| Step | Hyp | Ref | Expression | 
						
							| 1 |  | oveq1 | ⊢ ( 𝑥  =  𝐵  →  ( 𝑥  /L  𝑁 )  =  ( 𝐵  /L  𝑁 ) ) | 
						
							| 2 | 1 | oveq1d | ⊢ ( 𝑥  =  𝐵  →  ( ( 𝑥  /L  𝑁 )  ·  ( 0  /L  𝑁 ) )  =  ( ( 𝐵  /L  𝑁 )  ·  ( 0  /L  𝑁 ) ) ) | 
						
							| 3 | 2 | eqeq2d | ⊢ ( 𝑥  =  𝐵  →  ( ( 0  /L  𝑁 )  =  ( ( 𝑥  /L  𝑁 )  ·  ( 0  /L  𝑁 ) )  ↔  ( 0  /L  𝑁 )  =  ( ( 𝐵  /L  𝑁 )  ·  ( 0  /L  𝑁 ) ) ) ) | 
						
							| 4 |  | id | ⊢ ( 𝑥  ∈  ℤ  →  𝑥  ∈  ℤ ) | 
						
							| 5 |  | nn0z | ⊢ ( 𝑁  ∈  ℕ0  →  𝑁  ∈  ℤ ) | 
						
							| 6 |  | lgscl | ⊢ ( ( 𝑥  ∈  ℤ  ∧  𝑁  ∈  ℤ )  →  ( 𝑥  /L  𝑁 )  ∈  ℤ ) | 
						
							| 7 | 4 5 6 | syl2anr | ⊢ ( ( 𝑁  ∈  ℕ0  ∧  𝑥  ∈  ℤ )  →  ( 𝑥  /L  𝑁 )  ∈  ℤ ) | 
						
							| 8 | 7 | zcnd | ⊢ ( ( 𝑁  ∈  ℕ0  ∧  𝑥  ∈  ℤ )  →  ( 𝑥  /L  𝑁 )  ∈  ℂ ) | 
						
							| 9 | 8 | adantr | ⊢ ( ( ( 𝑁  ∈  ℕ0  ∧  𝑥  ∈  ℤ )  ∧  ( 0  /L  𝑁 )  =  0 )  →  ( 𝑥  /L  𝑁 )  ∈  ℂ ) | 
						
							| 10 | 9 | mul01d | ⊢ ( ( ( 𝑁  ∈  ℕ0  ∧  𝑥  ∈  ℤ )  ∧  ( 0  /L  𝑁 )  =  0 )  →  ( ( 𝑥  /L  𝑁 )  ·  0 )  =  0 ) | 
						
							| 11 |  | simpr | ⊢ ( ( ( 𝑁  ∈  ℕ0  ∧  𝑥  ∈  ℤ )  ∧  ( 0  /L  𝑁 )  =  0 )  →  ( 0  /L  𝑁 )  =  0 ) | 
						
							| 12 | 11 | oveq2d | ⊢ ( ( ( 𝑁  ∈  ℕ0  ∧  𝑥  ∈  ℤ )  ∧  ( 0  /L  𝑁 )  =  0 )  →  ( ( 𝑥  /L  𝑁 )  ·  ( 0  /L  𝑁 ) )  =  ( ( 𝑥  /L  𝑁 )  ·  0 ) ) | 
						
							| 13 | 10 12 11 | 3eqtr4rd | ⊢ ( ( ( 𝑁  ∈  ℕ0  ∧  𝑥  ∈  ℤ )  ∧  ( 0  /L  𝑁 )  =  0 )  →  ( 0  /L  𝑁 )  =  ( ( 𝑥  /L  𝑁 )  ·  ( 0  /L  𝑁 ) ) ) | 
						
							| 14 |  | 0z | ⊢ 0  ∈  ℤ | 
						
							| 15 | 5 | adantr | ⊢ ( ( 𝑁  ∈  ℕ0  ∧  𝑥  ∈  ℤ )  →  𝑁  ∈  ℤ ) | 
						
							| 16 |  | lgsne0 | ⊢ ( ( 0  ∈  ℤ  ∧  𝑁  ∈  ℤ )  →  ( ( 0  /L  𝑁 )  ≠  0  ↔  ( 0  gcd  𝑁 )  =  1 ) ) | 
						
