| Step | Hyp | Ref | Expression | 
						
							| 1 |  | oveq1 |  | 
						
							| 2 | 1 | oveq1d |  | 
						
							| 3 | 2 | eqeq2d |  | 
						
							| 4 |  | id |  | 
						
							| 5 |  | nn0z |  | 
						
							| 6 |  | lgscl |  | 
						
							| 7 | 4 5 6 | syl2anr |  | 
						
							| 8 | 7 | zcnd |  | 
						
							| 9 | 8 | adantr |  | 
						
							| 10 | 9 | mul01d |  | 
						
							| 11 |  | simpr |  | 
						
							| 12 | 11 | oveq2d |  | 
						
							| 13 | 10 12 11 | 3eqtr4rd |  | 
						
							| 14 |  | 0z |  | 
						
							| 15 | 5 | adantr |  | 
						
							| 16 |  | lgsne0 |  | 
						
							| 17 | 14 15 16 | sylancr |  | 
						
							| 18 |  | gcdcom |  | 
						
							| 19 | 14 15 18 | sylancr |  | 
						
							| 20 |  | nn0gcdid0 |  | 
						
							| 21 | 20 | adantr |  | 
						
							| 22 | 19 21 | eqtrd |  | 
						
							| 23 | 22 | eqeq1d |  | 
						
							| 24 |  | lgs1 |  | 
						
							| 25 | 24 | adantl |  | 
						
							| 26 |  | oveq2 |  | 
						
							| 27 | 26 | eqeq1d |  | 
						
							| 28 | 25 27 | syl5ibrcom |  | 
						
							| 29 | 23 28 | sylbid |  | 
						
							| 30 | 17 29 | sylbid |  | 
						
							| 31 | 30 | imp |  | 
						
							| 32 | 31 | oveq1d |  | 
						
							| 33 | 5 | ad2antrr |  | 
						
							| 34 |  | lgscl |  | 
						
							| 35 | 14 33 34 | sylancr |  | 
						
							| 36 | 35 | zcnd |  | 
						
							| 37 | 36 | mullidd |  | 
						
							| 38 | 32 37 | eqtr2d |  | 
						
							| 39 | 13 38 | pm2.61dane |  | 
						
							| 40 | 39 | ralrimiva |  | 
						
							| 41 | 40 | 3ad2ant3 |  | 
						
							| 42 |  | simp2 |  | 
						
							| 43 | 3 41 42 | rspcdva |  | 
						
							| 44 | 43 | adantr |  | 
						
							| 45 | 5 | 3ad2ant3 |  | 
						
							| 46 | 14 45 34 | sylancr |  | 
						
							| 47 | 46 | zcnd |  | 
						
							| 48 | 47 | adantr |  | 
						
							| 49 |  | lgscl |  | 
						
							| 50 | 42 45 49 | syl2anc |  | 
						
							| 51 | 50 | zcnd |  | 
						
							| 52 | 51 | adantr |  | 
						
							| 53 | 48 52 | mulcomd |  | 
						
							| 54 | 44 53 | eqtr4d |  | 
						
							| 55 |  | oveq1 |  | 
						
							| 56 |  | zcn |  | 
						
							| 57 | 56 | 3ad2ant2 |  | 
						
							| 58 | 57 | mul02d |  | 
						
							| 59 | 55 58 | sylan9eqr |  | 
						
							| 60 | 59 | oveq1d |  | 
						
							| 61 |  | simpr |  | 
						
							| 62 | 61 | oveq1d |  | 
						
							| 63 | 62 | oveq1d |  | 
						
							| 64 | 54 60 63 | 3eqtr4d |  | 
						
							| 65 |  | oveq1 |  | 
						
							| 66 | 65 | oveq1d |  | 
						
							| 67 | 66 | eqeq2d |  | 
						
							| 68 |  | simp1 |  | 
						
							| 69 | 67 41 68 | rspcdva |  | 
						
							| 70 | 69 | adantr |  | 
						
							| 71 |  | oveq2 |  | 
						
							| 72 | 68 | zcnd |  | 
						
							| 73 | 72 | mul01d |  | 
						
							| 74 | 71 73 | sylan9eqr |  | 
						
							| 75 | 74 | oveq1d |  | 
						
							| 76 |  | simpr |  | 
						
							| 77 | 76 | oveq1d |  | 
						
							| 78 | 77 | oveq2d |  | 
						
							| 79 | 70 75 78 | 3eqtr4d |  | 
						
							| 80 |  | lgsdir |  | 
						
							| 81 | 5 80 | syl3anl3 |  | 
						
							| 82 | 64 79 81 | pm2.61da2ne |  |