| Step | Hyp | Ref | Expression | 
						
							| 1 |  | lgsdchr.g | ⊢ 𝐺  =  ( DChr ‘ 𝑁 ) | 
						
							| 2 |  | lgsdchr.z | ⊢ 𝑍  =  ( ℤ/nℤ ‘ 𝑁 ) | 
						
							| 3 |  | lgsdchr.d | ⊢ 𝐷  =  ( Base ‘ 𝐺 ) | 
						
							| 4 |  | lgsdchr.b | ⊢ 𝐵  =  ( Base ‘ 𝑍 ) | 
						
							| 5 |  | lgsdchr.l | ⊢ 𝐿  =  ( ℤRHom ‘ 𝑍 ) | 
						
							| 6 |  | lgsdchr.x | ⊢ 𝑋  =  ( 𝑦  ∈  𝐵  ↦  ( ℩ ℎ ∃ 𝑚  ∈  ℤ ( 𝑦  =  ( 𝐿 ‘ 𝑚 )  ∧  ℎ  =  ( 𝑚  /L  𝑁 ) ) ) ) | 
						
							| 7 |  | nnnn0 | ⊢ ( 𝑁  ∈  ℕ  →  𝑁  ∈  ℕ0 ) | 
						
							| 8 | 7 | adantr | ⊢ ( ( 𝑁  ∈  ℕ  ∧  ¬  2  ∥  𝑁 )  →  𝑁  ∈  ℕ0 ) | 
						
							| 9 | 2 4 5 | znzrhfo | ⊢ ( 𝑁  ∈  ℕ0  →  𝐿 : ℤ –onto→ 𝐵 ) | 
						
							| 10 |  | fof | ⊢ ( 𝐿 : ℤ –onto→ 𝐵  →  𝐿 : ℤ ⟶ 𝐵 ) | 
						
							| 11 | 8 9 10 | 3syl | ⊢ ( ( 𝑁  ∈  ℕ  ∧  ¬  2  ∥  𝑁 )  →  𝐿 : ℤ ⟶ 𝐵 ) | 
						
							| 12 | 11 | ffvelcdmda | ⊢ ( ( ( 𝑁  ∈  ℕ  ∧  ¬  2  ∥  𝑁 )  ∧  𝐴  ∈  ℤ )  →  ( 𝐿 ‘ 𝐴 )  ∈  𝐵 ) | 
						
							| 13 |  | eqeq1 | ⊢ ( 𝑦  =  ( 𝐿 ‘ 𝐴 )  →  ( 𝑦  =  ( 𝐿 ‘ 𝑚 )  ↔  ( 𝐿 ‘ 𝐴 )  =  ( 𝐿 ‘ 𝑚 ) ) ) | 
						
							| 14 | 13 | anbi1d | ⊢ ( 𝑦  =  ( 𝐿 ‘ 𝐴 )  →  ( ( 𝑦  =  ( 𝐿 ‘ 𝑚 )  ∧  ℎ  =  ( 𝑚  /L  𝑁 ) )  ↔  ( ( 𝐿 ‘ 𝐴 )  =  ( 𝐿 ‘ 𝑚 )  ∧  ℎ  =  ( 𝑚  /L  𝑁 ) ) ) ) | 
						
							| 15 | 14 | rexbidv | ⊢ ( 𝑦  =  ( 𝐿 ‘ 𝐴 )  →  ( ∃ 𝑚  ∈  ℤ ( 𝑦  =  ( 𝐿 ‘ 𝑚 )  ∧  ℎ  =  ( 𝑚  /L  𝑁 ) )  ↔  ∃ 𝑚  ∈  ℤ ( ( 𝐿 ‘ 𝐴 )  =  ( 𝐿 ‘ 𝑚 )  ∧  ℎ  =  ( 𝑚  /L  𝑁 ) ) ) ) | 
						
							| 16 | 15 | iotabidv | ⊢ ( 𝑦  =  ( 𝐿 ‘ 𝐴 )  →  ( ℩ ℎ ∃ 𝑚  ∈  ℤ ( 𝑦  =  ( 𝐿 ‘ 𝑚 )  ∧  ℎ  =  ( 𝑚  /L  𝑁 ) ) )  =  ( ℩ ℎ ∃ 𝑚  ∈  ℤ ( ( 𝐿 ‘ 𝐴 )  =  ( 𝐿 ‘ 𝑚 )  ∧  ℎ  =  ( 𝑚  /L  𝑁 ) ) ) ) | 
						
