 36 |
|
lgsmod |
|- ( ( m e. ZZ /\ N e. NN /\ -. 2 || N ) -> ( ( m mod N ) /L N ) = ( m /L N ) ) |
| 37 |
25 22 33 36
|
syl3anc |
|- ( ( ( ( N e. NN /\ -. 2 || N ) /\ A e. ZZ ) /\ ( m e. ZZ /\ ( L ` A ) = ( L ` m ) ) ) -> ( ( m mod N ) /L N ) = ( m /L N ) ) |
| 38 |
32 35 37
|
3eqtr3d |
|- ( ( ( ( N e. NN /\ -. 2 || N ) /\ A e. ZZ ) /\ ( m e. ZZ /\ ( L ` A ) = ( L ` m ) ) ) -> ( A /L N ) = ( m /L N ) ) |
| 39 |
38
|
eqeq2d |
|- ( ( ( ( N e. NN /\ -. 2 || N ) /\ A e. ZZ ) /\ ( m e. ZZ /\ ( L ` A ) = ( L ` m ) ) ) -> ( h = ( A /L N ) <-> h = ( m /L N ) ) ) |
| 40 |
39
|
biimprd |
|- ( ( ( ( N e. NN /\ -. 2 || N ) /\ A e. ZZ ) /\ ( m e. ZZ /\ ( L ` A ) = ( L ` m ) ) ) -> ( h = ( m /L N ) -> h = ( A /L N ) ) ) |
| 41 |
40
|
anassrs |
|- ( ( ( ( ( N e. NN /\ -. 2 || N ) /\ A e. ZZ ) /\ m e. ZZ ) /\ ( L ` A ) = ( L ` m ) ) -> ( h = ( m /L N ) -> h = ( A /L N ) ) ) |
| 42 |
41
|
expimpd |
|- ( ( ( ( N e. NN /\ -. 2 || N ) /\ A e. ZZ ) /\ m e. ZZ ) -> ( ( ( L ` A ) = ( L ` m ) /\ h = ( m /L N ) ) -> h = ( A /L N ) ) ) |
| 43 |
42
|
rexlimdva |
|- ( ( ( N e. NN /\ -. 2 || N ) /\ A e. ZZ ) -> ( E. m e. ZZ ( ( L ` A ) = ( L ` m ) /\ h = ( m /L N ) ) -> h = ( A /L N ) ) ) |
| 44 |
|
fveq2 |
|- ( m = A -> ( L ` m ) = ( L ` A ) ) |
| 45 |
44
|
eqcomd |
|- ( m = A -> ( L ` A ) = ( L ` m ) ) |
| 46 |
45
|
biantrurd |
|- ( m = A -> ( h = ( m /L N ) <-> ( ( L ` A ) = ( L ` m ) /\ h = ( m /L N ) ) ) ) |
| 47 |
|
oveq1 |
|- ( m = A -> ( m /L N ) = ( A /L N ) ) |
| 48 |
47
|
eqeq2d |
|- ( m = A -> ( h = ( m /L N ) <-> h = ( A /L N ) ) ) |
| 49 |
46 48
|
bitr3d |
|- ( m = A -> ( ( ( L ` A ) = ( L ` m ) /\ h = ( m /L N ) ) <-> h = ( A /L N ) ) ) |
| 50 |
49
|
rspcev |
|- ( ( A e. ZZ /\ h = ( A /L N ) ) -> E. m e. ZZ ( ( L ` A ) = ( L ` m ) /\ h = ( m /L N ) ) ) |
| 51 |
50
|
ex |
|- ( A e. ZZ -> ( h = ( A /L N ) -> E. m e. ZZ ( ( L ` A ) = ( L ` m ) /\ h = ( m /L N ) ) ) ) |
| 52 |
51
|
adantl |
|- ( ( ( N e. NN /\ -. 2 || N ) /\ A e. ZZ ) -> ( h = ( A /L N ) -> E. m e. ZZ ( ( L ` A ) = ( L ` m ) /\ h = ( m /L N ) ) ) ) |
| 53 |
43 52
|
impbid |
|- ( ( ( N e. NN /\ -. 2 || N ) /\ A e. ZZ ) -> ( E. m e. ZZ ( ( L ` A ) = ( L ` m ) /\ h = ( m /L N ) ) <-> h = ( A /L N ) ) ) |
| 54 |
53
|
adantr |
|- ( ( ( ( N e. NN /\ -. 2 || N ) /\ A e. ZZ ) /\ ( A /L N ) e. _V ) -> ( E. m e. ZZ ( ( L ` A ) = ( L ` m ) /\ h = ( m /L N ) ) <-> h = ( A /L N ) ) ) |
| 55 |
54
|
iota5 |
|- ( ( ( ( N e. NN /\ -. 2 || N ) /\ A e. ZZ ) /\ ( A /L N ) e. _V ) -> ( iota h E. m e. ZZ ( ( L ` A ) = ( L ` m ) /\ h = ( m /L N ) ) ) = ( A /L N ) ) |
| 56 |
20 55
|
mpan2 |
|- ( ( ( N e. NN /\ -. 2 || N ) /\ A e. ZZ ) -> ( iota h E. m e. ZZ ( ( L ` A ) = ( L ` m ) /\ h = ( m /L N ) ) ) = ( A /L N ) ) |
| 57 |
19 56
|
eqtrd |
|- ( ( ( N e. NN /\ -. 2 || N ) /\ A e. ZZ ) -> ( X ` ( L ` A ) ) = ( A /L N ) ) |