| Step | Hyp | Ref | Expression | 
						
							| 1 |  | lgsqrmod | ⊢ ( ( 𝐴  ∈  ℤ  ∧  𝑃  ∈  ( ℙ  ∖  { 2 } ) )  →  ( ( 𝐴  /L  𝑃 )  =  1  →  ∃ 𝑥  ∈  ℤ ( ( 𝑥 ↑ 2 )  mod  𝑃 )  =  ( 𝐴  mod  𝑃 ) ) ) | 
						
							| 2 | 1 | imp | ⊢ ( ( ( 𝐴  ∈  ℤ  ∧  𝑃  ∈  ( ℙ  ∖  { 2 } ) )  ∧  ( 𝐴  /L  𝑃 )  =  1 )  →  ∃ 𝑥  ∈  ℤ ( ( 𝑥 ↑ 2 )  mod  𝑃 )  =  ( 𝐴  mod  𝑃 ) ) | 
						
							| 3 |  | eldifi | ⊢ ( 𝑃  ∈  ( ℙ  ∖  { 2 } )  →  𝑃  ∈  ℙ ) | 
						
							| 4 |  | prmnn | ⊢ ( 𝑃  ∈  ℙ  →  𝑃  ∈  ℕ ) | 
						
							| 5 | 3 4 | syl | ⊢ ( 𝑃  ∈  ( ℙ  ∖  { 2 } )  →  𝑃  ∈  ℕ ) | 
						
							| 6 | 5 | ad3antlr | ⊢ ( ( ( ( 𝐴  ∈  ℤ  ∧  𝑃  ∈  ( ℙ  ∖  { 2 } ) )  ∧  ( 𝐴  /L  𝑃 )  =  1 )  ∧  𝑥  ∈  ℤ )  →  𝑃  ∈  ℕ ) | 
						
							| 7 |  | zsqcl | ⊢ ( 𝑥  ∈  ℤ  →  ( 𝑥 ↑ 2 )  ∈  ℤ ) | 
						
							| 8 | 7 | adantl | ⊢ ( ( ( ( 𝐴  ∈  ℤ  ∧  𝑃  ∈  ( ℙ  ∖  { 2 } ) )  ∧  ( 𝐴  /L  𝑃 )  =  1 )  ∧  𝑥  ∈  ℤ )  →  ( 𝑥 ↑ 2 )  ∈  ℤ ) | 
						
							| 9 |  | simplll | ⊢ ( ( ( ( 𝐴  ∈  ℤ  ∧  𝑃  ∈  ( ℙ  ∖  { 2 } ) )  ∧  ( 𝐴  /L  𝑃 )  =  1 )  ∧  𝑥  ∈  ℤ )  →  𝐴  ∈  ℤ ) | 
						
							| 10 |  | moddvds | ⊢ ( ( 𝑃  ∈  ℕ  ∧  ( 𝑥 ↑ 2 )  ∈  ℤ  ∧  𝐴  ∈  ℤ )  →  ( ( ( 𝑥 ↑ 2 )  mod  𝑃 )  =  ( 𝐴  mod  𝑃 )  ↔  𝑃  ∥  ( ( 𝑥 ↑ 2 )  −  𝐴 ) ) ) | 
						
							| 11 | 6 8 9 10 | syl3anc | ⊢ ( ( ( ( 𝐴  ∈  ℤ  ∧  𝑃  ∈  ( ℙ  ∖  { 2 } ) )  ∧  ( 𝐴  /L  𝑃 )  =  1 )  ∧  𝑥  ∈  ℤ )  →  ( ( ( 𝑥 ↑ 2 )  mod  𝑃 )  =  ( 𝐴  mod  𝑃 )  ↔  𝑃  ∥  ( ( 𝑥 ↑ 2 )  −  𝐴 ) ) ) | 
						
							| 12 | 5 | nnzd | ⊢ ( 𝑃  ∈  ( ℙ  ∖  { 2 } )  →  𝑃  ∈  ℤ ) | 
						
							| 13 | 12 | ad3antlr | ⊢ ( ( ( ( 𝐴  ∈  ℤ  ∧  𝑃  ∈  ( ℙ  ∖  { 2 } ) )  ∧  ( 𝐴  /L  𝑃 )  =  1 )  ∧  𝑥  ∈  ℤ )  →  𝑃  ∈  ℤ ) | 
						
							| 14 | 13 8 9 | 3jca | ⊢ ( ( ( ( 𝐴  ∈  ℤ  ∧  𝑃  ∈  ( ℙ  ∖  { 2 } ) )  ∧  ( 𝐴  /L  𝑃 )  =  1 )  ∧  𝑥  ∈  ℤ )  →  ( 𝑃  ∈  ℤ  ∧  ( 𝑥 ↑ 2 )  ∈  ℤ  ∧  𝐴  ∈  ℤ ) ) | 
						
							| 15 | 14 | adantl | ⊢ ( ( 𝑃  ∥  𝑥  ∧  ( ( ( 𝐴  ∈  ℤ  ∧  𝑃  ∈  ( ℙ  ∖  { 2 } ) )  ∧  ( 𝐴  /L  𝑃 )  =  1 )  ∧  𝑥  ∈  ℤ ) )  →  ( 𝑃  ∈  ℤ  ∧  ( 𝑥 ↑ 2 )  ∈  ℤ  ∧  𝐴  ∈  ℤ ) ) | 
						