							| 17 |  | iotaex | ⊢ ( ℩ ℎ ∃ 𝑚  ∈  ℤ ( 𝑦  =  ( 𝐿 ‘ 𝑚 )  ∧  ℎ  =  ( 𝑚  /L  𝑁 ) ) )  ∈  V | 
						
							| 18 | 16 6 17 | fvmpt3i | ⊢ ( ( 𝐿 ‘ 𝐴 )  ∈  𝐵  →  ( 𝑋 ‘ ( 𝐿 ‘ 𝐴 ) )  =  ( ℩ ℎ ∃ 𝑚  ∈  ℤ ( ( 𝐿 ‘ 𝐴 )  =  ( 𝐿 ‘ 𝑚 )  ∧  ℎ  =  ( 𝑚  /L  𝑁 ) ) ) ) | 
						
							| 19 | 12 18 | syl | ⊢ ( ( ( 𝑁  ∈  ℕ  ∧  ¬  2  ∥  𝑁 )  ∧  𝐴  ∈  ℤ )  →  ( 𝑋 ‘ ( 𝐿 ‘ 𝐴 ) )  =  ( ℩ ℎ ∃ 𝑚  ∈  ℤ ( ( 𝐿 ‘ 𝐴 )  =  ( 𝐿 ‘ 𝑚 )  ∧  ℎ  =  ( 𝑚  /L  𝑁 ) ) ) ) | 
						
							| 20 |  | ovex | ⊢ ( 𝐴  /L  𝑁 )  ∈  V | 
						
							| 21 |  | simprr | ⊢ ( ( ( ( 𝑁  ∈  ℕ  ∧  ¬  2  ∥  𝑁 )  ∧  𝐴  ∈  ℤ )  ∧  ( 𝑚  ∈  ℤ  ∧  ( 𝐿 ‘ 𝐴 )  =  ( 𝐿 ‘ 𝑚 ) ) )  →  ( 𝐿 ‘ 𝐴 )  =  ( 𝐿 ‘ 𝑚 ) ) | 
						
							| 22 |  | simplll | ⊢ ( ( ( ( 𝑁  ∈  ℕ  ∧  ¬  2  ∥  𝑁 )  ∧  𝐴  ∈  ℤ )  ∧  ( 𝑚  ∈  ℤ  ∧  ( 𝐿 ‘ 𝐴 )  =  ( 𝐿 ‘ 𝑚 ) ) )  →  𝑁  ∈  ℕ ) | 
						
							| 23 | 22 7 | syl | ⊢ ( ( ( ( 𝑁  ∈  ℕ  ∧  ¬  2  ∥  𝑁 )  ∧  𝐴  ∈  ℤ )  ∧  ( 𝑚  ∈  ℤ  ∧  ( 𝐿 ‘ 𝐴 )  =  ( 𝐿 ‘ 𝑚 ) ) )  →  𝑁  ∈  ℕ0 ) | 
						
							| 24 |  | simplr | ⊢ ( ( ( ( 𝑁  ∈  ℕ  ∧  ¬  2  ∥  𝑁 )  ∧  𝐴  ∈  ℤ )  ∧  ( 𝑚  ∈  ℤ  ∧  ( 𝐿 ‘ 𝐴 )  =  ( 𝐿 ‘ 𝑚 ) ) )  →  𝐴  ∈  ℤ ) | 
						
							| 25 |  | simprl | ⊢ ( ( ( ( 𝑁  ∈  ℕ  ∧  ¬  2  ∥  𝑁 )  ∧  𝐴  ∈  ℤ )  ∧  ( 𝑚  ∈  ℤ  ∧  ( 𝐿 ‘ 𝐴 )  =  ( 𝐿 ‘ 𝑚 ) ) )  →  𝑚  ∈  ℤ ) | 
						
							| 26 | 2 5 | zndvds | ⊢ ( ( 𝑁  ∈  ℕ0  ∧  𝐴  ∈  ℤ  ∧  𝑚  ∈  ℤ )  →  ( ( 𝐿 ‘ 𝐴 )  =  ( 𝐿 ‘ 𝑚 )  ↔  𝑁  ∥  ( 𝐴  −  𝑚 ) ) ) | 
						
							| 27 | 23 24 25 26 | syl3anc | ⊢ ( ( ( ( 𝑁  ∈  ℕ  ∧  ¬  2  ∥  𝑁 )  ∧  𝐴  ∈  ℤ )  ∧  ( 𝑚  ∈  ℤ  ∧  ( 𝐿 ‘ 𝐴 )  =  ( 𝐿 ‘ 𝑚 ) ) )  →  ( ( 𝐿 ‘ 𝐴 )  =  ( 𝐿 ‘ 𝑚 )  ↔  𝑁  ∥  ( 𝐴  −  𝑚 ) ) ) | 
						
