| Step | Hyp | Ref | Expression | 
						
							| 1 |  | lgsqr.y | ⊢ 𝑌  =  ( ℤ/nℤ ‘ 𝑃 ) | 
						
							| 2 |  | lgsqr.s | ⊢ 𝑆  =  ( Poly1 ‘ 𝑌 ) | 
						
							| 3 |  | lgsqr.b | ⊢ 𝐵  =  ( Base ‘ 𝑆 ) | 
						
							| 4 |  | lgsqr.d | ⊢ 𝐷  =  ( deg1 ‘ 𝑌 ) | 
						
							| 5 |  | lgsqr.o | ⊢ 𝑂  =  ( eval1 ‘ 𝑌 ) | 
						
							| 6 |  | lgsqr.e | ⊢  ↑   =  ( .g ‘ ( mulGrp ‘ 𝑆 ) ) | 
						
							| 7 |  | lgsqr.x | ⊢ 𝑋  =  ( var1 ‘ 𝑌 ) | 
						
							| 8 |  | lgsqr.m | ⊢  −   =  ( -g ‘ 𝑆 ) | 
						
							| 9 |  | lgsqr.u | ⊢  1   =  ( 1r ‘ 𝑆 ) | 
						
							| 10 |  | lgsqr.t | ⊢ 𝑇  =  ( ( ( ( 𝑃  −  1 )  /  2 )  ↑  𝑋 )  −   1  ) | 
						
							| 11 |  | lgsqr.l | ⊢ 𝐿  =  ( ℤRHom ‘ 𝑌 ) | 
						
							| 12 |  | lgsqr.1 | ⊢ ( 𝜑  →  𝑃  ∈  ( ℙ  ∖  { 2 } ) ) | 
						
							| 13 |  | lgsqrlem1.3 | ⊢ ( 𝜑  →  𝐴  ∈  ℤ ) | 
						
							| 14 |  | lgsqrlem1.4 | ⊢ ( 𝜑  →  ( ( 𝐴 ↑ ( ( 𝑃  −  1 )  /  2 ) )  mod  𝑃 )  =  ( 1  mod  𝑃 ) ) | 
						
							| 15 | 10 | fveq2i | ⊢ ( 𝑂 ‘ 𝑇 )  =  ( 𝑂 ‘ ( ( ( ( 𝑃  −  1 )  /  2 )  ↑  𝑋 )  −   1  ) ) | 
						
							| 16 | 15 | fveq1i | ⊢ ( ( 𝑂 ‘ 𝑇 ) ‘ ( 𝐿 ‘ 𝐴 ) )  =  ( ( 𝑂 ‘ ( ( ( ( 𝑃  −  1 )  /  2 )  ↑  𝑋 )  −   1  ) ) ‘ ( 𝐿 ‘ 𝐴 ) ) | 
						
