| Step | Hyp | Ref | Expression | 
						
							| 1 |  | lgsdchr.g | ⊢ 𝐺  =  ( DChr ‘ 𝑁 ) | 
						
							| 2 |  | lgsdchr.z | ⊢ 𝑍  =  ( ℤ/nℤ ‘ 𝑁 ) | 
						
							| 3 |  | lgsdchr.d | ⊢ 𝐷  =  ( Base ‘ 𝐺 ) | 
						
							| 4 |  | lgsdchr.b | ⊢ 𝐵  =  ( Base ‘ 𝑍 ) | 
						
							| 5 |  | lgsdchr.l | ⊢ 𝐿  =  ( ℤRHom ‘ 𝑍 ) | 
						
							| 6 |  | lgsdchr.x | ⊢ 𝑋  =  ( 𝑦  ∈  𝐵  ↦  ( ℩ ℎ ∃ 𝑚  ∈  ℤ ( 𝑦  =  ( 𝐿 ‘ 𝑚 )  ∧  ℎ  =  ( 𝑚  /L  𝑁 ) ) ) ) | 
						
							| 7 |  | iotaex | ⊢ ( ℩ ℎ ∃ 𝑚  ∈  ℤ ( 𝑦  =  ( 𝐿 ‘ 𝑚 )  ∧  ℎ  =  ( 𝑚  /L  𝑁 ) ) )  ∈  V | 
						
							| 8 | 7 | a1i | ⊢ ( ( ( 𝑁  ∈  ℕ  ∧  ¬  2  ∥  𝑁 )  ∧  𝑦  ∈  𝐵 )  →  ( ℩ ℎ ∃ 𝑚  ∈  ℤ ( 𝑦  =  ( 𝐿 ‘ 𝑚 )  ∧  ℎ  =  ( 𝑚  /L  𝑁 ) ) )  ∈  V ) | 
						
							| 9 | 6 | a1i | ⊢ ( ( 𝑁  ∈  ℕ  ∧  ¬  2  ∥  𝑁 )  →  𝑋  =  ( 𝑦  ∈  𝐵  ↦  ( ℩ ℎ ∃ 𝑚  ∈  ℤ ( 𝑦  =  ( 𝐿 ‘ 𝑚 )  ∧  ℎ  =  ( 𝑚  /L  𝑁 ) ) ) ) ) | 
						
							| 10 |  | nnnn0 | ⊢ ( 𝑁  ∈  ℕ  →  𝑁  ∈  ℕ0 ) | 
						
							| 11 | 10 | adantr | ⊢ ( ( 𝑁  ∈  ℕ  ∧  ¬  2  ∥  𝑁 )  →  𝑁  ∈  ℕ0 ) | 
						
							| 12 | 2 4 5 | znzrhfo | ⊢ ( 𝑁  ∈  ℕ0  →  𝐿 : ℤ –onto→ 𝐵 ) | 
						
							| 13 | 11 12 | syl | ⊢ ( ( 𝑁  ∈  ℕ  ∧  ¬  2  ∥  𝑁 )  →  𝐿 : ℤ –onto→ 𝐵 ) | 
						
							| 14 |  | foelrn | ⊢ ( ( 𝐿 : ℤ –onto→ 𝐵  ∧  𝑥  ∈  𝐵 )  →  ∃ 𝑎  ∈  ℤ 𝑥  =  ( 𝐿 ‘ 𝑎 ) ) | 
						
							| 15 | 13 14 | sylan | ⊢ ( ( ( 𝑁  ∈  ℕ  ∧  ¬  2  ∥  𝑁 )  ∧  𝑥  ∈  𝐵 )  →  ∃ 𝑎  ∈  ℤ 𝑥  =  ( 𝐿 ‘ 𝑎 ) ) | 
						
							| 16 | 1 2 3 4 5 6 | lgsdchrval | ⊢ ( ( ( 𝑁  ∈  ℕ  ∧  ¬  2  ∥  𝑁 )  ∧  𝑎  ∈  ℤ )  →  ( 𝑋 ‘ ( 𝐿 ‘ 𝑎 ) )  =  ( 𝑎  /L  𝑁 ) ) | 
						
							| 17 |  | simpr | ⊢ ( ( ( 𝑁  ∈  ℕ  ∧  ¬  2  ∥  𝑁 )  ∧  𝑎  ∈  ℤ )  →  𝑎  ∈  ℤ ) | 
						
							| 18 |  | nnz | ⊢ ( 𝑁  ∈  ℕ  →  𝑁  ∈  ℤ ) | 
						
							| 19 | 18 | ad2antrr | ⊢ ( ( ( 𝑁  ∈  ℕ  ∧  ¬  2  ∥  𝑁 )  ∧  𝑎  ∈  ℤ )  →  𝑁  ∈  ℤ ) | 
						
