| Step | Hyp | Ref | Expression | 
						
							| 1 |  | lgsdchr.g |  |-  G = ( DChr ` N ) | 
						
							| 2 |  | lgsdchr.z |  |-  Z = ( Z/nZ ` N ) | 
						
							| 3 |  | lgsdchr.d |  |-  D = ( Base ` G ) | 
						
							| 4 |  | lgsdchr.b |  |-  B = ( Base ` Z ) | 
						
							| 5 |  | lgsdchr.l |  |-  L = ( ZRHom ` Z ) | 
						
							| 6 |  | lgsdchr.x |  |-  X = ( y e. B |-> ( iota h E. m e. ZZ ( y = ( L ` m ) /\ h = ( m /L N ) ) ) ) | 
						
							| 7 |  | iotaex |  |-  ( iota h E. m e. ZZ ( y = ( L ` m ) /\ h = ( m /L N ) ) ) e. _V | 
						
							| 8 | 7 | a1i |  |-  ( ( ( N e. NN /\ -. 2 || N ) /\ y e. B ) -> ( iota h E. m e. ZZ ( y = ( L ` m ) /\ h = ( m /L N ) ) ) e. _V ) | 
						
							| 9 | 6 | a1i |  |-  ( ( N e. NN /\ -. 2 || N ) -> X = ( y e. B |-> ( iota h E. m e. ZZ ( y = ( L ` m ) /\ h = ( m /L N ) ) ) ) ) | 
						
							| 10 |  | nnnn0 |  |-  ( N e. NN -> N e. NN0 ) | 
						
							| 11 | 10 | adantr |  |-  ( ( N e. NN /\ -. 2 || N ) -> N e. NN0 ) | 
						
							| 12 | 2 4 5 | znzrhfo |  |-  ( N e. NN0 -> L : ZZ -onto-> B ) | 
						
							| 13 | 11 12 | syl |  |-  ( ( N e. NN /\ -. 2 || N ) -> L : ZZ -onto-> B ) | 
						
							| 14 |  | foelrn |  |-  ( ( L : ZZ -onto-> B /\ x e. B ) -> E. a e. ZZ x = ( L ` a ) ) | 
						
							| 15 | 13 14 | sylan |  |-  ( ( ( N e. NN /\ -. 2 || N ) /\ x e. B ) -> E. a e. ZZ x = ( L ` a ) ) | 
						
							| 16 | 1 2 3 4 5 6 | lgsdchrval |  |-  ( ( ( N e. NN /\ -. 2 || N ) /\ a e. ZZ ) -> ( X ` ( L ` a ) ) = ( a /L N ) ) | 
						
							| 17 |  | simpr |  |-  ( ( ( N e. NN /\ -. 2 || N ) /\ a e. ZZ ) -> a e. ZZ ) | 
						
							| 18 |  | nnz |  |-  ( N e. NN -> N e. ZZ ) | 
						
							| 19 | 18 | ad2antrr |  |-  ( ( ( N e. NN /\ -. 2 || N ) /\ a e. ZZ ) -> N e. ZZ ) | 
						
							| 20 |  | lgscl |  |-  ( ( a e. ZZ /\ N e. ZZ ) -> ( a /L N ) e. ZZ ) | 
						
							| 21 | 17 19 20 | syl2anc |  |-  ( ( ( N e. NN /\ -. 2 || N ) /\ a e. ZZ ) -> ( a /L N ) e. ZZ ) | 
						
							| 22 | 21 | zred |  |-  ( ( ( N e. NN /\ -. 2 || N ) /\ a e. ZZ ) -> ( a /L N ) e. RR ) | 
						
							| 23 | 16 22 | eqeltrd |  |-  ( ( ( N e. NN /\ -. 2 || N ) /\ a e. ZZ ) -> ( X ` ( L ` a ) ) e. RR ) | 
						
							| 24 |  | fveq2 |  |-  ( x = ( L ` a ) -> ( X ` x ) = ( X ` ( L ` a ) ) ) | 
						
							| 25 | 24 | eleq1d |  |-  ( x = ( L ` a ) -> ( ( X ` x ) e. RR <-> ( X ` ( L ` a ) ) e. RR ) ) | 
						