							| 17 |  | eqid | ⊢ ( Base ‘ 𝑌 )  =  ( Base ‘ 𝑌 ) | 
						
							| 18 | 12 | eldifad | ⊢ ( 𝜑  →  𝑃  ∈  ℙ ) | 
						
							| 19 | 1 | znfld | ⊢ ( 𝑃  ∈  ℙ  →  𝑌  ∈  Field ) | 
						
							| 20 | 18 19 | syl | ⊢ ( 𝜑  →  𝑌  ∈  Field ) | 
						
							| 21 |  | fldidom | ⊢ ( 𝑌  ∈  Field  →  𝑌  ∈  IDomn ) | 
						
							| 22 | 20 21 | syl | ⊢ ( 𝜑  →  𝑌  ∈  IDomn ) | 
						
							| 23 |  | isidom | ⊢ ( 𝑌  ∈  IDomn  ↔  ( 𝑌  ∈  CRing  ∧  𝑌  ∈  Domn ) ) | 
						
							| 24 | 23 | simplbi | ⊢ ( 𝑌  ∈  IDomn  →  𝑌  ∈  CRing ) | 
						
							| 25 | 22 24 | syl | ⊢ ( 𝜑  →  𝑌  ∈  CRing ) | 
						
							| 26 |  | crngring | ⊢ ( 𝑌  ∈  CRing  →  𝑌  ∈  Ring ) | 
						
							| 27 | 25 26 | syl | ⊢ ( 𝜑  →  𝑌  ∈  Ring ) | 
						
							| 28 | 11 | zrhrhm | ⊢ ( 𝑌  ∈  Ring  →  𝐿  ∈  ( ℤring  RingHom  𝑌 ) ) | 
						
							| 29 | 27 28 | syl | ⊢ ( 𝜑  →  𝐿  ∈  ( ℤring  RingHom  𝑌 ) ) | 
						
							| 30 |  | zringbas | ⊢ ℤ  =  ( Base ‘ ℤring ) | 
						
							| 31 | 30 17 | rhmf | ⊢ ( 𝐿  ∈  ( ℤring  RingHom  𝑌 )  →  𝐿 : ℤ ⟶ ( Base ‘ 𝑌 ) ) | 
						
							| 32 | 29 31 | syl | ⊢ ( 𝜑  →  𝐿 : ℤ ⟶ ( Base ‘ 𝑌 ) ) | 
						
							| 33 | 32 13 | ffvelcdmd | ⊢ ( 𝜑  →  ( 𝐿 ‘ 𝐴 )  ∈  ( Base ‘ 𝑌 ) ) | 
						
							| 34 | 5 7 17 2 3 25 33 | evl1vard | ⊢ ( 𝜑  →  ( 𝑋  ∈  𝐵  ∧  ( ( 𝑂 ‘ 𝑋 ) ‘ ( 𝐿 ‘ 𝐴 ) )  =  ( 𝐿 ‘ 𝐴 ) ) ) | 
						
							| 35 |  | eqid | ⊢ ( .g ‘ ( mulGrp ‘ 𝑌 ) )  =  ( .g ‘ ( mulGrp ‘ 𝑌 ) ) | 
						
							| 36 |  | oddprm | ⊢ ( 𝑃  ∈  ( ℙ  ∖  { 2 } )  →  ( ( 𝑃  −  1 )  /  2 )  ∈  ℕ ) | 
						
							| 37 | 12 36 | syl | ⊢ ( 𝜑  →  ( ( 𝑃  −  1 )  /  2 )  ∈  ℕ ) | 
						
							| 38 | 37 | nnnn0d | ⊢ ( 𝜑  →  ( ( 𝑃  −  1 )  /  2 )  ∈  ℕ0 ) | 
						
							| 39 | 5 2 17 3 25 33 34 6 35 38 | evl1expd | ⊢ ( 𝜑  →  ( ( ( ( 𝑃  −  1 )  /  2 )  ↑  𝑋 )  ∈  𝐵  ∧  ( ( 𝑂 ‘ ( ( ( 𝑃  −  1 )  /  2 )  ↑  𝑋 ) ) ‘ ( 𝐿 ‘ 𝐴 ) )  =  ( ( ( 𝑃  −  1 )  /  2 ) ( .g ‘ ( mulGrp ‘ 𝑌 ) ) ( 𝐿 ‘ 𝐴 ) ) ) ) | 
						
							| 40 |  | zringmpg | ⊢ ( ( mulGrp ‘ ℂfld )  ↾s  ℤ )  =  ( mulGrp ‘ ℤring ) | 
						
							| 41 |  | eqid | ⊢ ( mulGrp ‘ 𝑌 )  =  ( mulGrp ‘ 𝑌 ) | 
						
							| 42 | 40 41 | rhmmhm | ⊢ ( 𝐿  ∈  ( ℤring  RingHom  𝑌 )  →  𝐿  ∈  ( ( ( mulGrp ‘ ℂfld )  ↾s  ℤ )  MndHom  ( mulGrp ‘ 𝑌 ) ) ) | 
						
							| 43 | 29 42 | syl | ⊢ ( 𝜑  →  𝐿  ∈  ( ( ( mulGrp ‘ ℂfld )  ↾s  ℤ )  MndHom  ( mulGrp ‘ 𝑌 ) ) ) | 
						