							| 20 |  | lgscl | ⊢ ( ( 𝑎  ∈  ℤ  ∧  𝑁  ∈  ℤ )  →  ( 𝑎  /L  𝑁 )  ∈  ℤ ) | 
						
							| 21 | 17 19 20 | syl2anc | ⊢ ( ( ( 𝑁  ∈  ℕ  ∧  ¬  2  ∥  𝑁 )  ∧  𝑎  ∈  ℤ )  →  ( 𝑎  /L  𝑁 )  ∈  ℤ ) | 
						
							| 22 | 21 | zred | ⊢ ( ( ( 𝑁  ∈  ℕ  ∧  ¬  2  ∥  𝑁 )  ∧  𝑎  ∈  ℤ )  →  ( 𝑎  /L  𝑁 )  ∈  ℝ ) | 
						
							| 23 | 16 22 | eqeltrd | ⊢ ( ( ( 𝑁  ∈  ℕ  ∧  ¬  2  ∥  𝑁 )  ∧  𝑎  ∈  ℤ )  →  ( 𝑋 ‘ ( 𝐿 ‘ 𝑎 ) )  ∈  ℝ ) | 
						
							| 24 |  | fveq2 | ⊢ ( 𝑥  =  ( 𝐿 ‘ 𝑎 )  →  ( 𝑋 ‘ 𝑥 )  =  ( 𝑋 ‘ ( 𝐿 ‘ 𝑎 ) ) ) | 
						
							| 25 | 24 | eleq1d | ⊢ ( 𝑥  =  ( 𝐿 ‘ 𝑎 )  →  ( ( 𝑋 ‘ 𝑥 )  ∈  ℝ  ↔  ( 𝑋 ‘ ( 𝐿 ‘ 𝑎 ) )  ∈  ℝ ) ) | 
						
							| 26 | 23 25 | syl5ibrcom | ⊢ ( ( ( 𝑁  ∈  ℕ  ∧  ¬  2  ∥  𝑁 )  ∧  𝑎  ∈  ℤ )  →  ( 𝑥  =  ( 𝐿 ‘ 𝑎 )  →  ( 𝑋 ‘ 𝑥 )  ∈  ℝ ) ) | 
						
							| 27 | 26 | rexlimdva | ⊢ ( ( 𝑁  ∈  ℕ  ∧  ¬  2  ∥  𝑁 )  →  ( ∃ 𝑎  ∈  ℤ 𝑥  =  ( 𝐿 ‘ 𝑎 )  →  ( 𝑋 ‘ 𝑥 )  ∈  ℝ ) ) | 
						
							| 28 | 27 | imp | ⊢ ( ( ( 𝑁  ∈  ℕ  ∧  ¬  2  ∥  𝑁 )  ∧  ∃ 𝑎  ∈  ℤ 𝑥  =  ( 𝐿 ‘ 𝑎 ) )  →  ( 𝑋 ‘ 𝑥 )  ∈  ℝ ) | 
						
							| 29 | 15 28 | syldan | ⊢ ( ( ( 𝑁  ∈  ℕ  ∧  ¬  2  ∥  𝑁 )  ∧  𝑥  ∈  𝐵 )  →  ( 𝑋 ‘ 𝑥 )  ∈  ℝ ) | 
						
							| 30 | 8 9 29 | fmpt2d | ⊢ ( ( 𝑁  ∈  ℕ  ∧  ¬  2  ∥  𝑁 )  →  𝑋 : 𝐵 ⟶ ℝ ) | 
						
							| 31 |  | ax-resscn | ⊢ ℝ  ⊆  ℂ | 
						
							| 32 |  | fss | ⊢ ( ( 𝑋 : 𝐵 ⟶ ℝ  ∧  ℝ  ⊆  ℂ )  →  𝑋 : 𝐵 ⟶ ℂ ) | 
						
							| 33 | 30 31 32 | sylancl | ⊢ ( ( 𝑁  ∈  ℕ  ∧  ¬  2  ∥  𝑁 )  →  𝑋 : 𝐵 ⟶ ℂ ) | 
						
							| 34 |  | eqid | ⊢ ( Unit ‘ 𝑍 )  =  ( Unit ‘ 𝑍 ) | 
						
							| 35 | 4 34 | unitss | ⊢ ( Unit ‘ 𝑍 )  ⊆  𝐵 | 
						
							| 36 |  | foelrn | ⊢ ( ( 𝐿 : ℤ –onto→ 𝐵  ∧  𝑦  ∈  𝐵 )  →  ∃ 𝑏  ∈  ℤ 𝑦  =  ( 𝐿 ‘ 𝑏 ) ) | 
						
							| 37 | 13 36 | sylan | ⊢ ( ( ( 𝑁  ∈  ℕ  ∧  ¬  2  ∥  𝑁 )  ∧  𝑦  ∈  𝐵 )  →  ∃ 𝑏  ∈  ℤ 𝑦  =  ( 𝐿 ‘ 𝑏 ) ) | 
						