							| 28 | 21 27 | mpbid | ⊢ ( ( ( ( 𝑁  ∈  ℕ  ∧  ¬  2  ∥  𝑁 )  ∧  𝐴  ∈  ℤ )  ∧  ( 𝑚  ∈  ℤ  ∧  ( 𝐿 ‘ 𝐴 )  =  ( 𝐿 ‘ 𝑚 ) ) )  →  𝑁  ∥  ( 𝐴  −  𝑚 ) ) | 
						
							| 29 |  | moddvds | ⊢ ( ( 𝑁  ∈  ℕ  ∧  𝐴  ∈  ℤ  ∧  𝑚  ∈  ℤ )  →  ( ( 𝐴  mod  𝑁 )  =  ( 𝑚  mod  𝑁 )  ↔  𝑁  ∥  ( 𝐴  −  𝑚 ) ) ) | 
						
							| 30 | 22 24 25 29 | syl3anc | ⊢ ( ( ( ( 𝑁  ∈  ℕ  ∧  ¬  2  ∥  𝑁 )  ∧  𝐴  ∈  ℤ )  ∧  ( 𝑚  ∈  ℤ  ∧  ( 𝐿 ‘ 𝐴 )  =  ( 𝐿 ‘ 𝑚 ) ) )  →  ( ( 𝐴  mod  𝑁 )  =  ( 𝑚  mod  𝑁 )  ↔  𝑁  ∥  ( 𝐴  −  𝑚 ) ) ) | 
						
							| 31 | 28 30 | mpbird | ⊢ ( ( ( ( 𝑁  ∈  ℕ  ∧  ¬  2  ∥  𝑁 )  ∧  𝐴  ∈  ℤ )  ∧  ( 𝑚  ∈  ℤ  ∧  ( 𝐿 ‘ 𝐴 )  =  ( 𝐿 ‘ 𝑚 ) ) )  →  ( 𝐴  mod  𝑁 )  =  ( 𝑚  mod  𝑁 ) ) | 
						
							| 32 | 31 | oveq1d | ⊢ ( ( ( ( 𝑁  ∈  ℕ  ∧  ¬  2  ∥  𝑁 )  ∧  𝐴  ∈  ℤ )  ∧  ( 𝑚  ∈  ℤ  ∧  ( 𝐿 ‘ 𝐴 )  =  ( 𝐿 ‘ 𝑚 ) ) )  →  ( ( 𝐴  mod  𝑁 )  /L  𝑁 )  =  ( ( 𝑚  mod  𝑁 )  /L  𝑁 ) ) | 
						
							| 33 |  | simpllr | ⊢ ( ( ( ( 𝑁  ∈  ℕ  ∧  ¬  2  ∥  𝑁 )  ∧  𝐴  ∈  ℤ )  ∧  ( 𝑚  ∈  ℤ  ∧  ( 𝐿 ‘ 𝐴 )  =  ( 𝐿 ‘ 𝑚 ) ) )  →  ¬  2  ∥  𝑁 ) | 
						
							| 34 |  | lgsmod | ⊢ ( ( 𝐴  ∈  ℤ  ∧  𝑁  ∈  ℕ  ∧  ¬  2  ∥  𝑁 )  →  ( ( 𝐴  mod  𝑁 )  /L  𝑁 )  =  ( 𝐴  /L  𝑁 ) ) | 
						
							| 35 | 24 22 33 34 | syl3anc | ⊢ ( ( ( ( 𝑁  ∈  ℕ  ∧  ¬  2  ∥  𝑁 )  ∧  𝐴  ∈  ℤ )  ∧  ( 𝑚  ∈  ℤ  ∧  ( 𝐿 ‘ 𝐴 )  =  ( 𝐿 ‘ 𝑚 ) ) )  →  ( ( 𝐴  mod  𝑁 )  /L  𝑁 )  =  ( 𝐴  /L  𝑁 ) ) | 
						
							| 36 |  | lgsmod | ⊢ ( ( 𝑚  ∈  ℤ  ∧  𝑁  ∈  ℕ  ∧  ¬  2  ∥  𝑁 )  →  ( ( 𝑚  mod  𝑁 )  /L  𝑁 )  =  ( 𝑚  /L  𝑁 ) ) | 
						
							| 37 | 25 22 33 36 | syl3anc | ⊢ ( ( ( ( 𝑁  ∈  ℕ  ∧  ¬  2  ∥  𝑁 )  ∧  𝐴  ∈  ℤ )  ∧  ( 𝑚  ∈  ℤ  ∧  ( 𝐿 ‘ 𝐴 )  =  ( 𝐿 ‘ 𝑚 ) ) )  →  ( ( 𝑚  mod  𝑁 )  /L  𝑁 )  =  ( 𝑚  /L  𝑁 ) ) | 
						