							| 26 | 23 25 | syl5ibrcom |  |-  ( ( ( N e. NN /\ -. 2 || N ) /\ a e. ZZ ) -> ( x = ( L ` a ) -> ( X ` x ) e. RR ) ) | 
						
							| 27 | 26 | rexlimdva |  |-  ( ( N e. NN /\ -. 2 || N ) -> ( E. a e. ZZ x = ( L ` a ) -> ( X ` x ) e. RR ) ) | 
						
							| 28 | 27 | imp |  |-  ( ( ( N e. NN /\ -. 2 || N ) /\ E. a e. ZZ x = ( L ` a ) ) -> ( X ` x ) e. RR ) | 
						
							| 29 | 15 28 | syldan |  |-  ( ( ( N e. NN /\ -. 2 || N ) /\ x e. B ) -> ( X ` x ) e. RR ) | 
						
							| 30 | 8 9 29 | fmpt2d |  |-  ( ( N e. NN /\ -. 2 || N ) -> X : B --> RR ) | 
						
							| 31 |  | ax-resscn |  |-  RR C_ CC | 
						
							| 32 |  | fss |  |-  ( ( X : B --> RR /\ RR C_ CC ) -> X : B --> CC ) | 
						
							| 33 | 30 31 32 | sylancl |  |-  ( ( N e. NN /\ -. 2 || N ) -> X : B --> CC ) | 
						
							| 34 |  | eqid |  |-  ( Unit ` Z ) = ( Unit ` Z ) | 
						
							| 35 | 4 34 | unitss |  |-  ( Unit ` Z ) C_ B | 
						
							| 36 |  | foelrn |  |-  ( ( L : ZZ -onto-> B /\ y e. B ) -> E. b e. ZZ y = ( L ` b ) ) | 
						
							| 37 | 13 36 | sylan |  |-  ( ( ( N e. NN /\ -. 2 || N ) /\ y e. B ) -> E. b e. ZZ y = ( L ` b ) ) | 
						
							| 38 | 15 37 | anim12dan |  |-  ( ( ( N e. NN /\ -. 2 || N ) /\ ( x e. B /\ y e. B ) ) -> ( E. a e. ZZ x = ( L ` a ) /\ E. b e. ZZ y = ( L ` b ) ) ) | 
						
							| 39 |  | reeanv |  |-  ( E. a e. ZZ E. b e. ZZ ( x = ( L ` a ) /\ y = ( L ` b ) ) <-> ( E. a e. ZZ x = ( L ` a ) /\ E. b e. ZZ y = ( L ` b ) ) ) | 
						
							| 40 | 17 | adantrr |  |-  ( ( ( N e. NN /\ -. 2 || N ) /\ ( a e. ZZ /\ b e. ZZ ) ) -> a e. ZZ ) | 
						
							| 41 |  | simprr |  |-  ( ( ( N e. NN /\ -. 2 || N ) /\ ( a e. ZZ /\ b e. ZZ ) ) -> b e. ZZ ) | 
						
							| 42 | 11 | adantr |  |-  ( ( ( N e. NN /\ -. 2 || N ) /\ ( a e. ZZ /\ b e. ZZ ) ) -> N e. NN0 ) | 
						
							| 43 |  | lgsdirnn0 |  |-  ( ( a e. ZZ /\ b e. ZZ /\ N e. NN0 ) -> ( ( a x. b ) /L N ) = ( ( a /L N ) x. ( b /L N ) ) ) | 
						
							| 44 | 40 41 42 43 | syl3anc |  |-  ( ( ( N e. NN /\ -. 2 || N ) /\ ( a e. ZZ /\ b e. ZZ ) ) -> ( ( a x. b ) /L N ) = ( ( a /L N ) x. ( b /L N ) ) ) | 
						