							| 17 | 14 15 16 | sylancr | ⊢ ( ( 𝑁  ∈  ℕ0  ∧  𝑥  ∈  ℤ )  →  ( ( 0  /L  𝑁 )  ≠  0  ↔  ( 0  gcd  𝑁 )  =  1 ) ) | 
						
							| 18 |  | gcdcom | ⊢ ( ( 0  ∈  ℤ  ∧  𝑁  ∈  ℤ )  →  ( 0  gcd  𝑁 )  =  ( 𝑁  gcd  0 ) ) | 
						
							| 19 | 14 15 18 | sylancr | ⊢ ( ( 𝑁  ∈  ℕ0  ∧  𝑥  ∈  ℤ )  →  ( 0  gcd  𝑁 )  =  ( 𝑁  gcd  0 ) ) | 
						
							| 20 |  | nn0gcdid0 | ⊢ ( 𝑁  ∈  ℕ0  →  ( 𝑁  gcd  0 )  =  𝑁 ) | 
						
							| 21 | 20 | adantr | ⊢ ( ( 𝑁  ∈  ℕ0  ∧  𝑥  ∈  ℤ )  →  ( 𝑁  gcd  0 )  =  𝑁 ) | 
						
							| 22 | 19 21 | eqtrd | ⊢ ( ( 𝑁  ∈  ℕ0  ∧  𝑥  ∈  ℤ )  →  ( 0  gcd  𝑁 )  =  𝑁 ) | 
						
							| 23 | 22 | eqeq1d | ⊢ ( ( 𝑁  ∈  ℕ0  ∧  𝑥  ∈  ℤ )  →  ( ( 0  gcd  𝑁 )  =  1  ↔  𝑁  =  1 ) ) | 
						
							| 24 |  | lgs1 | ⊢ ( 𝑥  ∈  ℤ  →  ( 𝑥  /L  1 )  =  1 ) | 
						
							| 25 | 24 | adantl | ⊢ ( ( 𝑁  ∈  ℕ0  ∧  𝑥  ∈  ℤ )  →  ( 𝑥  /L  1 )  =  1 ) | 
						
							| 26 |  | oveq2 | ⊢ ( 𝑁  =  1  →  ( 𝑥  /L  𝑁 )  =  ( 𝑥  /L  1 ) ) | 
						
							| 27 | 26 | eqeq1d | ⊢ ( 𝑁  =  1  →  ( ( 𝑥  /L  𝑁 )  =  1  ↔  ( 𝑥  /L  1 )  =  1 ) ) | 
						
							| 28 | 25 27 | syl5ibrcom | ⊢ ( ( 𝑁  ∈  ℕ0  ∧  𝑥  ∈  ℤ )  →  ( 𝑁  =  1  →  ( 𝑥  /L  𝑁 )  =  1 ) ) | 
						
							| 29 | 23 28 | sylbid | ⊢ ( ( 𝑁  ∈  ℕ0  ∧  𝑥  ∈  ℤ )  →  ( ( 0  gcd  𝑁 )  =  1  →  ( 𝑥  /L  𝑁 )  =  1 ) ) | 
						
							| 30 | 17 29 | sylbid | ⊢ ( ( 𝑁  ∈  ℕ0  ∧  𝑥  ∈  ℤ )  →  ( ( 0  /L  𝑁 )  ≠  0  →  ( 𝑥  /L  𝑁 )  =  1 ) ) | 
						
							| 31 | 30 | imp | ⊢ ( ( ( 𝑁  ∈  ℕ0  ∧  𝑥  ∈  ℤ )  ∧  ( 0  /L  𝑁 )  ≠  0 )  →  ( 𝑥  /L  𝑁 )  =  1 ) | 
						
							| 32 | 31 | oveq1d | ⊢ ( ( ( 𝑁  ∈  ℕ0  ∧  𝑥  ∈  ℤ )  ∧  ( 0  /L  𝑁 )  ≠  0 )  →  ( ( 𝑥  /L  𝑁 )  ·  ( 0  /L  𝑁 ) )  =  ( 1  ·  ( 0  /L  𝑁 ) ) ) | 
						