							| 44 | 40 30 | mgpbas | ⊢ ℤ  =  ( Base ‘ ( ( mulGrp ‘ ℂfld )  ↾s  ℤ ) ) | 
						
							| 45 |  | eqid | ⊢ ( .g ‘ ( ( mulGrp ‘ ℂfld )  ↾s  ℤ ) )  =  ( .g ‘ ( ( mulGrp ‘ ℂfld )  ↾s  ℤ ) ) | 
						
							| 46 | 44 45 35 | mhmmulg | ⊢ ( ( 𝐿  ∈  ( ( ( mulGrp ‘ ℂfld )  ↾s  ℤ )  MndHom  ( mulGrp ‘ 𝑌 ) )  ∧  ( ( 𝑃  −  1 )  /  2 )  ∈  ℕ0  ∧  𝐴  ∈  ℤ )  →  ( 𝐿 ‘ ( ( ( 𝑃  −  1 )  /  2 ) ( .g ‘ ( ( mulGrp ‘ ℂfld )  ↾s  ℤ ) ) 𝐴 ) )  =  ( ( ( 𝑃  −  1 )  /  2 ) ( .g ‘ ( mulGrp ‘ 𝑌 ) ) ( 𝐿 ‘ 𝐴 ) ) ) | 
						
							| 47 | 43 38 13 46 | syl3anc | ⊢ ( 𝜑  →  ( 𝐿 ‘ ( ( ( 𝑃  −  1 )  /  2 ) ( .g ‘ ( ( mulGrp ‘ ℂfld )  ↾s  ℤ ) ) 𝐴 ) )  =  ( ( ( 𝑃  −  1 )  /  2 ) ( .g ‘ ( mulGrp ‘ 𝑌 ) ) ( 𝐿 ‘ 𝐴 ) ) ) | 
						
							| 48 |  | zsubrg | ⊢ ℤ  ∈  ( SubRing ‘ ℂfld ) | 
						
							| 49 |  | eqid | ⊢ ( mulGrp ‘ ℂfld )  =  ( mulGrp ‘ ℂfld ) | 
						
							| 50 | 49 | subrgsubm | ⊢ ( ℤ  ∈  ( SubRing ‘ ℂfld )  →  ℤ  ∈  ( SubMnd ‘ ( mulGrp ‘ ℂfld ) ) ) | 
						
							| 51 | 48 50 | mp1i | ⊢ ( 𝜑  →  ℤ  ∈  ( SubMnd ‘ ( mulGrp ‘ ℂfld ) ) ) | 
						
							| 52 |  | eqid | ⊢ ( .g ‘ ( mulGrp ‘ ℂfld ) )  =  ( .g ‘ ( mulGrp ‘ ℂfld ) ) | 
						
							| 53 |  | eqid | ⊢ ( ( mulGrp ‘ ℂfld )  ↾s  ℤ )  =  ( ( mulGrp ‘ ℂfld )  ↾s  ℤ ) | 
						
							| 54 | 52 53 45 | submmulg | ⊢ ( ( ℤ  ∈  ( SubMnd ‘ ( mulGrp ‘ ℂfld ) )  ∧  ( ( 𝑃  −  1 )  /  2 )  ∈  ℕ0  ∧  𝐴  ∈  ℤ )  →  ( ( ( 𝑃  −  1 )  /  2 ) ( .g ‘ ( mulGrp ‘ ℂfld ) ) 𝐴 )  =  ( ( ( 𝑃  −  1 )  /  2 ) ( .g ‘ ( ( mulGrp ‘ ℂfld )  ↾s  ℤ ) ) 𝐴 ) ) | 
						
							| 55 | 51 38 13 54 | syl3anc | ⊢ ( 𝜑  →  ( ( ( 𝑃  −  1 )  /  2 ) ( .g ‘ ( mulGrp ‘ ℂfld ) ) 𝐴 )  =  ( ( ( 𝑃  −  1 )  /  2 ) ( .g ‘ ( ( mulGrp ‘ ℂfld )  ↾s  ℤ ) ) 𝐴 ) ) | 
						