							| 45 | 2 | zncrng |  |-  ( N e. NN0 -> Z e. CRing ) | 
						
							| 46 | 11 45 | syl |  |-  ( ( N e. NN /\ -. 2 || N ) -> Z e. CRing ) | 
						
							| 47 |  | crngring |  |-  ( Z e. CRing -> Z e. Ring ) | 
						
							| 48 | 46 47 | syl |  |-  ( ( N e. NN /\ -. 2 || N ) -> Z e. Ring ) | 
						
							| 49 | 48 | adantr |  |-  ( ( ( N e. NN /\ -. 2 || N ) /\ ( a e. ZZ /\ b e. ZZ ) ) -> Z e. Ring ) | 
						
							| 50 | 5 | zrhrhm |  |-  ( Z e. Ring -> L e. ( ZZring RingHom Z ) ) | 
						
							| 51 | 49 50 | syl |  |-  ( ( ( N e. NN /\ -. 2 || N ) /\ ( a e. ZZ /\ b e. ZZ ) ) -> L e. ( ZZring RingHom Z ) ) | 
						
							| 52 |  | zringbas |  |-  ZZ = ( Base ` ZZring ) | 
						
							| 53 |  | zringmulr |  |-  x. = ( .r ` ZZring ) | 
						
							| 54 |  | eqid |  |-  ( .r ` Z ) = ( .r ` Z ) | 
						
							| 55 | 52 53 54 | rhmmul |  |-  ( ( L e. ( ZZring RingHom Z ) /\ a e. ZZ /\ b e. ZZ ) -> ( L ` ( a x. b ) ) = ( ( L ` a ) ( .r ` Z ) ( L ` b ) ) ) | 
						
							| 56 | 51 40 41 55 | syl3anc |  |-  ( ( ( N e. NN /\ -. 2 || N ) /\ ( a e. ZZ /\ b e. ZZ ) ) -> ( L ` ( a x. b ) ) = ( ( L ` a ) ( .r ` Z ) ( L ` b ) ) ) | 
						
							| 57 | 56 | fveq2d |  |-  ( ( ( N e. NN /\ -. 2 || N ) /\ ( a e. ZZ /\ b e. ZZ ) ) -> ( X ` ( L ` ( a x. b ) ) ) = ( X ` ( ( L ` a ) ( .r ` Z ) ( L ` b ) ) ) ) | 
						
							| 58 |  | zmulcl |  |-  ( ( a e. ZZ /\ b e. ZZ ) -> ( a x. b ) e. ZZ ) | 
						
							| 59 | 1 2 3 4 5 6 | lgsdchrval |  |-  ( ( ( N e. NN /\ -. 2 || N ) /\ ( a x. b ) e. ZZ ) -> ( X ` ( L ` ( a x. b ) ) ) = ( ( a x. b ) /L N ) ) | 
						
							| 60 | 58 59 | sylan2 |  |-  ( ( ( N e. NN /\ -. 2 || N ) /\ ( a e. ZZ /\ b e. ZZ ) ) -> ( X ` ( L ` ( a x. b ) ) ) = ( ( a x. b ) /L N ) ) | 
						
							| 61 | 57 60 | eqtr3d |  |-  ( ( ( N e. NN /\ -. 2 || N ) /\ ( a e. ZZ /\ b e. ZZ ) ) -> ( X ` ( ( L ` a ) ( .r ` Z ) ( L ` b ) ) ) = ( ( a x. b ) /L N ) ) | 
						
							| 62 | 16 | adantrr |  |-  ( ( ( N e. NN /\ -. 2 || N ) /\ ( a e. ZZ /\ b e. ZZ ) ) -> ( X ` ( L ` a ) ) = ( a /L N ) ) | 
						
							| 63 | 1 2 3 4 5 6 | lgsdchrval |  |-  ( ( ( N e. NN /\ -. 2 || N ) /\ b e. ZZ ) -> ( X ` ( L ` b ) ) = ( b /L N ) ) | 
						
							| 64 | 63 | adantrl |  |-  ( ( ( N e. NN /\ -. 2 || N ) /\ ( a e. ZZ /\ b e. ZZ ) ) -> ( X ` ( L ` b ) ) = ( b /L N ) ) | 
						