							| 33 | 5 | ad2antrr | ⊢ ( ( ( 𝑁  ∈  ℕ0  ∧  𝑥  ∈  ℤ )  ∧  ( 0  /L  𝑁 )  ≠  0 )  →  𝑁  ∈  ℤ ) | 
						
							| 34 |  | lgscl | ⊢ ( ( 0  ∈  ℤ  ∧  𝑁  ∈  ℤ )  →  ( 0  /L  𝑁 )  ∈  ℤ ) | 
						
							| 35 | 14 33 34 | sylancr | ⊢ ( ( ( 𝑁  ∈  ℕ0  ∧  𝑥  ∈  ℤ )  ∧  ( 0  /L  𝑁 )  ≠  0 )  →  ( 0  /L  𝑁 )  ∈  ℤ ) | 
						
							| 36 | 35 | zcnd | ⊢ ( ( ( 𝑁  ∈  ℕ0  ∧  𝑥  ∈  ℤ )  ∧  ( 0  /L  𝑁 )  ≠  0 )  →  ( 0  /L  𝑁 )  ∈  ℂ ) | 
						
							| 37 | 36 | mullidd | ⊢ ( ( ( 𝑁  ∈  ℕ0  ∧  𝑥  ∈  ℤ )  ∧  ( 0  /L  𝑁 )  ≠  0 )  →  ( 1  ·  ( 0  /L  𝑁 ) )  =  ( 0  /L  𝑁 ) ) | 
						
							| 38 | 32 37 | eqtr2d | ⊢ ( ( ( 𝑁  ∈  ℕ0  ∧  𝑥  ∈  ℤ )  ∧  ( 0  /L  𝑁 )  ≠  0 )  →  ( 0  /L  𝑁 )  =  ( ( 𝑥  /L  𝑁 )  ·  ( 0  /L  𝑁 ) ) ) | 
						
							| 39 | 13 38 | pm2.61dane | ⊢ ( ( 𝑁  ∈  ℕ0  ∧  𝑥  ∈  ℤ )  →  ( 0  /L  𝑁 )  =  ( ( 𝑥  /L  𝑁 )  ·  ( 0  /L  𝑁 ) ) ) | 
						
							| 40 | 39 | ralrimiva | ⊢ ( 𝑁  ∈  ℕ0  →  ∀ 𝑥  ∈  ℤ ( 0  /L  𝑁 )  =  ( ( 𝑥  /L  𝑁 )  ·  ( 0  /L  𝑁 ) ) ) | 
						
							| 41 | 40 | 3ad2ant3 | ⊢ ( ( 𝐴  ∈  ℤ  ∧  𝐵  ∈  ℤ  ∧  𝑁  ∈  ℕ0 )  →  ∀ 𝑥  ∈  ℤ ( 0  /L  𝑁 )  =  ( ( 𝑥  /L  𝑁 )  ·  ( 0  /L  𝑁 ) ) ) | 
						
							| 42 |  | simp2 | ⊢ ( ( 𝐴  ∈  ℤ  ∧  𝐵  ∈  ℤ  ∧  𝑁  ∈  ℕ0 )  →  𝐵  ∈  ℤ ) | 
						
							| 43 | 3 41 42 | rspcdva | ⊢ ( ( 𝐴  ∈  ℤ  ∧  𝐵  ∈  ℤ  ∧  𝑁  ∈  ℕ0 )  →  ( 0  /L  𝑁 )  =  ( ( 𝐵  /L  𝑁 )  ·  ( 0  /L  𝑁 ) ) ) | 
						
							| 44 | 43 | adantr | ⊢ ( ( ( 𝐴  ∈  ℤ  ∧  𝐵  ∈  ℤ  ∧  𝑁  ∈  ℕ0 )  ∧  𝐴  =  0 )  →  ( 0  /L  𝑁 )  =  ( ( 𝐵  /L  𝑁 )  ·  ( 0  /L  𝑁 ) ) ) | 
						
