| Step | Hyp | Ref | Expression | 
						
							| 1 |  | zmodcl |  | 
						
							| 2 | 1 | 3adant3 |  | 
						
							| 3 | 2 | nn0zd |  | 
						
							| 4 | 3 | ad2antrr |  | 
						
							| 5 |  | simpr |  | 
						
							| 6 | 5 | adantr |  | 
						
							| 7 |  | simpl3 |  | 
						
							| 8 |  | breq1 |  | 
						
							| 9 | 8 | notbid |  | 
						
							| 10 | 7 9 | syl5ibrcom |  | 
						
							| 11 | 10 | necon2ad |  | 
						
							| 12 | 11 | imp |  | 
						
							| 13 |  | eldifsn |  | 
						
							| 14 | 6 12 13 | sylanbrc |  | 
						
							| 15 |  | oddprm |  | 
						
							| 16 | 14 15 | syl |  | 
						
							| 17 | 16 | nnnn0d |  | 
						
							| 18 |  | zexpcl |  | 
						
							| 19 | 4 17 18 | syl2anc |  | 
						
							| 20 | 19 | zred |  | 
						
							| 21 |  | simpll1 |  | 
						
							| 22 |  | zexpcl |  | 
						
							| 23 | 21 17 22 | syl2anc |  | 
						
							| 24 | 23 | zred |  | 
						
							| 25 |  | 1red |  | 
						
							| 26 |  | prmnn |  | 
						
							| 27 | 26 | ad2antlr |  | 
						
							| 28 | 27 | nnrpd |  | 
						
							| 29 |  | prmz |  | 
						
							| 30 | 29 | ad2antlr |  | 
						
							| 31 |  | simp2 |  | 
						
							| 32 | 31 | ad2antrr |  | 
						
							| 33 | 32 | nnzd |  | 
						
							| 34 | 4 21 | zsubcld |  | 
						
							| 35 |  | simpr |  | 
						
							| 36 | 21 | zred |  | 
						
							| 37 | 32 | nnrpd |  | 
						
							| 38 |  | modabs2 |  | 
						
							| 39 | 36 37 38 | syl2anc |  | 
						
							| 40 |  | moddvds |  | 
						
							| 41 | 32 4 21 40 | syl3anc |  | 
						
							| 42 | 39 41 | mpbid |  | 
						
							| 43 | 30 33 34 35 42 | dvdstrd |  | 
						
							| 44 |  | moddvds |  | 
						
							| 45 | 27 4 21 44 | syl3anc |  | 
						
							| 46 | 43 45 | mpbird |  | 
						
							| 47 |  | modexp |  | 
						
							| 48 | 4 21 17 28 46 47 | syl221anc |  | 
						
							| 49 |  | modadd1 |  | 
						
							| 50 | 20 24 25 28 48 49 | syl221anc |  | 
						
							| 51 | 50 | oveq1d |  | 
						
							| 52 |  | lgsval3 |  | 
						
							| 53 | 4 14 52 | syl2anc |  | 
						
							| 54 |  | lgsval3 |  | 
						
							| 55 | 21 14 54 | syl2anc |  | 
						
							| 56 | 51 53 55 | 3eqtr4d |  | 
						
							| 57 | 56 | oveq1d |  | 
						
							| 58 | 3 | ad2antrr |  | 
						
							| 59 | 29 | ad2antlr |  | 
						
							| 60 |  | lgscl |  | 
						
							| 61 | 58 59 60 | syl2anc |  | 
						
							| 62 | 61 | zcnd |  | 
						
							| 63 | 62 | exp0d |  | 
						
							| 64 |  | simpll1 |  | 
						
							| 65 |  | lgscl |  | 
						
							| 66 | 64 59 65 | syl2anc |  | 
						
							| 67 | 66 | zcnd |  | 
						
							| 68 | 67 | exp0d |  | 
						
							| 69 | 63 68 | eqtr4d |  | 
						
							| 70 | 31 | adantr |  | 
						
							| 71 |  | pceq0 |  | 
						
							| 72 | 5 70 71 | syl2anc |  | 
						
							| 73 | 72 | biimpar |  | 
						
							| 74 | 73 | oveq2d |  | 
						
							| 75 | 73 | oveq2d |  | 
						
							| 76 | 69 74 75 | 3eqtr4d |  | 
						
							| 77 | 57 76 | pm2.61dan |  | 
						
							| 78 | 77 | ifeq1da |  | 
						
							| 79 | 78 | mpteq2dv |  | 
						
							| 80 | 79 | seqeq3d |  | 
						
							| 81 | 80 | fveq1d |  | 
						
							| 82 |  | eqid |  | 
						
							| 83 | 82 | lgsval4a |  | 
						
							| 84 | 3 31 83 | syl2anc |  | 
						
							| 85 |  | eqid |  | 
						
							| 86 | 85 | lgsval4a |  | 
						
							| 87 | 86 | 3adant3 |  | 
						
							| 88 | 81 84 87 | 3eqtr4d |  |