Metamath Proof Explorer


Theorem lgsdinn0

Description: Variation on lgsdi valid for all M , N but only for positive A . (The exact location of the failure of this law is for A = -u 1 , M = 0 , and some N in which case ( -u 1 /L 0 ) = 1 but ( -u 1 /L N ) = -u 1 when -u 1 is not a quadratic residue mod N .) (Contributed by Mario Carneiro, 28-Apr-2016)

Ref Expression
Assertion lgsdinn0 A 0 M N A / L M N = A / L M A / L N

Proof

Step Hyp Ref Expression
1 oveq2 x = N A / L x = A / L N
2 1 oveq1d x = N A / L x A / L 0 = A / L N A / L 0
3 2 eqeq2d x = N A / L 0 = A / L x A / L 0 A / L 0 = A / L N A / L 0
4 sq1 1 2 = 1
5 4 eqeq2i A 2 = 1 2 A 2 = 1
6 nn0re A 0 A
7 nn0ge0 A 0 0 A
8 1re 1
9 0le1 0 1
10 sq11 A 0 A 1 0 1 A 2 = 1 2 A = 1
11 8 9 10 mpanr12 A 0 A A 2 = 1 2 A = 1
12 6 7 11 syl2anc A 0 A 2 = 1 2 A = 1
13 12 adantr A 0 x A 2 = 1 2 A = 1
14 5 13 bitr3id A 0 x A 2 = 1 A = 1
15 14 biimpa A 0 x A 2 = 1 A = 1
16 15 oveq1d A 0 x A 2 = 1 A / L x = 1 / L x
17 1lgs x 1 / L x = 1
18 17 ad2antlr A 0 x A 2 = 1 1 / L x = 1
19 16 18 eqtrd A 0 x A 2 = 1 A / L x = 1
20 19 oveq1d A 0 x A 2 = 1 A / L x A / L 0 = 1 A / L 0
21 nn0z A 0 A
22 21 ad2antrr A 0 x A 2 = 1 A
23 0z 0
24 lgscl A 0 A / L 0
25 22 23 24 sylancl A 0 x A 2 = 1 A / L 0
26 25 zcnd A 0 x A 2 = 1 A / L 0
27 26 mulid2d A 0 x A 2 = 1 1 A / L 0 = A / L 0
28 20 27 eqtr2d A 0 x A 2 = 1 A / L 0 = A / L x A / L 0
29 lgscl A x A / L x
30 21 29 sylan A 0 x A / L x
31 30 zcnd A 0 x A / L x
32 31 adantr A 0 x A 2 1 A / L x
33 32 mul01d A 0 x A 2 1 A / L x 0 = 0
34 21 adantr A 0 x A
35 lgs0 A A / L 0 = if A 2 = 1 1 0
36 34 35 syl A 0 x A / L 0 = if A 2 = 1 1 0
37 ifnefalse A 2 1 if A 2 = 1 1 0 = 0
38 36 37 sylan9eq A 0 x A 2 1 A / L 0 = 0
39 38 oveq2d A 0 x A 2 1 A / L x A / L 0 = A / L x 0
40 33 39 38 3eqtr4rd A 0 x A 2 1 A / L 0 = A / L x A / L 0
41 28 40 pm2.61dane A 0 x A / L 0 = A / L x A / L 0
42 41 ralrimiva A 0 x A / L 0 = A / L x A / L 0
43 42 3ad2ant1 A 0 M N x A / L 0 = A / L x A / L 0
44 simp3 A 0 M N N
45 3 43 44 rspcdva A 0 M N A / L 0 = A / L N A / L 0
46 45 adantr A 0 M N M = 0 A / L 0 = A / L N A / L 0
47 21 3ad2ant1 A 0 M N A
48 47 23 24 sylancl A 0 M N A / L 0
49 48 zcnd A 0 M N A / L 0
50 49 adantr A 0 M N M = 0 A / L 0
51 lgscl A N A / L N
52 47 44 51 syl2anc A 0 M N A / L N
53 52 zcnd A 0 M N A / L N
54 53 adantr A 0 M N M = 0 A / L N
55 50 54 mulcomd A 0 M N M = 0 A / L 0 A / L N = A / L N A / L 0
56 46 55 eqtr4d A 0 M N M = 0 A / L 0 = A / L 0 A / L N
57 oveq1 M = 0 M N = 0 N
58 44 zcnd A 0 M N N
59 58 mul02d A 0 M N 0 N = 0
60 57 59 sylan9eqr A 0 M N M = 0 M N = 0
61 60 oveq2d A 0 M N M = 0 A / L M N = A / L 0
62 simpr A 0 M N M = 0 M = 0
63 62 oveq2d A 0 M N M = 0 A / L M = A / L 0
64 63 oveq1d A 0 M N M = 0 A / L M A / L N = A / L 0 A / L N
65 56 61 64 3eqtr4d A 0 M N M = 0 A / L M N = A / L M A / L N
66 oveq2 x = M A / L x = A / L M
67 66 oveq1d x = M A / L x A / L 0 = A / L M A / L 0
68 67 eqeq2d x = M A / L 0 = A / L x A / L 0 A / L 0 = A / L M A / L 0
69 simp2 A 0 M N M
70 68 43 69 rspcdva A 0 M N A / L 0 = A / L M A / L 0
71 70 adantr A 0 M N N = 0 A / L 0 = A / L M A / L 0
72 oveq2 N = 0 M N = M 0
73 69 zcnd A 0 M N M
74 73 mul01d A 0 M N M 0 = 0
75 72 74 sylan9eqr A 0 M N N = 0 M N = 0
76 75 oveq2d A 0 M N N = 0 A / L M N = A / L 0
77 simpr A 0 M N N = 0 N = 0
78 77 oveq2d A 0 M N N = 0 A / L N = A / L 0
79 78 oveq2d A 0 M N N = 0 A / L M A / L N = A / L M A / L 0
80 71 76 79 3eqtr4d A 0 M N N = 0 A / L M N = A / L M A / L N
81 lgsdi A M N M 0 N 0 A / L M N = A / L M A / L N
82 21 81 syl3anl1 A 0 M N M 0 N 0 A / L M N = A / L M A / L N
83 65 80 82 pm2.61da2ne A 0 M N A / L M N = A / L M A / L N