							| 45 | 5 | 3ad2ant3 | ⊢ ( ( 𝐴  ∈  ℤ  ∧  𝐵  ∈  ℤ  ∧  𝑁  ∈  ℕ0 )  →  𝑁  ∈  ℤ ) | 
						
							| 46 | 14 45 34 | sylancr | ⊢ ( ( 𝐴  ∈  ℤ  ∧  𝐵  ∈  ℤ  ∧  𝑁  ∈  ℕ0 )  →  ( 0  /L  𝑁 )  ∈  ℤ ) | 
						
							| 47 | 46 | zcnd | ⊢ ( ( 𝐴  ∈  ℤ  ∧  𝐵  ∈  ℤ  ∧  𝑁  ∈  ℕ0 )  →  ( 0  /L  𝑁 )  ∈  ℂ ) | 
						
							| 48 | 47 | adantr | ⊢ ( ( ( 𝐴  ∈  ℤ  ∧  𝐵  ∈  ℤ  ∧  𝑁  ∈  ℕ0 )  ∧  𝐴  =  0 )  →  ( 0  /L  𝑁 )  ∈  ℂ ) | 
						
							| 49 |  | lgscl | ⊢ ( ( 𝐵  ∈  ℤ  ∧  𝑁  ∈  ℤ )  →  ( 𝐵  /L  𝑁 )  ∈  ℤ ) | 
						
							| 50 | 42 45 49 | syl2anc | ⊢ ( ( 𝐴  ∈  ℤ  ∧  𝐵  ∈  ℤ  ∧  𝑁  ∈  ℕ0 )  →  ( 𝐵  /L  𝑁 )  ∈  ℤ ) | 
						
							| 51 | 50 | zcnd | ⊢ ( ( 𝐴  ∈  ℤ  ∧  𝐵  ∈  ℤ  ∧  𝑁  ∈  ℕ0 )  →  ( 𝐵  /L  𝑁 )  ∈  ℂ ) | 
						
							| 52 | 51 | adantr | ⊢ ( ( ( 𝐴  ∈  ℤ  ∧  𝐵  ∈  ℤ  ∧  𝑁  ∈  ℕ0 )  ∧  𝐴  =  0 )  →  ( 𝐵  /L  𝑁 )  ∈  ℂ ) | 
						
							| 53 | 48 52 | mulcomd | ⊢ ( ( ( 𝐴  ∈  ℤ  ∧  𝐵  ∈  ℤ  ∧  𝑁  ∈  ℕ0 )  ∧  𝐴  =  0 )  →  ( ( 0  /L  𝑁 )  ·  ( 𝐵  /L  𝑁 ) )  =  ( ( 𝐵  /L  𝑁 )  ·  ( 0  /L  𝑁 ) ) ) | 
						
							| 54 | 44 53 | eqtr4d | ⊢ ( ( ( 𝐴  ∈  ℤ  ∧  𝐵  ∈  ℤ  ∧  𝑁  ∈  ℕ0 )  ∧  𝐴  =  0 )  →  ( 0  /L  𝑁 )  =  ( ( 0  /L  𝑁 )  ·  ( 𝐵  /L  𝑁 ) ) ) | 
						
							| 55 |  | oveq1 | ⊢ ( 𝐴  =  0  →  ( 𝐴  ·  𝐵 )  =  ( 0  ·  𝐵 ) ) | 
						
							| 56 |  | zcn | ⊢ ( 𝐵  ∈  ℤ  →  𝐵  ∈  ℂ ) | 
						
							| 57 | 56 | 3ad2ant2 | ⊢ ( ( 𝐴  ∈  ℤ  ∧  𝐵  ∈  ℤ  ∧  𝑁  ∈  ℕ0 )  →  𝐵  ∈  ℂ ) | 
						
							| 58 | 57 | mul02d | ⊢ ( ( 𝐴  ∈  ℤ  ∧  𝐵  ∈  ℤ  ∧  𝑁  ∈  ℕ0 )  →  ( 0  ·  𝐵 )  =  0 ) | 
						
							| 59 | 55 58 | sylan9eqr | ⊢ ( ( ( 𝐴  ∈  ℤ  ∧  𝐵  ∈  ℤ  ∧  𝑁  ∈  ℕ0 )  ∧  𝐴  =  0 )  →  ( 𝐴  ·  𝐵 )  =  0 ) | 
						