							| 38 | 32 35 37 | 3eqtr3d | ⊢ ( ( ( ( 𝑁  ∈  ℕ  ∧  ¬  2  ∥  𝑁 )  ∧  𝐴  ∈  ℤ )  ∧  ( 𝑚  ∈  ℤ  ∧  ( 𝐿 ‘ 𝐴 )  =  ( 𝐿 ‘ 𝑚 ) ) )  →  ( 𝐴  /L  𝑁 )  =  ( 𝑚  /L  𝑁 ) ) | 
						
							| 39 | 38 | eqeq2d | ⊢ ( ( ( ( 𝑁  ∈  ℕ  ∧  ¬  2  ∥  𝑁 )  ∧  𝐴  ∈  ℤ )  ∧  ( 𝑚  ∈  ℤ  ∧  ( 𝐿 ‘ 𝐴 )  =  ( 𝐿 ‘ 𝑚 ) ) )  →  ( ℎ  =  ( 𝐴  /L  𝑁 )  ↔  ℎ  =  ( 𝑚  /L  𝑁 ) ) ) | 
						
							| 40 | 39 | biimprd | ⊢ ( ( ( ( 𝑁  ∈  ℕ  ∧  ¬  2  ∥  𝑁 )  ∧  𝐴  ∈  ℤ )  ∧  ( 𝑚  ∈  ℤ  ∧  ( 𝐿 ‘ 𝐴 )  =  ( 𝐿 ‘ 𝑚 ) ) )  →  ( ℎ  =  ( 𝑚  /L  𝑁 )  →  ℎ  =  ( 𝐴  /L  𝑁 ) ) ) | 
						
							| 41 | 40 | anassrs | ⊢ ( ( ( ( ( 𝑁  ∈  ℕ  ∧  ¬  2  ∥  𝑁 )  ∧  𝐴  ∈  ℤ )  ∧  𝑚  ∈  ℤ )  ∧  ( 𝐿 ‘ 𝐴 )  =  ( 𝐿 ‘ 𝑚 ) )  →  ( ℎ  =  ( 𝑚  /L  𝑁 )  →  ℎ  =  ( 𝐴  /L  𝑁 ) ) ) | 
						
							| 42 | 41 | expimpd | ⊢ ( ( ( ( 𝑁  ∈  ℕ  ∧  ¬  2  ∥  𝑁 )  ∧  𝐴  ∈  ℤ )  ∧  𝑚  ∈  ℤ )  →  ( ( ( 𝐿 ‘ 𝐴 )  =  ( 𝐿 ‘ 𝑚 )  ∧  ℎ  =  ( 𝑚  /L  𝑁 ) )  →  ℎ  =  ( 𝐴  /L  𝑁 ) ) ) | 
						
							| 43 | 42 | rexlimdva | ⊢ ( ( ( 𝑁  ∈  ℕ  ∧  ¬  2  ∥  𝑁 )  ∧  𝐴  ∈  ℤ )  →  ( ∃ 𝑚  ∈  ℤ ( ( 𝐿 ‘ 𝐴 )  =  ( 𝐿 ‘ 𝑚 )  ∧  ℎ  =  ( 𝑚  /L  𝑁 ) )  →  ℎ  =  ( 𝐴  /L  𝑁 ) ) ) | 
						
							| 44 |  | fveq2 | ⊢ ( 𝑚  =  𝐴  →  ( 𝐿 ‘ 𝑚 )  =  ( 𝐿 ‘ 𝐴 ) ) | 
						
							| 45 | 44 | eqcomd | ⊢ ( 𝑚  =  𝐴  →  ( 𝐿 ‘ 𝐴 )  =  ( 𝐿 ‘ 𝑚 ) ) | 
						
							| 46 | 45 | biantrurd | ⊢ ( 𝑚  =  𝐴  →  ( ℎ  =  ( 𝑚  /L  𝑁 )  ↔  ( ( 𝐿 ‘ 𝐴 )  =  ( 𝐿 ‘ 𝑚 )  ∧  ℎ  =  ( 𝑚  /L  𝑁 ) ) ) ) | 
						
							| 47 |  | oveq1 | ⊢ ( 𝑚  =  𝐴  →  ( 𝑚  /L  𝑁 )  =  ( 𝐴  /L  𝑁 ) ) | 
						
							| 48 | 47 | eqeq2d | ⊢ ( 𝑚  =  𝐴  →  ( ℎ  =  ( 𝑚  /L  𝑁 )  ↔  ℎ  =  ( 𝐴  /L  𝑁 ) ) ) | 
						
