Step |
Hyp |
Ref |
Expression |
1 |
|
lgsdchr.g |
|
2 |
|
lgsdchr.z |
|
3 |
|
lgsdchr.d |
|
4 |
|
lgsdchr.b |
|
5 |
|
lgsdchr.l |
|
6 |
|
lgsdchr.x |
|
7 |
|
iotaex |
|
8 |
7
|
a1i |
|
9 |
6
|
a1i |
|
10 |
|
nnnn0 |
|
11 |
10
|
adantr |
|
12 |
2 4 5
|
znzrhfo |
|
13 |
11 12
|
syl |
|
14 |
|
foelrn |
|
15 |
13 14
|
sylan |
|
16 |
1 2 3 4 5 6
|
lgsdchrval |
|
17 |
|
simpr |
|
18 |
|
nnz |
|
19 |
18
|
ad2antrr |
|
20 |
|
lgscl |
|
21 |
17 19 20
|
syl2anc |
|
22 |
21
|
zred |
|
23 |
16 22
|
eqeltrd |
|
24 |
|
fveq2 |
|
25 |
24
|
eleq1d |
|
26 |
23 25
|
syl5ibrcom |
|
27 |
26
|
rexlimdva |
|
28 |
27
|
imp |
|
29 |
15 28
|
syldan |
|
30 |
8 9 29
|
fmpt2d |
|
31 |
|
ax-resscn |
|
32 |
|
fss |
|
33 |
30 31 32
|
sylancl |
|
34 |
|
eqid |
|
35 |
4 34
|
unitss |
|
36 |
|
foelrn |
|
37 |
13 36
|
sylan |
|
38 |
15 37
|
anim12dan |
|
39 |
|
reeanv |
|
40 |
17
|
adantrr |
|
41 |
|
simprr |
|
42 |
11
|
adantr |
|
43 |
|
lgsdirnn0 |
|
44 |
40 41 42 43
|
syl3anc |
|
45 |
2
|
zncrng |
|
46 |
11 45
|
syl |
|
47 |
|
crngring |
|
48 |
46 47
|
syl |
|
49 |
48
|
adantr |
|
50 |
5
|
zrhrhm |
|
51 |
49 50
|
syl |
|
52 |
|
zringbas |
|
53 |
|
zringmulr |
|
54 |
|
eqid |
|
55 |
52 53 54
|
rhmmul |
|
56 |
51 40 41 55
|
syl3anc |
|
57 |
56
|
fveq2d |
|
58 |
|
zmulcl |
|
59 |
1 2 3 4 5 6
|
lgsdchrval |
|
60 |
58 59
|
sylan2 |
|
61 |
57 60
|
eqtr3d |
|
62 |
16
|
adantrr |
|
63 |
1 2 3 4 5 6
|
lgsdchrval |
|
64 |
63
|
adantrl |
|
65 |
62 64
|
oveq12d |
|
66 |
44 61 65
|
3eqtr4d |
|
67 |
|
oveq12 |
|
68 |
67
|
fveq2d |
|
69 |
|
fveq2 |
|
70 |
24 69
|
oveqan12d |
|
71 |
68 70
|
eqeq12d |
|
72 |
66 71
|
syl5ibrcom |
|
73 |
72
|
rexlimdvva |
|
74 |
39 73
|
syl5bir |
|
75 |
74
|
imp |
|
76 |
38 75
|
syldan |
|
77 |
76
|
ralrimivva |
|
78 |
|
ss2ralv |
|
79 |
35 77 78
|
mpsyl |
|
80 |
|
1z |
|
81 |
1 2 3 4 5 6
|
lgsdchrval |
|
82 |
80 81
|
mpan2 |
|
83 |
|
eqid |
|
84 |
5 83
|
zrh1 |
|
85 |
48 84
|
syl |
|
86 |
85
|
fveq2d |
|
87 |
18
|
adantr |
|
88 |
|
1lgs |
|
89 |
87 88
|
syl |
|
90 |
82 86 89
|
3eqtr3d |
|
91 |
|
lgsne0 |
|
92 |
17 19 91
|
syl2anc |
|
93 |
92
|
biimpd |
|
94 |
16
|
neeq1d |
|
95 |
2 34 5
|
znunit |
|
96 |
11 95
|
sylan |
|
97 |
93 94 96
|
3imtr4d |
|
98 |
24
|
neeq1d |
|
99 |
|
eleq1 |
|
100 |
98 99
|
imbi12d |
|
101 |
97 100
|
syl5ibrcom |
|
102 |
101
|
rexlimdva |
|
103 |
102
|
imp |
|
104 |
15 103
|
syldan |
|
105 |
104
|
ralrimiva |
|
106 |
79 90 105
|
3jca |
|
107 |
|
simpl |
|
108 |
1 2 4 34 107 3
|
dchrelbas3 |
|
109 |
33 106 108
|
mpbir2and |
|
110 |
109 30
|
jca |
|