							| 60 | 59 | oveq1d | ⊢ ( ( ( 𝐴  ∈  ℤ  ∧  𝐵  ∈  ℤ  ∧  𝑁  ∈  ℕ0 )  ∧  𝐴  =  0 )  →  ( ( 𝐴  ·  𝐵 )  /L  𝑁 )  =  ( 0  /L  𝑁 ) ) | 
						
							| 61 |  | simpr | ⊢ ( ( ( 𝐴  ∈  ℤ  ∧  𝐵  ∈  ℤ  ∧  𝑁  ∈  ℕ0 )  ∧  𝐴  =  0 )  →  𝐴  =  0 ) | 
						
							| 62 | 61 | oveq1d | ⊢ ( ( ( 𝐴  ∈  ℤ  ∧  𝐵  ∈  ℤ  ∧  𝑁  ∈  ℕ0 )  ∧  𝐴  =  0 )  →  ( 𝐴  /L  𝑁 )  =  ( 0  /L  𝑁 ) ) | 
						
							| 63 | 62 | oveq1d | ⊢ ( ( ( 𝐴  ∈  ℤ  ∧  𝐵  ∈  ℤ  ∧  𝑁  ∈  ℕ0 )  ∧  𝐴  =  0 )  →  ( ( 𝐴  /L  𝑁 )  ·  ( 𝐵  /L  𝑁 ) )  =  ( ( 0  /L  𝑁 )  ·  ( 𝐵  /L  𝑁 ) ) ) | 
						
							| 64 | 54 60 63 | 3eqtr4d | ⊢ ( ( ( 𝐴  ∈  ℤ  ∧  𝐵  ∈  ℤ  ∧  𝑁  ∈  ℕ0 )  ∧  𝐴  =  0 )  →  ( ( 𝐴  ·  𝐵 )  /L  𝑁 )  =  ( ( 𝐴  /L  𝑁 )  ·  ( 𝐵  /L  𝑁 ) ) ) | 
						
							| 65 |  | oveq1 | ⊢ ( 𝑥  =  𝐴  →  ( 𝑥  /L  𝑁 )  =  ( 𝐴  /L  𝑁 ) ) | 
						
							| 66 | 65 | oveq1d | ⊢ ( 𝑥  =  𝐴  →  ( ( 𝑥  /L  𝑁 )  ·  ( 0  /L  𝑁 ) )  =  ( ( 𝐴  /L  𝑁 )  ·  ( 0  /L  𝑁 ) ) ) | 
						
							| 67 | 66 | eqeq2d | ⊢ ( 𝑥  =  𝐴  →  ( ( 0  /L  𝑁 )  =  ( ( 𝑥  /L  𝑁 )  ·  ( 0  /L  𝑁 ) )  ↔  ( 0  /L  𝑁 )  =  ( ( 𝐴  /L  𝑁 )  ·  ( 0  /L  𝑁 ) ) ) ) | 
						
							| 68 |  | simp1 | ⊢ ( ( 𝐴  ∈  ℤ  ∧  𝐵  ∈  ℤ  ∧  𝑁  ∈  ℕ0 )  →  𝐴  ∈  ℤ ) | 
						
							| 69 | 67 41 68 | rspcdva | ⊢ ( ( 𝐴  ∈  ℤ  ∧  𝐵  ∈  ℤ  ∧  𝑁  ∈  ℕ0 )  →  ( 0  /L  𝑁 )  =  ( ( 𝐴  /L  𝑁 )  ·  ( 0  /L  𝑁 ) ) ) | 
						
							| 70 | 69 | adantr | ⊢ ( ( ( 𝐴  ∈  ℤ  ∧  𝐵  ∈  ℤ  ∧  𝑁  ∈  ℕ0 )  ∧  𝐵  =  0 )  →  ( 0  /L  𝑁 )  =  ( ( 𝐴  /L  𝑁 )  ·  ( 0  /L  𝑁 ) ) ) | 
						