							| 56 | 13 | zcnd | ⊢ ( 𝜑  →  𝐴  ∈  ℂ ) | 
						
							| 57 |  | cnfldexp | ⊢ ( ( 𝐴  ∈  ℂ  ∧  ( ( 𝑃  −  1 )  /  2 )  ∈  ℕ0 )  →  ( ( ( 𝑃  −  1 )  /  2 ) ( .g ‘ ( mulGrp ‘ ℂfld ) ) 𝐴 )  =  ( 𝐴 ↑ ( ( 𝑃  −  1 )  /  2 ) ) ) | 
						
							| 58 | 56 38 57 | syl2anc | ⊢ ( 𝜑  →  ( ( ( 𝑃  −  1 )  /  2 ) ( .g ‘ ( mulGrp ‘ ℂfld ) ) 𝐴 )  =  ( 𝐴 ↑ ( ( 𝑃  −  1 )  /  2 ) ) ) | 
						
							| 59 | 55 58 | eqtr3d | ⊢ ( 𝜑  →  ( ( ( 𝑃  −  1 )  /  2 ) ( .g ‘ ( ( mulGrp ‘ ℂfld )  ↾s  ℤ ) ) 𝐴 )  =  ( 𝐴 ↑ ( ( 𝑃  −  1 )  /  2 ) ) ) | 
						
							| 60 | 59 | fveq2d | ⊢ ( 𝜑  →  ( 𝐿 ‘ ( ( ( 𝑃  −  1 )  /  2 ) ( .g ‘ ( ( mulGrp ‘ ℂfld )  ↾s  ℤ ) ) 𝐴 ) )  =  ( 𝐿 ‘ ( 𝐴 ↑ ( ( 𝑃  −  1 )  /  2 ) ) ) ) | 
						
							| 61 |  | prmnn | ⊢ ( 𝑃  ∈  ℙ  →  𝑃  ∈  ℕ ) | 
						
							| 62 | 18 61 | syl | ⊢ ( 𝜑  →  𝑃  ∈  ℕ ) | 
						
							| 63 |  | zexpcl | ⊢ ( ( 𝐴  ∈  ℤ  ∧  ( ( 𝑃  −  1 )  /  2 )  ∈  ℕ0 )  →  ( 𝐴 ↑ ( ( 𝑃  −  1 )  /  2 ) )  ∈  ℤ ) | 
						
							| 64 | 13 38 63 | syl2anc | ⊢ ( 𝜑  →  ( 𝐴 ↑ ( ( 𝑃  −  1 )  /  2 ) )  ∈  ℤ ) | 
						
							| 65 |  | 1zzd | ⊢ ( 𝜑  →  1  ∈  ℤ ) | 
						
							| 66 |  | moddvds | ⊢ ( ( 𝑃  ∈  ℕ  ∧  ( 𝐴 ↑ ( ( 𝑃  −  1 )  /  2 ) )  ∈  ℤ  ∧  1  ∈  ℤ )  →  ( ( ( 𝐴 ↑ ( ( 𝑃  −  1 )  /  2 ) )  mod  𝑃 )  =  ( 1  mod  𝑃 )  ↔  𝑃  ∥  ( ( 𝐴 ↑ ( ( 𝑃  −  1 )  /  2 ) )  −  1 ) ) ) | 
						
							| 67 | 62 64 65 66 | syl3anc | ⊢ ( 𝜑  →  ( ( ( 𝐴 ↑ ( ( 𝑃  −  1 )  /  2 ) )  mod  𝑃 )  =  ( 1  mod  𝑃 )  ↔  𝑃  ∥  ( ( 𝐴 ↑ ( ( 𝑃  −  1 )  /  2 ) )  −  1 ) ) ) | 
						
							| 68 | 14 67 | mpbid | ⊢ ( 𝜑  →  𝑃  ∥  ( ( 𝐴 ↑ ( ( 𝑃  −  1 )  /  2 ) )  −  1 ) ) | 
						