							| 38 | 15 37 | anim12dan | ⊢ ( ( ( 𝑁  ∈  ℕ  ∧  ¬  2  ∥  𝑁 )  ∧  ( 𝑥  ∈  𝐵  ∧  𝑦  ∈  𝐵 ) )  →  ( ∃ 𝑎  ∈  ℤ 𝑥  =  ( 𝐿 ‘ 𝑎 )  ∧  ∃ 𝑏  ∈  ℤ 𝑦  =  ( 𝐿 ‘ 𝑏 ) ) ) | 
						
							| 39 |  | reeanv | ⊢ ( ∃ 𝑎  ∈  ℤ ∃ 𝑏  ∈  ℤ ( 𝑥  =  ( 𝐿 ‘ 𝑎 )  ∧  𝑦  =  ( 𝐿 ‘ 𝑏 ) )  ↔  ( ∃ 𝑎  ∈  ℤ 𝑥  =  ( 𝐿 ‘ 𝑎 )  ∧  ∃ 𝑏  ∈  ℤ 𝑦  =  ( 𝐿 ‘ 𝑏 ) ) ) | 
						
							| 40 | 17 | adantrr | ⊢ ( ( ( 𝑁  ∈  ℕ  ∧  ¬  2  ∥  𝑁 )  ∧  ( 𝑎  ∈  ℤ  ∧  𝑏  ∈  ℤ ) )  →  𝑎  ∈  ℤ ) | 
						
							| 41 |  | simprr | ⊢ ( ( ( 𝑁  ∈  ℕ  ∧  ¬  2  ∥  𝑁 )  ∧  ( 𝑎  ∈  ℤ  ∧  𝑏  ∈  ℤ ) )  →  𝑏  ∈  ℤ ) | 
						
							| 42 | 11 | adantr | ⊢ ( ( ( 𝑁  ∈  ℕ  ∧  ¬  2  ∥  𝑁 )  ∧  ( 𝑎  ∈  ℤ  ∧  𝑏  ∈  ℤ ) )  →  𝑁  ∈  ℕ0 ) | 
						
							| 43 |  | lgsdirnn0 | ⊢ ( ( 𝑎  ∈  ℤ  ∧  𝑏  ∈  ℤ  ∧  𝑁  ∈  ℕ0 )  →  ( ( 𝑎  ·  𝑏 )  /L  𝑁 )  =  ( ( 𝑎  /L  𝑁 )  ·  ( 𝑏  /L  𝑁 ) ) ) | 
						
							| 44 | 40 41 42 43 | syl3anc | ⊢ ( ( ( 𝑁  ∈  ℕ  ∧  ¬  2  ∥  𝑁 )  ∧  ( 𝑎  ∈  ℤ  ∧  𝑏  ∈  ℤ ) )  →  ( ( 𝑎  ·  𝑏 )  /L  𝑁 )  =  ( ( 𝑎  /L  𝑁 )  ·  ( 𝑏  /L  𝑁 ) ) ) | 
						
							| 45 | 2 | zncrng | ⊢ ( 𝑁  ∈  ℕ0  →  𝑍  ∈  CRing ) | 
						
							| 46 | 11 45 | syl | ⊢ ( ( 𝑁  ∈  ℕ  ∧  ¬  2  ∥  𝑁 )  →  𝑍  ∈  CRing ) | 
						
							| 47 |  | crngring | ⊢ ( 𝑍  ∈  CRing  →  𝑍  ∈  Ring ) | 
						
							| 48 | 46 47 | syl | ⊢ ( ( 𝑁  ∈  ℕ  ∧  ¬  2  ∥  𝑁 )  →  𝑍  ∈  Ring ) | 
						
							| 49 | 48 | adantr | ⊢ ( ( ( 𝑁  ∈  ℕ  ∧  ¬  2  ∥  𝑁 )  ∧  ( 𝑎  ∈  ℤ  ∧  𝑏  ∈  ℤ ) )  →  𝑍  ∈  Ring ) | 
						
							| 50 | 5 | zrhrhm | ⊢ ( 𝑍  ∈  Ring  →  𝐿  ∈  ( ℤring  RingHom  𝑍 ) ) | 
						
							| 51 | 49 50 | syl | ⊢ ( ( ( 𝑁  ∈  ℕ  ∧  ¬  2  ∥  𝑁 )  ∧  ( 𝑎  ∈  ℤ  ∧  𝑏  ∈  ℤ ) )  →  𝐿  ∈  ( ℤring  RingHom  𝑍 ) ) | 
						
							| 52 |  | zringbas | ⊢ ℤ  =  ( Base ‘ ℤring ) | 
						
							| 53 |  | zringmulr | ⊢  ·   =  ( .r ‘ ℤring ) | 
						
							| 54 |  | eqid | ⊢ ( .r ‘ 𝑍 )  =  ( .r ‘ 𝑍 ) | 
						
							| 55 | 52 53 54 | rhmmul | ⊢ ( ( 𝐿  ∈  ( ℤring  RingHom  𝑍 )  ∧  𝑎  ∈  ℤ  ∧  𝑏  ∈  ℤ )  →  ( 𝐿 ‘ ( 𝑎  ·  𝑏 ) )  =  ( ( 𝐿 ‘ 𝑎 ) ( .r ‘ 𝑍 ) ( 𝐿 ‘ 𝑏 ) ) ) | 
						