							| 49 | 46 48 | bitr3d | ⊢ ( 𝑚  =  𝐴  →  ( ( ( 𝐿 ‘ 𝐴 )  =  ( 𝐿 ‘ 𝑚 )  ∧  ℎ  =  ( 𝑚  /L  𝑁 ) )  ↔  ℎ  =  ( 𝐴  /L  𝑁 ) ) ) | 
						
							| 50 | 49 | rspcev | ⊢ ( ( 𝐴  ∈  ℤ  ∧  ℎ  =  ( 𝐴  /L  𝑁 ) )  →  ∃ 𝑚  ∈  ℤ ( ( 𝐿 ‘ 𝐴 )  =  ( 𝐿 ‘ 𝑚 )  ∧  ℎ  =  ( 𝑚  /L  𝑁 ) ) ) | 
						
							| 51 | 50 | ex | ⊢ ( 𝐴  ∈  ℤ  →  ( ℎ  =  ( 𝐴  /L  𝑁 )  →  ∃ 𝑚  ∈  ℤ ( ( 𝐿 ‘ 𝐴 )  =  ( 𝐿 ‘ 𝑚 )  ∧  ℎ  =  ( 𝑚  /L  𝑁 ) ) ) ) | 
						
							| 52 | 51 | adantl | ⊢ ( ( ( 𝑁  ∈  ℕ  ∧  ¬  2  ∥  𝑁 )  ∧  𝐴  ∈  ℤ )  →  ( ℎ  =  ( 𝐴  /L  𝑁 )  →  ∃ 𝑚  ∈  ℤ ( ( 𝐿 ‘ 𝐴 )  =  ( 𝐿 ‘ 𝑚 )  ∧  ℎ  =  ( 𝑚  /L  𝑁 ) ) ) ) | 
						
							| 53 | 43 52 | impbid | ⊢ ( ( ( 𝑁  ∈  ℕ  ∧  ¬  2  ∥  𝑁 )  ∧  𝐴  ∈  ℤ )  →  ( ∃ 𝑚  ∈  ℤ ( ( 𝐿 ‘ 𝐴 )  =  ( 𝐿 ‘ 𝑚 )  ∧  ℎ  =  ( 𝑚  /L  𝑁 ) )  ↔  ℎ  =  ( 𝐴  /L  𝑁 ) ) ) | 
						
							| 54 | 53 | adantr | ⊢ ( ( ( ( 𝑁  ∈  ℕ  ∧  ¬  2  ∥  𝑁 )  ∧  𝐴  ∈  ℤ )  ∧  ( 𝐴  /L  𝑁 )  ∈  V )  →  ( ∃ 𝑚  ∈  ℤ ( ( 𝐿 ‘ 𝐴 )  =  ( 𝐿 ‘ 𝑚 )  ∧  ℎ  =  ( 𝑚  /L  𝑁 ) )  ↔  ℎ  =  ( 𝐴  /L  𝑁 ) ) ) | 
						
							| 55 | 54 | iota5 | ⊢ ( ( ( ( 𝑁  ∈  ℕ  ∧  ¬  2  ∥  𝑁 )  ∧  𝐴  ∈  ℤ )  ∧  ( 𝐴  /L  𝑁 )  ∈  V )  →  ( ℩ ℎ ∃ 𝑚  ∈  ℤ ( ( 𝐿 ‘ 𝐴 )  =  ( 𝐿 ‘ 𝑚 )  ∧  ℎ  =  ( 𝑚  /L  𝑁 ) ) )  =  ( 𝐴  /L  𝑁 ) ) | 
						
							| 56 | 20 55 | mpan2 | ⊢ ( ( ( 𝑁  ∈  ℕ  ∧  ¬  2  ∥  𝑁 )  ∧  𝐴  ∈  ℤ )  →  ( ℩ ℎ ∃ 𝑚  ∈  ℤ ( ( 𝐿 ‘ 𝐴 )  =  ( 𝐿 ‘ 𝑚 )  ∧  ℎ  =  ( 𝑚  /L  𝑁 ) ) )  =  ( 𝐴  /L  𝑁 ) ) | 
						
							| 57 | 19 56 | eqtrd | ⊢ ( ( ( 𝑁  ∈  ℕ  ∧  ¬  2  ∥  𝑁 )  ∧  𝐴  ∈  ℤ )  →  ( 𝑋 ‘ ( 𝐿 ‘ 𝐴 ) )  =  ( 𝐴  /L  𝑁 ) ) |