							| 69 | 62 | nnnn0d | ⊢ ( 𝜑  →  𝑃  ∈  ℕ0 ) | 
						
							| 70 | 1 11 | zndvds | ⊢ ( ( 𝑃  ∈  ℕ0  ∧  ( 𝐴 ↑ ( ( 𝑃  −  1 )  /  2 ) )  ∈  ℤ  ∧  1  ∈  ℤ )  →  ( ( 𝐿 ‘ ( 𝐴 ↑ ( ( 𝑃  −  1 )  /  2 ) ) )  =  ( 𝐿 ‘ 1 )  ↔  𝑃  ∥  ( ( 𝐴 ↑ ( ( 𝑃  −  1 )  /  2 ) )  −  1 ) ) ) | 
						
							| 71 | 69 64 65 70 | syl3anc | ⊢ ( 𝜑  →  ( ( 𝐿 ‘ ( 𝐴 ↑ ( ( 𝑃  −  1 )  /  2 ) ) )  =  ( 𝐿 ‘ 1 )  ↔  𝑃  ∥  ( ( 𝐴 ↑ ( ( 𝑃  −  1 )  /  2 ) )  −  1 ) ) ) | 
						
							| 72 | 68 71 | mpbird | ⊢ ( 𝜑  →  ( 𝐿 ‘ ( 𝐴 ↑ ( ( 𝑃  −  1 )  /  2 ) ) )  =  ( 𝐿 ‘ 1 ) ) | 
						
							| 73 |  | zring1 | ⊢ 1  =  ( 1r ‘ ℤring ) | 
						
							| 74 |  | eqid | ⊢ ( 1r ‘ 𝑌 )  =  ( 1r ‘ 𝑌 ) | 
						
							| 75 | 73 74 | rhm1 | ⊢ ( 𝐿  ∈  ( ℤring  RingHom  𝑌 )  →  ( 𝐿 ‘ 1 )  =  ( 1r ‘ 𝑌 ) ) | 
						
							| 76 | 29 75 | syl | ⊢ ( 𝜑  →  ( 𝐿 ‘ 1 )  =  ( 1r ‘ 𝑌 ) ) | 
						
							| 77 | 60 72 76 | 3eqtrd | ⊢ ( 𝜑  →  ( 𝐿 ‘ ( ( ( 𝑃  −  1 )  /  2 ) ( .g ‘ ( ( mulGrp ‘ ℂfld )  ↾s  ℤ ) ) 𝐴 ) )  =  ( 1r ‘ 𝑌 ) ) | 
						
							| 78 | 47 77 | eqtr3d | ⊢ ( 𝜑  →  ( ( ( 𝑃  −  1 )  /  2 ) ( .g ‘ ( mulGrp ‘ 𝑌 ) ) ( 𝐿 ‘ 𝐴 ) )  =  ( 1r ‘ 𝑌 ) ) | 
						
							| 79 | 78 | eqeq2d | ⊢ ( 𝜑  →  ( ( ( 𝑂 ‘ ( ( ( 𝑃  −  1 )  /  2 )  ↑  𝑋 ) ) ‘ ( 𝐿 ‘ 𝐴 ) )  =  ( ( ( 𝑃  −  1 )  /  2 ) ( .g ‘ ( mulGrp ‘ 𝑌 ) ) ( 𝐿 ‘ 𝐴 ) )  ↔  ( ( 𝑂 ‘ ( ( ( 𝑃  −  1 )  /  2 )  ↑  𝑋 ) ) ‘ ( 𝐿 ‘ 𝐴 ) )  =  ( 1r ‘ 𝑌 ) ) ) | 
						