							| 56 | 51 40 41 55 | syl3anc | ⊢ ( ( ( 𝑁  ∈  ℕ  ∧  ¬  2  ∥  𝑁 )  ∧  ( 𝑎  ∈  ℤ  ∧  𝑏  ∈  ℤ ) )  →  ( 𝐿 ‘ ( 𝑎  ·  𝑏 ) )  =  ( ( 𝐿 ‘ 𝑎 ) ( .r ‘ 𝑍 ) ( 𝐿 ‘ 𝑏 ) ) ) | 
						
							| 57 | 56 | fveq2d | ⊢ ( ( ( 𝑁  ∈  ℕ  ∧  ¬  2  ∥  𝑁 )  ∧  ( 𝑎  ∈  ℤ  ∧  𝑏  ∈  ℤ ) )  →  ( 𝑋 ‘ ( 𝐿 ‘ ( 𝑎  ·  𝑏 ) ) )  =  ( 𝑋 ‘ ( ( 𝐿 ‘ 𝑎 ) ( .r ‘ 𝑍 ) ( 𝐿 ‘ 𝑏 ) ) ) ) | 
						
							| 58 |  | zmulcl | ⊢ ( ( 𝑎  ∈  ℤ  ∧  𝑏  ∈  ℤ )  →  ( 𝑎  ·  𝑏 )  ∈  ℤ ) | 
						
							| 59 | 1 2 3 4 5 6 | lgsdchrval | ⊢ ( ( ( 𝑁  ∈  ℕ  ∧  ¬  2  ∥  𝑁 )  ∧  ( 𝑎  ·  𝑏 )  ∈  ℤ )  →  ( 𝑋 ‘ ( 𝐿 ‘ ( 𝑎  ·  𝑏 ) ) )  =  ( ( 𝑎  ·  𝑏 )  /L  𝑁 ) ) | 
						
							| 60 | 58 59 | sylan2 | ⊢ ( ( ( 𝑁  ∈  ℕ  ∧  ¬  2  ∥  𝑁 )  ∧  ( 𝑎  ∈  ℤ  ∧  𝑏  ∈  ℤ ) )  →  ( 𝑋 ‘ ( 𝐿 ‘ ( 𝑎  ·  𝑏 ) ) )  =  ( ( 𝑎  ·  𝑏 )  /L  𝑁 ) ) | 
						
							| 61 | 57 60 | eqtr3d | ⊢ ( ( ( 𝑁  ∈  ℕ  ∧  ¬  2  ∥  𝑁 )  ∧  ( 𝑎  ∈  ℤ  ∧  𝑏  ∈  ℤ ) )  →  ( 𝑋 ‘ ( ( 𝐿 ‘ 𝑎 ) ( .r ‘ 𝑍 ) ( 𝐿 ‘ 𝑏 ) ) )  =  ( ( 𝑎  ·  𝑏 )  /L  𝑁 ) ) | 
						
							| 62 | 16 | adantrr | ⊢ ( ( ( 𝑁  ∈  ℕ  ∧  ¬  2  ∥  𝑁 )  ∧  ( 𝑎  ∈  ℤ  ∧  𝑏  ∈  ℤ ) )  →  ( 𝑋 ‘ ( 𝐿 ‘ 𝑎 ) )  =  ( 𝑎  /L  𝑁 ) ) | 
						
							| 63 | 1 2 3 4 5 6 | lgsdchrval | ⊢ ( ( ( 𝑁  ∈  ℕ  ∧  ¬  2  ∥  𝑁 )  ∧  𝑏  ∈  ℤ )  →  ( 𝑋 ‘ ( 𝐿 ‘ 𝑏 ) )  =  ( 𝑏  /L  𝑁 ) ) | 
						
							| 64 | 63 | adantrl | ⊢ ( ( ( 𝑁  ∈  ℕ  ∧  ¬  2  ∥  𝑁 )  ∧  ( 𝑎  ∈  ℤ  ∧  𝑏  ∈  ℤ ) )  →  ( 𝑋 ‘ ( 𝐿 ‘ 𝑏 ) )  =  ( 𝑏  /L  𝑁 ) ) | 
						
							| 65 | 62 64 | oveq12d | ⊢ ( ( ( 𝑁  ∈  ℕ  ∧  ¬  2  ∥  𝑁 )  ∧  ( 𝑎  ∈  ℤ  ∧  𝑏  ∈  ℤ ) )  →  ( ( 𝑋 ‘ ( 𝐿 ‘ 𝑎 ) )  ·  ( 𝑋 ‘ ( 𝐿 ‘ 𝑏 ) ) )  =  ( ( 𝑎  /L  𝑁 )  ·  ( 𝑏  /L  𝑁 ) ) ) | 
						