							| 71 |  | oveq2 | ⊢ ( 𝐵  =  0  →  ( 𝐴  ·  𝐵 )  =  ( 𝐴  ·  0 ) ) | 
						
							| 72 | 68 | zcnd | ⊢ ( ( 𝐴  ∈  ℤ  ∧  𝐵  ∈  ℤ  ∧  𝑁  ∈  ℕ0 )  →  𝐴  ∈  ℂ ) | 
						
							| 73 | 72 | mul01d | ⊢ ( ( 𝐴  ∈  ℤ  ∧  𝐵  ∈  ℤ  ∧  𝑁  ∈  ℕ0 )  →  ( 𝐴  ·  0 )  =  0 ) | 
						
							| 74 | 71 73 | sylan9eqr | ⊢ ( ( ( 𝐴  ∈  ℤ  ∧  𝐵  ∈  ℤ  ∧  𝑁  ∈  ℕ0 )  ∧  𝐵  =  0 )  →  ( 𝐴  ·  𝐵 )  =  0 ) | 
						
							| 75 | 74 | oveq1d | ⊢ ( ( ( 𝐴  ∈  ℤ  ∧  𝐵  ∈  ℤ  ∧  𝑁  ∈  ℕ0 )  ∧  𝐵  =  0 )  →  ( ( 𝐴  ·  𝐵 )  /L  𝑁 )  =  ( 0  /L  𝑁 ) ) | 
						
							| 76 |  | simpr | ⊢ ( ( ( 𝐴  ∈  ℤ  ∧  𝐵  ∈  ℤ  ∧  𝑁  ∈  ℕ0 )  ∧  𝐵  =  0 )  →  𝐵  =  0 ) | 
						
							| 77 | 76 | oveq1d | ⊢ ( ( ( 𝐴  ∈  ℤ  ∧  𝐵  ∈  ℤ  ∧  𝑁  ∈  ℕ0 )  ∧  𝐵  =  0 )  →  ( 𝐵  /L  𝑁 )  =  ( 0  /L  𝑁 ) ) | 
						
							| 78 | 77 | oveq2d | ⊢ ( ( ( 𝐴  ∈  ℤ  ∧  𝐵  ∈  ℤ  ∧  𝑁  ∈  ℕ0 )  ∧  𝐵  =  0 )  →  ( ( 𝐴  /L  𝑁 )  ·  ( 𝐵  /L  𝑁 ) )  =  ( ( 𝐴  /L  𝑁 )  ·  ( 0  /L  𝑁 ) ) ) | 
						
							| 79 | 70 75 78 | 3eqtr4d | ⊢ ( ( ( 𝐴  ∈  ℤ  ∧  𝐵  ∈  ℤ  ∧  𝑁  ∈  ℕ0 )  ∧  𝐵  =  0 )  →  ( ( 𝐴  ·  𝐵 )  /L  𝑁 )  =  ( ( 𝐴  /L  𝑁 )  ·  ( 𝐵  /L  𝑁 ) ) ) | 
						
							| 80 |  | lgsdir | ⊢ ( ( ( 𝐴  ∈  ℤ  ∧  𝐵  ∈  ℤ  ∧  𝑁  ∈  ℤ )  ∧  ( 𝐴  ≠  0  ∧  𝐵  ≠  0 ) )  →  ( ( 𝐴  ·  𝐵 )  /L  𝑁 )  =  ( ( 𝐴  /L  𝑁 )  ·  ( 𝐵  /L  𝑁 ) ) ) | 
						
							| 81 | 5 80 | syl3anl3 | ⊢ ( ( ( 𝐴  ∈  ℤ  ∧  𝐵  ∈  ℤ  ∧  𝑁  ∈  ℕ0 )  ∧  ( 𝐴  ≠  0  ∧  𝐵  ≠  0 ) )  →  ( ( 𝐴  ·  𝐵 )  /L  𝑁 )  =  ( ( 𝐴  /L  𝑁 )  ·  ( 𝐵  /L  𝑁 ) ) ) | 
						
							| 82 | 64 79 81 | pm2.61da2ne | ⊢ ( ( 𝐴  ∈  ℤ  ∧  𝐵  ∈  ℤ  ∧  𝑁  ∈  ℕ0 )  →  ( ( 𝐴  ·  𝐵 )  /L  𝑁 )  =  ( ( 𝐴  /L  𝑁 )  ·  ( 𝐵  /L  𝑁 ) ) ) |