							| 80 | 79 | anbi2d | ⊢ ( 𝜑  →  ( ( ( ( ( 𝑃  −  1 )  /  2 )  ↑  𝑋 )  ∈  𝐵  ∧  ( ( 𝑂 ‘ ( ( ( 𝑃  −  1 )  /  2 )  ↑  𝑋 ) ) ‘ ( 𝐿 ‘ 𝐴 ) )  =  ( ( ( 𝑃  −  1 )  /  2 ) ( .g ‘ ( mulGrp ‘ 𝑌 ) ) ( 𝐿 ‘ 𝐴 ) ) )  ↔  ( ( ( ( 𝑃  −  1 )  /  2 )  ↑  𝑋 )  ∈  𝐵  ∧  ( ( 𝑂 ‘ ( ( ( 𝑃  −  1 )  /  2 )  ↑  𝑋 ) ) ‘ ( 𝐿 ‘ 𝐴 ) )  =  ( 1r ‘ 𝑌 ) ) ) ) | 
						
							| 81 | 39 80 | mpbid | ⊢ ( 𝜑  →  ( ( ( ( 𝑃  −  1 )  /  2 )  ↑  𝑋 )  ∈  𝐵  ∧  ( ( 𝑂 ‘ ( ( ( 𝑃  −  1 )  /  2 )  ↑  𝑋 ) ) ‘ ( 𝐿 ‘ 𝐴 ) )  =  ( 1r ‘ 𝑌 ) ) ) | 
						
							| 82 |  | eqid | ⊢ ( algSc ‘ 𝑆 )  =  ( algSc ‘ 𝑆 ) | 
						
							| 83 | 17 74 | ringidcl | ⊢ ( 𝑌  ∈  Ring  →  ( 1r ‘ 𝑌 )  ∈  ( Base ‘ 𝑌 ) ) | 
						
							| 84 | 27 83 | syl | ⊢ ( 𝜑  →  ( 1r ‘ 𝑌 )  ∈  ( Base ‘ 𝑌 ) ) | 
						
							| 85 | 5 2 17 82 3 25 84 33 | evl1scad | ⊢ ( 𝜑  →  ( ( ( algSc ‘ 𝑆 ) ‘ ( 1r ‘ 𝑌 ) )  ∈  𝐵  ∧  ( ( 𝑂 ‘ ( ( algSc ‘ 𝑆 ) ‘ ( 1r ‘ 𝑌 ) ) ) ‘ ( 𝐿 ‘ 𝐴 ) )  =  ( 1r ‘ 𝑌 ) ) ) | 
						
							| 86 | 2 82 74 9 | ply1scl1 | ⊢ ( 𝑌  ∈  Ring  →  ( ( algSc ‘ 𝑆 ) ‘ ( 1r ‘ 𝑌 ) )  =   1  ) | 
						
							| 87 | 27 86 | syl | ⊢ ( 𝜑  →  ( ( algSc ‘ 𝑆 ) ‘ ( 1r ‘ 𝑌 ) )  =   1  ) | 
						
							| 88 | 87 | eleq1d | ⊢ ( 𝜑  →  ( ( ( algSc ‘ 𝑆 ) ‘ ( 1r ‘ 𝑌 ) )  ∈  𝐵  ↔   1   ∈  𝐵 ) ) | 
						
							| 89 | 87 | fveq2d | ⊢ ( 𝜑  →  ( 𝑂 ‘ ( ( algSc ‘ 𝑆 ) ‘ ( 1r ‘ 𝑌 ) ) )  =  ( 𝑂 ‘  1  ) ) | 
						
							| 90 | 89 | fveq1d | ⊢ ( 𝜑  →  ( ( 𝑂 ‘ ( ( algSc ‘ 𝑆 ) ‘ ( 1r ‘ 𝑌 ) ) ) ‘ ( 𝐿 ‘ 𝐴 ) )  =  ( ( 𝑂 ‘  1  ) ‘ ( 𝐿 ‘ 𝐴 ) ) ) | 
						
							| 91 | 90 | eqeq1d | ⊢ ( 𝜑  →  ( ( ( 𝑂 ‘ ( ( algSc ‘ 𝑆 ) ‘ ( 1r ‘ 𝑌 ) ) ) ‘ ( 𝐿 ‘ 𝐴 ) )  =  ( 1r ‘ 𝑌 )  ↔  ( ( 𝑂 ‘  1  ) ‘ ( 𝐿 ‘ 𝐴 ) )  =  ( 1r ‘ 𝑌 ) ) ) | 
						