							| 66 | 44 61 65 | 3eqtr4d | ⊢ ( ( ( 𝑁  ∈  ℕ  ∧  ¬  2  ∥  𝑁 )  ∧  ( 𝑎  ∈  ℤ  ∧  𝑏  ∈  ℤ ) )  →  ( 𝑋 ‘ ( ( 𝐿 ‘ 𝑎 ) ( .r ‘ 𝑍 ) ( 𝐿 ‘ 𝑏 ) ) )  =  ( ( 𝑋 ‘ ( 𝐿 ‘ 𝑎 ) )  ·  ( 𝑋 ‘ ( 𝐿 ‘ 𝑏 ) ) ) ) | 
						
							| 67 |  | oveq12 | ⊢ ( ( 𝑥  =  ( 𝐿 ‘ 𝑎 )  ∧  𝑦  =  ( 𝐿 ‘ 𝑏 ) )  →  ( 𝑥 ( .r ‘ 𝑍 ) 𝑦 )  =  ( ( 𝐿 ‘ 𝑎 ) ( .r ‘ 𝑍 ) ( 𝐿 ‘ 𝑏 ) ) ) | 
						
							| 68 | 67 | fveq2d | ⊢ ( ( 𝑥  =  ( 𝐿 ‘ 𝑎 )  ∧  𝑦  =  ( 𝐿 ‘ 𝑏 ) )  →  ( 𝑋 ‘ ( 𝑥 ( .r ‘ 𝑍 ) 𝑦 ) )  =  ( 𝑋 ‘ ( ( 𝐿 ‘ 𝑎 ) ( .r ‘ 𝑍 ) ( 𝐿 ‘ 𝑏 ) ) ) ) | 
						
							| 69 |  | fveq2 | ⊢ ( 𝑦  =  ( 𝐿 ‘ 𝑏 )  →  ( 𝑋 ‘ 𝑦 )  =  ( 𝑋 ‘ ( 𝐿 ‘ 𝑏 ) ) ) | 
						
							| 70 | 24 69 | oveqan12d | ⊢ ( ( 𝑥  =  ( 𝐿 ‘ 𝑎 )  ∧  𝑦  =  ( 𝐿 ‘ 𝑏 ) )  →  ( ( 𝑋 ‘ 𝑥 )  ·  ( 𝑋 ‘ 𝑦 ) )  =  ( ( 𝑋 ‘ ( 𝐿 ‘ 𝑎 ) )  ·  ( 𝑋 ‘ ( 𝐿 ‘ 𝑏 ) ) ) ) | 
						
							| 71 | 68 70 | eqeq12d | ⊢ ( ( 𝑥  =  ( 𝐿 ‘ 𝑎 )  ∧  𝑦  =  ( 𝐿 ‘ 𝑏 ) )  →  ( ( 𝑋 ‘ ( 𝑥 ( .r ‘ 𝑍 ) 𝑦 ) )  =  ( ( 𝑋 ‘ 𝑥 )  ·  ( 𝑋 ‘ 𝑦 ) )  ↔  ( 𝑋 ‘ ( ( 𝐿 ‘ 𝑎 ) ( .r ‘ 𝑍 ) ( 𝐿 ‘ 𝑏 ) ) )  =  ( ( 𝑋 ‘ ( 𝐿 ‘ 𝑎 ) )  ·  ( 𝑋 ‘ ( 𝐿 ‘ 𝑏 ) ) ) ) ) | 
						
							| 72 | 66 71 | syl5ibrcom | ⊢ ( ( ( 𝑁  ∈  ℕ  ∧  ¬  2  ∥  𝑁 )  ∧  ( 𝑎  ∈  ℤ  ∧  𝑏  ∈  ℤ ) )  →  ( ( 𝑥  =  ( 𝐿 ‘ 𝑎 )  ∧  𝑦  =  ( 𝐿 ‘ 𝑏 ) )  →  ( 𝑋 ‘ ( 𝑥 ( .r ‘ 𝑍 ) 𝑦 ) )  =  ( ( 𝑋 ‘ 𝑥 )  ·  ( 𝑋 ‘ 𝑦 ) ) ) ) | 
						
							| 73 | 72 | rexlimdvva | ⊢ ( ( 𝑁  ∈  ℕ  ∧  ¬  2  ∥  𝑁 )  →  ( ∃ 𝑎  ∈  ℤ ∃ 𝑏  ∈  ℤ ( 𝑥  =  ( 𝐿 ‘ 𝑎 )  ∧  𝑦  =  ( 𝐿 ‘ 𝑏 ) )  →  ( 𝑋 ‘ ( 𝑥 ( .r ‘ 𝑍 ) 𝑦 ) )  =  ( ( 𝑋 ‘ 𝑥 )  ·  ( 𝑋 ‘ 𝑦 ) ) ) ) | 
						