							| 65 | 62 64 | oveq12d |  |-  ( ( ( N e. NN /\ -. 2 || N ) /\ ( a e. ZZ /\ b e. ZZ ) ) -> ( ( X ` ( L ` a ) ) x. ( X ` ( L ` b ) ) ) = ( ( a /L N ) x. ( b /L N ) ) ) | 
						
							| 66 | 44 61 65 | 3eqtr4d |  |-  ( ( ( N e. NN /\ -. 2 || N ) /\ ( a e. ZZ /\ b e. ZZ ) ) -> ( X ` ( ( L ` a ) ( .r ` Z ) ( L ` b ) ) ) = ( ( X ` ( L ` a ) ) x. ( X ` ( L ` b ) ) ) ) | 
						
							| 67 |  | oveq12 |  |-  ( ( x = ( L ` a ) /\ y = ( L ` b ) ) -> ( x ( .r ` Z ) y ) = ( ( L ` a ) ( .r ` Z ) ( L ` b ) ) ) | 
						
							| 68 | 67 | fveq2d |  |-  ( ( x = ( L ` a ) /\ y = ( L ` b ) ) -> ( X ` ( x ( .r ` Z ) y ) ) = ( X ` ( ( L ` a ) ( .r ` Z ) ( L ` b ) ) ) ) | 
						
							| 69 |  | fveq2 |  |-  ( y = ( L ` b ) -> ( X ` y ) = ( X ` ( L ` b ) ) ) | 
						
							| 70 | 24 69 | oveqan12d |  |-  ( ( x = ( L ` a ) /\ y = ( L ` b ) ) -> ( ( X ` x ) x. ( X ` y ) ) = ( ( X ` ( L ` a ) ) x. ( X ` ( L ` b ) ) ) ) | 
						
							| 71 | 68 70 | eqeq12d |  |-  ( ( x = ( L ` a ) /\ y = ( L ` b ) ) -> ( ( X ` ( x ( .r ` Z ) y ) ) = ( ( X ` x ) x. ( X ` y ) ) <-> ( X ` ( ( L ` a ) ( .r ` Z ) ( L ` b ) ) ) = ( ( X ` ( L ` a ) ) x. ( X ` ( L ` b ) ) ) ) ) | 
						
							| 72 | 66 71 | syl5ibrcom |  |-  ( ( ( N e. NN /\ -. 2 || N ) /\ ( a e. ZZ /\ b e. ZZ ) ) -> ( ( x = ( L ` a ) /\ y = ( L ` b ) ) -> ( X ` ( x ( .r ` Z ) y ) ) = ( ( X ` x ) x. ( X ` y ) ) ) ) | 
						
							| 73 | 72 | rexlimdvva |  |-  ( ( N e. NN /\ -. 2 || N ) -> ( E. a e. ZZ E. b e. ZZ ( x = ( L ` a ) /\ y = ( L ` b ) ) -> ( X ` ( x ( .r ` Z ) y ) ) = ( ( X ` x ) x. ( X ` y ) ) ) ) | 
						
							| 74 | 39 73 | biimtrrid |  |-  ( ( N e. NN /\ -. 2 || N ) -> ( ( E. a e. ZZ x = ( L ` a ) /\ E. b e. ZZ y = ( L ` b ) ) -> ( X ` ( x ( .r ` Z ) y ) ) = ( ( X ` x ) x. ( X ` y ) ) ) ) | 
						
							| 75 | 74 | imp |  |-  ( ( ( N e. NN /\ -. 2 || N ) /\ ( E. a e. ZZ x = ( L ` a ) /\ E. b e. ZZ y = ( L ` b ) ) ) -> ( X ` ( x ( .r ` Z ) y ) ) = ( ( X ` x ) x. ( X ` y ) ) ) | 
						
							| 76 | 38 75 | syldan |  |-  ( ( ( N e. NN /\ -. 2 || N ) /\ ( x e. B /\ y e. B ) ) -> ( X ` ( x ( .r ` Z ) y ) ) = ( ( X ` x ) x. ( X ` y ) ) ) | 
						