							| 92 | 88 91 | anbi12d | ⊢ ( 𝜑  →  ( ( ( ( algSc ‘ 𝑆 ) ‘ ( 1r ‘ 𝑌 ) )  ∈  𝐵  ∧  ( ( 𝑂 ‘ ( ( algSc ‘ 𝑆 ) ‘ ( 1r ‘ 𝑌 ) ) ) ‘ ( 𝐿 ‘ 𝐴 ) )  =  ( 1r ‘ 𝑌 ) )  ↔  (  1   ∈  𝐵  ∧  ( ( 𝑂 ‘  1  ) ‘ ( 𝐿 ‘ 𝐴 ) )  =  ( 1r ‘ 𝑌 ) ) ) ) | 
						
							| 93 | 85 92 | mpbid | ⊢ ( 𝜑  →  (  1   ∈  𝐵  ∧  ( ( 𝑂 ‘  1  ) ‘ ( 𝐿 ‘ 𝐴 ) )  =  ( 1r ‘ 𝑌 ) ) ) | 
						
							| 94 |  | eqid | ⊢ ( -g ‘ 𝑌 )  =  ( -g ‘ 𝑌 ) | 
						
							| 95 | 5 2 17 3 25 33 81 93 8 94 | evl1subd | ⊢ ( 𝜑  →  ( ( ( ( ( 𝑃  −  1 )  /  2 )  ↑  𝑋 )  −   1  )  ∈  𝐵  ∧  ( ( 𝑂 ‘ ( ( ( ( 𝑃  −  1 )  /  2 )  ↑  𝑋 )  −   1  ) ) ‘ ( 𝐿 ‘ 𝐴 ) )  =  ( ( 1r ‘ 𝑌 ) ( -g ‘ 𝑌 ) ( 1r ‘ 𝑌 ) ) ) ) | 
						
							| 96 | 95 | simprd | ⊢ ( 𝜑  →  ( ( 𝑂 ‘ ( ( ( ( 𝑃  −  1 )  /  2 )  ↑  𝑋 )  −   1  ) ) ‘ ( 𝐿 ‘ 𝐴 ) )  =  ( ( 1r ‘ 𝑌 ) ( -g ‘ 𝑌 ) ( 1r ‘ 𝑌 ) ) ) | 
						
							| 97 | 16 96 | eqtrid | ⊢ ( 𝜑  →  ( ( 𝑂 ‘ 𝑇 ) ‘ ( 𝐿 ‘ 𝐴 ) )  =  ( ( 1r ‘ 𝑌 ) ( -g ‘ 𝑌 ) ( 1r ‘ 𝑌 ) ) ) | 
						
							| 98 |  | ringgrp | ⊢ ( 𝑌  ∈  Ring  →  𝑌  ∈  Grp ) | 
						
							| 99 | 27 98 | syl | ⊢ ( 𝜑  →  𝑌  ∈  Grp ) | 
						
							| 100 |  | eqid | ⊢ ( 0g ‘ 𝑌 )  =  ( 0g ‘ 𝑌 ) | 
						
							| 101 | 17 100 94 | grpsubid | ⊢ ( ( 𝑌  ∈  Grp  ∧  ( 1r ‘ 𝑌 )  ∈  ( Base ‘ 𝑌 ) )  →  ( ( 1r ‘ 𝑌 ) ( -g ‘ 𝑌 ) ( 1r ‘ 𝑌 ) )  =  ( 0g ‘ 𝑌 ) ) | 
						
							| 102 | 99 84 101 | syl2anc | ⊢ ( 𝜑  →  ( ( 1r ‘ 𝑌 ) ( -g ‘ 𝑌 ) ( 1r ‘ 𝑌 ) )  =  ( 0g ‘ 𝑌 ) ) | 
						
							| 103 | 97 102 | eqtrd | ⊢ ( 𝜑  →  ( ( 𝑂 ‘ 𝑇 ) ‘ ( 𝐿 ‘ 𝐴 ) )  =  ( 0g ‘ 𝑌 ) ) |