							| 74 | 39 73 | biimtrrid | ⊢ ( ( 𝑁  ∈  ℕ  ∧  ¬  2  ∥  𝑁 )  →  ( ( ∃ 𝑎  ∈  ℤ 𝑥  =  ( 𝐿 ‘ 𝑎 )  ∧  ∃ 𝑏  ∈  ℤ 𝑦  =  ( 𝐿 ‘ 𝑏 ) )  →  ( 𝑋 ‘ ( 𝑥 ( .r ‘ 𝑍 ) 𝑦 ) )  =  ( ( 𝑋 ‘ 𝑥 )  ·  ( 𝑋 ‘ 𝑦 ) ) ) ) | 
						
							| 75 | 74 | imp | ⊢ ( ( ( 𝑁  ∈  ℕ  ∧  ¬  2  ∥  𝑁 )  ∧  ( ∃ 𝑎  ∈  ℤ 𝑥  =  ( 𝐿 ‘ 𝑎 )  ∧  ∃ 𝑏  ∈  ℤ 𝑦  =  ( 𝐿 ‘ 𝑏 ) ) )  →  ( 𝑋 ‘ ( 𝑥 ( .r ‘ 𝑍 ) 𝑦 ) )  =  ( ( 𝑋 ‘ 𝑥 )  ·  ( 𝑋 ‘ 𝑦 ) ) ) | 
						
							| 76 | 38 75 | syldan | ⊢ ( ( ( 𝑁  ∈  ℕ  ∧  ¬  2  ∥  𝑁 )  ∧  ( 𝑥  ∈  𝐵  ∧  𝑦  ∈  𝐵 ) )  →  ( 𝑋 ‘ ( 𝑥 ( .r ‘ 𝑍 ) 𝑦 ) )  =  ( ( 𝑋 ‘ 𝑥 )  ·  ( 𝑋 ‘ 𝑦 ) ) ) | 
						
							| 77 | 76 | ralrimivva | ⊢ ( ( 𝑁  ∈  ℕ  ∧  ¬  2  ∥  𝑁 )  →  ∀ 𝑥  ∈  𝐵 ∀ 𝑦  ∈  𝐵 ( 𝑋 ‘ ( 𝑥 ( .r ‘ 𝑍 ) 𝑦 ) )  =  ( ( 𝑋 ‘ 𝑥 )  ·  ( 𝑋 ‘ 𝑦 ) ) ) | 
						
							| 78 |  | ss2ralv | ⊢ ( ( Unit ‘ 𝑍 )  ⊆  𝐵  →  ( ∀ 𝑥  ∈  𝐵 ∀ 𝑦  ∈  𝐵 ( 𝑋 ‘ ( 𝑥 ( .r ‘ 𝑍 ) 𝑦 ) )  =  ( ( 𝑋 ‘ 𝑥 )  ·  ( 𝑋 ‘ 𝑦 ) )  →  ∀ 𝑥  ∈  ( Unit ‘ 𝑍 ) ∀ 𝑦  ∈  ( Unit ‘ 𝑍 ) ( 𝑋 ‘ ( 𝑥 ( .r ‘ 𝑍 ) 𝑦 ) )  =  ( ( 𝑋 ‘ 𝑥 )  ·  ( 𝑋 ‘ 𝑦 ) ) ) ) | 
						
							| 79 | 35 77 78 | mpsyl | ⊢ ( ( 𝑁  ∈  ℕ  ∧  ¬  2  ∥  𝑁 )  →  ∀ 𝑥  ∈  ( Unit ‘ 𝑍 ) ∀ 𝑦  ∈  ( Unit ‘ 𝑍 ) ( 𝑋 ‘ ( 𝑥 ( .r ‘ 𝑍 ) 𝑦 ) )  =  ( ( 𝑋 ‘ 𝑥 )  ·  ( 𝑋 ‘ 𝑦 ) ) ) | 
						
							| 80 |  | 1z | ⊢ 1  ∈  ℤ | 
						
							| 81 | 1 2 3 4 5 6 | lgsdchrval | ⊢ ( ( ( 𝑁  ∈  ℕ  ∧  ¬  2  ∥  𝑁 )  ∧  1  ∈  ℤ )  →  ( 𝑋 ‘ ( 𝐿 ‘ 1 ) )  =  ( 1  /L  𝑁 ) ) | 
						
							| 82 | 80 81 | mpan2 | ⊢ ( ( 𝑁  ∈  ℕ  ∧  ¬  2  ∥  𝑁 )  →  ( 𝑋 ‘ ( 𝐿 ‘ 1 ) )  =  ( 1  /L  𝑁 ) ) | 
						
							| 83 |  | eqid | ⊢ ( 1r ‘ 𝑍 )  =  ( 1r ‘ 𝑍 ) | 
						
							| 84 | 5 83 | zrh1 | ⊢ ( 𝑍  ∈  Ring  →  ( 𝐿 ‘ 1 )  =  ( 1r ‘ 𝑍 ) ) | 
						
							| 85 | 48 84 | syl | ⊢ ( ( 𝑁  ∈  ℕ  ∧  ¬  2  ∥  𝑁 )  →  ( 𝐿 ‘ 1 )  =  ( 1r ‘ 𝑍 ) ) | 
						