							| 77 | 76 | ralrimivva |  |-  ( ( N e. NN /\ -. 2 || N ) -> A. x e. B A. y e. B ( X ` ( x ( .r ` Z ) y ) ) = ( ( X ` x ) x. ( X ` y ) ) ) | 
						
							| 78 |  | ss2ralv |  |-  ( ( Unit ` Z ) C_ B -> ( A. x e. B A. y e. B ( X ` ( x ( .r ` Z ) y ) ) = ( ( X ` x ) x. ( X ` y ) ) -> A. x e. ( Unit ` Z ) A. y e. ( Unit ` Z ) ( X ` ( x ( .r ` Z ) y ) ) = ( ( X ` x ) x. ( X ` y ) ) ) ) | 
						
							| 79 | 35 77 78 | mpsyl |  |-  ( ( N e. NN /\ -. 2 || N ) -> A. x e. ( Unit ` Z ) A. y e. ( Unit ` Z ) ( X ` ( x ( .r ` Z ) y ) ) = ( ( X ` x ) x. ( X ` y ) ) ) | 
						
							| 80 |  | 1z |  |-  1 e. ZZ | 
						
							| 81 | 1 2 3 4 5 6 | lgsdchrval |  |-  ( ( ( N e. NN /\ -. 2 || N ) /\ 1 e. ZZ ) -> ( X ` ( L ` 1 ) ) = ( 1 /L N ) ) | 
						
							| 82 | 80 81 | mpan2 |  |-  ( ( N e. NN /\ -. 2 || N ) -> ( X ` ( L ` 1 ) ) = ( 1 /L N ) ) | 
						
							| 83 |  | eqid |  |-  ( 1r ` Z ) = ( 1r ` Z ) | 
						
							| 84 | 5 83 | zrh1 |  |-  ( Z e. Ring -> ( L ` 1 ) = ( 1r ` Z ) ) | 
						
							| 85 | 48 84 | syl |  |-  ( ( N e. NN /\ -. 2 || N ) -> ( L ` 1 ) = ( 1r ` Z ) ) | 
						
							| 86 | 85 | fveq2d |  |-  ( ( N e. NN /\ -. 2 || N ) -> ( X ` ( L ` 1 ) ) = ( X ` ( 1r ` Z ) ) ) | 
						
							| 87 | 18 | adantr |  |-  ( ( N e. NN /\ -. 2 || N ) -> N e. ZZ ) | 
						
							| 88 |  | 1lgs |  |-  ( N e. ZZ -> ( 1 /L N ) = 1 ) | 
						
							| 89 | 87 88 | syl |  |-  ( ( N e. NN /\ -. 2 || N ) -> ( 1 /L N ) = 1 ) | 
						
							| 90 | 82 86 89 | 3eqtr3d |  |-  ( ( N e. NN /\ -. 2 || N ) -> ( X ` ( 1r ` Z ) ) = 1 ) | 
						
							| 91 |  | lgsne0 |  |-  ( ( a e. ZZ /\ N e. ZZ ) -> ( ( a /L N ) =/= 0 <-> ( a gcd N ) = 1 ) ) | 
						
							| 92 | 17 19 91 | syl2anc |  |-  ( ( ( N e. NN /\ -. 2 || N ) /\ a e. ZZ ) -> ( ( a /L N ) =/= 0 <-> ( a gcd N ) = 1 ) ) | 
						
							| 93 | 92 | biimpd |  |-  ( ( ( N e. NN /\ -. 2 || N ) /\ a e. ZZ ) -> ( ( a /L N ) =/= 0 -> ( a gcd N ) = 1 ) ) | 
						
							| 94 | 16 | neeq1d |  |-  ( ( ( N e. NN /\ -. 2 || N ) /\ a e. ZZ ) -> ( ( X ` ( L ` a ) ) =/= 0 <-> ( a /L N ) =/= 0 ) ) | 
						
							| 95 | 2 34 5 | znunit |  |-  ( ( N e. NN0 /\ a e. ZZ ) -> ( ( L ` a ) e. ( Unit ` Z ) <-> ( a gcd N ) = 1 ) ) | 
						
