| Step | Hyp | Ref | Expression | 
						
							| 1 |  | lgsqr.y |  | 
						
							| 2 |  | lgsqr.s |  | 
						
							| 3 |  | lgsqr.b |  | 
						
							| 4 |  | lgsqr.d |  | 
						
							| 5 |  | lgsqr.o |  | 
						
							| 6 |  | lgsqr.e |  | 
						
							| 7 |  | lgsqr.x |  | 
						
							| 8 |  | lgsqr.m |  | 
						
							| 9 |  | lgsqr.u |  | 
						
							| 10 |  | lgsqr.t |  | 
						
							| 11 |  | lgsqr.l |  | 
						
							| 12 |  | lgsqr.1 |  | 
						
							| 13 |  | lgsqrlem1.3 |  | 
						
							| 14 |  | lgsqrlem1.4 |  | 
						
							| 15 | 10 | fveq2i |  | 
						
							| 16 | 15 | fveq1i |  | 
						
							| 17 |  | eqid |  | 
						
							| 18 | 12 | eldifad |  | 
						
							| 19 | 1 | znfld |  | 
						
							| 20 | 18 19 | syl |  | 
						
							| 21 |  | fldidom |  | 
						
							| 22 | 20 21 | syl |  | 
						
							| 23 |  | isidom |  | 
						
							| 24 | 23 | simplbi |  | 
						
							| 25 | 22 24 | syl |  | 
						
							| 26 |  | crngring |  | 
						
							| 27 | 25 26 | syl |  | 
						
							| 28 | 11 | zrhrhm |  | 
						
							| 29 | 27 28 | syl |  | 
						
							| 30 |  | zringbas |  | 
						
							| 31 | 30 17 | rhmf |  | 
						
							| 32 | 29 31 | syl |  | 
						
							| 33 | 32 13 | ffvelcdmd |  | 
						
							| 34 | 5 7 17 2 3 25 33 | evl1vard |  | 
						
							| 35 |  | eqid |  | 
						
							| 36 |  | oddprm |  | 
						
							| 37 | 12 36 | syl |  | 
						
							| 38 | 37 | nnnn0d |  | 
						
							| 39 | 5 2 17 3 25 33 34 6 35 38 | evl1expd |  | 
						
							| 40 |  | zringmpg |  | 
						
							| 41 |  | eqid |  | 
						
							| 42 | 40 41 | rhmmhm |  | 
						
							| 43 | 29 42 | syl |  | 
						
							| 44 | 40 30 | mgpbas |  | 
						
							| 45 |  | eqid |  | 
						
							| 46 | 44 45 35 | mhmmulg |  | 
						
							| 47 | 43 38 13 46 | syl3anc |  | 
						
							| 48 |  | zsubrg |  | 
						
							| 49 |  | eqid |  | 
						
							| 50 | 49 | subrgsubm |  | 
						
							| 51 | 48 50 | mp1i |  | 
						
							| 52 |  | eqid |  | 
						
							| 53 |  | eqid |  | 
						
							| 54 | 52 53 45 | submmulg |  | 
						
							| 55 | 51 38 13 54 | syl3anc |  | 
						
							| 56 | 13 | zcnd |  | 
						
							| 57 |  | cnfldexp |  | 
						
							| 58 | 56 38 57 | syl2anc |  | 
						
							| 59 | 55 58 | eqtr3d |  | 
						
							| 60 | 59 | fveq2d |  | 
						
							| 61 |  | prmnn |  | 
						
							| 62 | 18 61 | syl |  | 
						
							| 63 |  | zexpcl |  | 
						
							| 64 | 13 38 63 | syl2anc |  | 
						
							| 65 |  | 1zzd |  | 
						
							| 66 |  | moddvds |  | 
						
							| 67 | 62 64 65 66 | syl3anc |  | 
						
							| 68 | 14 67 | mpbid |  | 
						
							| 69 | 62 | nnnn0d |  | 
						
							| 70 | 1 11 | zndvds |  | 
						
							| 71 | 69 64 65 70 | syl3anc |  | 
						
							| 72 | 68 71 | mpbird |  | 
						
							| 73 |  | zring1 |  | 
						
							| 74 |  | eqid |  | 
						
							| 75 | 73 74 | rhm1 |  | 
						
							| 76 | 29 75 | syl |  | 
						
							| 77 | 60 72 76 | 3eqtrd |  | 
						
							| 78 | 47 77 | eqtr3d |  | 
						
							| 79 | 78 | eqeq2d |  | 
						
							| 80 | 79 | anbi2d |  | 
						
							| 81 | 39 80 | mpbid |  | 
						
							| 82 |  | eqid |  | 
						
							| 83 | 17 74 | ringidcl |  | 
						
							| 84 | 27 83 | syl |  | 
						
							| 85 | 5 2 17 82 3 25 84 33 | evl1scad |  | 
						
							| 86 | 2 82 74 9 | ply1scl1 |  | 
						
							| 87 | 27 86 | syl |  | 
						
							| 88 | 87 | eleq1d |  | 
						
							| 89 | 87 | fveq2d |  | 
						
							| 90 | 89 | fveq1d |  | 
						
							| 91 | 90 | eqeq1d |  | 
						
							| 92 | 88 91 | anbi12d |  | 
						
							| 93 | 85 92 | mpbid |  | 
						
							| 94 |  | eqid |  | 
						
							| 95 | 5 2 17 3 25 33 81 93 8 94 | evl1subd |  | 
						
							| 96 | 95 | simprd |  | 
						
							| 97 | 16 96 | eqtrid |  | 
						
							| 98 |  | ringgrp |  | 
						
							| 99 | 27 98 | syl |  | 
						
							| 100 |  | eqid |  | 
						
							| 101 | 17 100 94 | grpsubid |  | 
						
							| 102 | 99 84 101 | syl2anc |  | 
						
							| 103 | 97 102 | eqtrd |  |