							| 86 | 85 | fveq2d | ⊢ ( ( 𝑁  ∈  ℕ  ∧  ¬  2  ∥  𝑁 )  →  ( 𝑋 ‘ ( 𝐿 ‘ 1 ) )  =  ( 𝑋 ‘ ( 1r ‘ 𝑍 ) ) ) | 
						
							| 87 | 18 | adantr | ⊢ ( ( 𝑁  ∈  ℕ  ∧  ¬  2  ∥  𝑁 )  →  𝑁  ∈  ℤ ) | 
						
							| 88 |  | 1lgs | ⊢ ( 𝑁  ∈  ℤ  →  ( 1  /L  𝑁 )  =  1 ) | 
						
							| 89 | 87 88 | syl | ⊢ ( ( 𝑁  ∈  ℕ  ∧  ¬  2  ∥  𝑁 )  →  ( 1  /L  𝑁 )  =  1 ) | 
						
							| 90 | 82 86 89 | 3eqtr3d | ⊢ ( ( 𝑁  ∈  ℕ  ∧  ¬  2  ∥  𝑁 )  →  ( 𝑋 ‘ ( 1r ‘ 𝑍 ) )  =  1 ) | 
						
							| 91 |  | lgsne0 | ⊢ ( ( 𝑎  ∈  ℤ  ∧  𝑁  ∈  ℤ )  →  ( ( 𝑎  /L  𝑁 )  ≠  0  ↔  ( 𝑎  gcd  𝑁 )  =  1 ) ) | 
						
							| 92 | 17 19 91 | syl2anc | ⊢ ( ( ( 𝑁  ∈  ℕ  ∧  ¬  2  ∥  𝑁 )  ∧  𝑎  ∈  ℤ )  →  ( ( 𝑎  /L  𝑁 )  ≠  0  ↔  ( 𝑎  gcd  𝑁 )  =  1 ) ) | 
						
							| 93 | 92 | biimpd | ⊢ ( ( ( 𝑁  ∈  ℕ  ∧  ¬  2  ∥  𝑁 )  ∧  𝑎  ∈  ℤ )  →  ( ( 𝑎  /L  𝑁 )  ≠  0  →  ( 𝑎  gcd  𝑁 )  =  1 ) ) | 
						
							| 94 | 16 | neeq1d | ⊢ ( ( ( 𝑁  ∈  ℕ  ∧  ¬  2  ∥  𝑁 )  ∧  𝑎  ∈  ℤ )  →  ( ( 𝑋 ‘ ( 𝐿 ‘ 𝑎 ) )  ≠  0  ↔  ( 𝑎  /L  𝑁 )  ≠  0 ) ) | 
						
							| 95 | 2 34 5 | znunit | ⊢ ( ( 𝑁  ∈  ℕ0  ∧  𝑎  ∈  ℤ )  →  ( ( 𝐿 ‘ 𝑎 )  ∈  ( Unit ‘ 𝑍 )  ↔  ( 𝑎  gcd  𝑁 )  =  1 ) ) | 
						
							| 96 | 11 95 | sylan | ⊢ ( ( ( 𝑁  ∈  ℕ  ∧  ¬  2  ∥  𝑁 )  ∧  𝑎  ∈  ℤ )  →  ( ( 𝐿 ‘ 𝑎 )  ∈  ( Unit ‘ 𝑍 )  ↔  ( 𝑎  gcd  𝑁 )  =  1 ) ) | 
						
							| 97 | 93 94 96 | 3imtr4d | ⊢ ( ( ( 𝑁  ∈  ℕ  ∧  ¬  2  ∥  𝑁 )  ∧  𝑎  ∈  ℤ )  →  ( ( 𝑋 ‘ ( 𝐿 ‘ 𝑎 ) )  ≠  0  →  ( 𝐿 ‘ 𝑎 )  ∈  ( Unit ‘ 𝑍 ) ) ) | 
						
							| 98 | 24 | neeq1d | ⊢ ( 𝑥  =  ( 𝐿 ‘ 𝑎 )  →  ( ( 𝑋 ‘ 𝑥 )  ≠  0  ↔  ( 𝑋 ‘ ( 𝐿 ‘ 𝑎 ) )  ≠  0 ) ) | 
						
							| 99 |  | eleq1 | ⊢ ( 𝑥  =  ( 𝐿 ‘ 𝑎 )  →  ( 𝑥  ∈  ( Unit ‘ 𝑍 )  ↔  ( 𝐿 ‘ 𝑎 )  ∈  ( Unit ‘ 𝑍 ) ) ) | 
						
							| 100 | 98 99 | imbi12d | ⊢ ( 𝑥  =  ( 𝐿 ‘ 𝑎 )  →  ( ( ( 𝑋 ‘ 𝑥 )  ≠  0  →  𝑥  ∈  ( Unit ‘ 𝑍 ) )  ↔  ( ( 𝑋 ‘ ( 𝐿 ‘ 𝑎 ) )  ≠  0  →  ( 𝐿 ‘ 𝑎 )  ∈  ( Unit ‘ 𝑍 ) ) ) ) | 
						