							| 96 | 11 95 | sylan |  |-  ( ( ( N e. NN /\ -. 2 || N ) /\ a e. ZZ ) -> ( ( L ` a ) e. ( Unit ` Z ) <-> ( a gcd N ) = 1 ) ) | 
						
							| 97 | 93 94 96 | 3imtr4d |  |-  ( ( ( N e. NN /\ -. 2 || N ) /\ a e. ZZ ) -> ( ( X ` ( L ` a ) ) =/= 0 -> ( L ` a ) e. ( Unit ` Z ) ) ) | 
						
							| 98 | 24 | neeq1d |  |-  ( x = ( L ` a ) -> ( ( X ` x ) =/= 0 <-> ( X ` ( L ` a ) ) =/= 0 ) ) | 
						
							| 99 |  | eleq1 |  |-  ( x = ( L ` a ) -> ( x e. ( Unit ` Z ) <-> ( L ` a ) e. ( Unit ` Z ) ) ) | 
						
							| 100 | 98 99 | imbi12d |  |-  ( x = ( L ` a ) -> ( ( ( X ` x ) =/= 0 -> x e. ( Unit ` Z ) ) <-> ( ( X ` ( L ` a ) ) =/= 0 -> ( L ` a ) e. ( Unit ` Z ) ) ) ) | 
						
							| 101 | 97 100 | syl5ibrcom |  |-  ( ( ( N e. NN /\ -. 2 || N ) /\ a e. ZZ ) -> ( x = ( L ` a ) -> ( ( X ` x ) =/= 0 -> x e. ( Unit ` Z ) ) ) ) | 
						
							| 102 | 101 | rexlimdva |  |-  ( ( N e. NN /\ -. 2 || N ) -> ( E. a e. ZZ x = ( L ` a ) -> ( ( X ` x ) =/= 0 -> x e. ( Unit ` Z ) ) ) ) | 
						
							| 103 | 102 | imp |  |-  ( ( ( N e. NN /\ -. 2 || N ) /\ E. a e. ZZ x = ( L ` a ) ) -> ( ( X ` x ) =/= 0 -> x e. ( Unit ` Z ) ) ) | 
						
							| 104 | 15 103 | syldan |  |-  ( ( ( N e. NN /\ -. 2 || N ) /\ x e. B ) -> ( ( X ` x ) =/= 0 -> x e. ( Unit ` Z ) ) ) | 
						
							| 105 | 104 | ralrimiva |  |-  ( ( N e. NN /\ -. 2 || N ) -> A. x e. B ( ( X ` x ) =/= 0 -> x e. ( Unit ` Z ) ) ) | 
						
							| 106 | 79 90 105 | 3jca |  |-  ( ( N e. NN /\ -. 2 || N ) -> ( A. x e. ( Unit ` Z ) A. y e. ( Unit ` Z ) ( X ` ( x ( .r ` Z ) y ) ) = ( ( X ` x ) x. ( X ` y ) ) /\ ( X ` ( 1r ` Z ) ) = 1 /\ A. x e. B ( ( X ` x ) =/= 0 -> x e. ( Unit ` Z ) ) ) ) | 
						
							| 107 |  | simpl |  |-  ( ( N e. NN /\ -. 2 || N ) -> N e. NN ) | 
						
							| 108 | 1 2 4 34 107 3 | dchrelbas3 |  |-  ( ( N e. NN /\ -. 2 || N ) -> ( X e. D <-> ( X : B --> CC /\ ( A. x e. ( Unit ` Z ) A. y e. ( Unit ` Z ) ( X ` ( x ( .r ` Z ) y ) ) = ( ( X ` x ) x. ( X ` y ) ) /\ ( X ` ( 1r ` Z ) ) = 1 /\ A. x e. B ( ( X ` x ) =/= 0 -> x e. ( Unit ` Z ) ) ) ) ) ) | 
						
							| 109 | 33 106 108 | mpbir2and |  |-  ( ( N e. NN /\ -. 2 || N ) -> X e. D ) | 
						
							| 110 | 109 30 | jca |  |-  ( ( N e. NN /\ -. 2 || N ) -> ( X e. D /\ X : B --> RR ) ) |