							| 101 | 97 100 | syl5ibrcom | ⊢ ( ( ( 𝑁  ∈  ℕ  ∧  ¬  2  ∥  𝑁 )  ∧  𝑎  ∈  ℤ )  →  ( 𝑥  =  ( 𝐿 ‘ 𝑎 )  →  ( ( 𝑋 ‘ 𝑥 )  ≠  0  →  𝑥  ∈  ( Unit ‘ 𝑍 ) ) ) ) | 
						
							| 102 | 101 | rexlimdva | ⊢ ( ( 𝑁  ∈  ℕ  ∧  ¬  2  ∥  𝑁 )  →  ( ∃ 𝑎  ∈  ℤ 𝑥  =  ( 𝐿 ‘ 𝑎 )  →  ( ( 𝑋 ‘ 𝑥 )  ≠  0  →  𝑥  ∈  ( Unit ‘ 𝑍 ) ) ) ) | 
						
							| 103 | 102 | imp | ⊢ ( ( ( 𝑁  ∈  ℕ  ∧  ¬  2  ∥  𝑁 )  ∧  ∃ 𝑎  ∈  ℤ 𝑥  =  ( 𝐿 ‘ 𝑎 ) )  →  ( ( 𝑋 ‘ 𝑥 )  ≠  0  →  𝑥  ∈  ( Unit ‘ 𝑍 ) ) ) | 
						
							| 104 | 15 103 | syldan | ⊢ ( ( ( 𝑁  ∈  ℕ  ∧  ¬  2  ∥  𝑁 )  ∧  𝑥  ∈  𝐵 )  →  ( ( 𝑋 ‘ 𝑥 )  ≠  0  →  𝑥  ∈  ( Unit ‘ 𝑍 ) ) ) | 
						
							| 105 | 104 | ralrimiva | ⊢ ( ( 𝑁  ∈  ℕ  ∧  ¬  2  ∥  𝑁 )  →  ∀ 𝑥  ∈  𝐵 ( ( 𝑋 ‘ 𝑥 )  ≠  0  →  𝑥  ∈  ( Unit ‘ 𝑍 ) ) ) | 
						
							| 106 | 79 90 105 | 3jca | ⊢ ( ( 𝑁  ∈  ℕ  ∧  ¬  2  ∥  𝑁 )  →  ( ∀ 𝑥  ∈  ( Unit ‘ 𝑍 ) ∀ 𝑦  ∈  ( Unit ‘ 𝑍 ) ( 𝑋 ‘ ( 𝑥 ( .r ‘ 𝑍 ) 𝑦 ) )  =  ( ( 𝑋 ‘ 𝑥 )  ·  ( 𝑋 ‘ 𝑦 ) )  ∧  ( 𝑋 ‘ ( 1r ‘ 𝑍 ) )  =  1  ∧  ∀ 𝑥  ∈  𝐵 ( ( 𝑋 ‘ 𝑥 )  ≠  0  →  𝑥  ∈  ( Unit ‘ 𝑍 ) ) ) ) | 
						
							| 107 |  | simpl | ⊢ ( ( 𝑁  ∈  ℕ  ∧  ¬  2  ∥  𝑁 )  →  𝑁  ∈  ℕ ) | 
						
							| 108 | 1 2 4 34 107 3 | dchrelbas3 | ⊢ ( ( 𝑁  ∈  ℕ  ∧  ¬  2  ∥  𝑁 )  →  ( 𝑋  ∈  𝐷  ↔  ( 𝑋 : 𝐵 ⟶ ℂ  ∧  ( ∀ 𝑥  ∈  ( Unit ‘ 𝑍 ) ∀ 𝑦  ∈  ( Unit ‘ 𝑍 ) ( 𝑋 ‘ ( 𝑥 ( .r ‘ 𝑍 ) 𝑦 ) )  =  ( ( 𝑋 ‘ 𝑥 )  ·  ( 𝑋 ‘ 𝑦 ) )  ∧  ( 𝑋 ‘ ( 1r ‘ 𝑍 ) )  =  1  ∧  ∀ 𝑥  ∈  𝐵 ( ( 𝑋 ‘ 𝑥 )  ≠  0  →  𝑥  ∈  ( Unit ‘ 𝑍 ) ) ) ) ) ) | 
						
							| 109 | 33 106 108 | mpbir2and | ⊢ ( ( 𝑁  ∈  ℕ  ∧  ¬  2  ∥  𝑁 )  →  𝑋  ∈  𝐷 ) | 
						
							| 110 | 109 30 | jca | ⊢ ( ( 𝑁  ∈  ℕ  ∧  ¬  2  ∥  𝑁 )  →  ( 𝑋  ∈  𝐷  ∧  𝑋 : 𝐵 ⟶ ℝ ) ) |