							| 16 |  | dvdssub2 | ⊢ ( ( ( 𝑃  ∈  ℤ  ∧  ( 𝑥 ↑ 2 )  ∈  ℤ  ∧  𝐴  ∈  ℤ )  ∧  𝑃  ∥  ( ( 𝑥 ↑ 2 )  −  𝐴 ) )  →  ( 𝑃  ∥  ( 𝑥 ↑ 2 )  ↔  𝑃  ∥  𝐴 ) ) | 
						
							| 17 | 15 16 | sylan | ⊢ ( ( ( 𝑃  ∥  𝑥  ∧  ( ( ( 𝐴  ∈  ℤ  ∧  𝑃  ∈  ( ℙ  ∖  { 2 } ) )  ∧  ( 𝐴  /L  𝑃 )  =  1 )  ∧  𝑥  ∈  ℤ ) )  ∧  𝑃  ∥  ( ( 𝑥 ↑ 2 )  −  𝐴 ) )  →  ( 𝑃  ∥  ( 𝑥 ↑ 2 )  ↔  𝑃  ∥  𝐴 ) ) | 
						
							| 18 | 17 | ex | ⊢ ( ( 𝑃  ∥  𝑥  ∧  ( ( ( 𝐴  ∈  ℤ  ∧  𝑃  ∈  ( ℙ  ∖  { 2 } ) )  ∧  ( 𝐴  /L  𝑃 )  =  1 )  ∧  𝑥  ∈  ℤ ) )  →  ( 𝑃  ∥  ( ( 𝑥 ↑ 2 )  −  𝐴 )  →  ( 𝑃  ∥  ( 𝑥 ↑ 2 )  ↔  𝑃  ∥  𝐴 ) ) ) | 
						
							| 19 |  | bicom | ⊢ ( ( 𝑃  ∥  ( 𝑥 ↑ 2 )  ↔  𝑃  ∥  𝐴 )  ↔  ( 𝑃  ∥  𝐴  ↔  𝑃  ∥  ( 𝑥 ↑ 2 ) ) ) | 
						
							| 20 | 3 | ad3antlr | ⊢ ( ( ( ( 𝐴  ∈  ℤ  ∧  𝑃  ∈  ( ℙ  ∖  { 2 } ) )  ∧  ( 𝐴  /L  𝑃 )  =  1 )  ∧  𝑥  ∈  ℤ )  →  𝑃  ∈  ℙ ) | 
						
							| 21 |  | simpr | ⊢ ( ( ( ( 𝐴  ∈  ℤ  ∧  𝑃  ∈  ( ℙ  ∖  { 2 } ) )  ∧  ( 𝐴  /L  𝑃 )  =  1 )  ∧  𝑥  ∈  ℤ )  →  𝑥  ∈  ℤ ) | 
						
							| 22 |  | 2nn | ⊢ 2  ∈  ℕ | 
						
							| 23 | 22 | a1i | ⊢ ( ( ( ( 𝐴  ∈  ℤ  ∧  𝑃  ∈  ( ℙ  ∖  { 2 } ) )  ∧  ( 𝐴  /L  𝑃 )  =  1 )  ∧  𝑥  ∈  ℤ )  →  2  ∈  ℕ ) | 
						
							| 24 |  | prmdvdsexp | ⊢ ( ( 𝑃  ∈  ℙ  ∧  𝑥  ∈  ℤ  ∧  2  ∈  ℕ )  →  ( 𝑃  ∥  ( 𝑥 ↑ 2 )  ↔  𝑃  ∥  𝑥 ) ) | 
						
							| 25 | 20 21 23 24 | syl3anc | ⊢ ( ( ( ( 𝐴  ∈  ℤ  ∧  𝑃  ∈  ( ℙ  ∖  { 2 } ) )  ∧  ( 𝐴  /L  𝑃 )  =  1 )  ∧  𝑥  ∈  ℤ )  →  ( 𝑃  ∥  ( 𝑥 ↑ 2 )  ↔  𝑃  ∥  𝑥 ) ) | 
						
							| 26 | 25 | biimparc | ⊢ ( ( 𝑃  ∥  𝑥  ∧  ( ( ( 𝐴  ∈  ℤ  ∧  𝑃  ∈  ( ℙ  ∖  { 2 } ) )  ∧  ( 𝐴  /L  𝑃 )  =  1 )  ∧  𝑥  ∈  ℤ ) )  →  𝑃  ∥  ( 𝑥 ↑ 2 ) ) | 
						
							| 27 |  | bianir | ⊢ ( ( 𝑃  ∥  ( 𝑥 ↑ 2 )  ∧  ( 𝑃  ∥  𝐴  ↔  𝑃  ∥  ( 𝑥 ↑ 2 ) ) )  →  𝑃  ∥  𝐴 ) | 
						
							| 28 | 5 | ad2antlr | ⊢ ( ( ( 𝐴  ∈  ℤ  ∧  𝑃  ∈  ( ℙ  ∖  { 2 } ) )  ∧  ( 𝐴  /L  𝑃 )  =  1 )  →  𝑃  ∈  ℕ ) | 
						
							| 29 |  | dvdsmod0 | ⊢ ( ( 𝑃  ∈  ℕ  ∧  𝑃  ∥  𝐴 )  →  ( 𝐴  mod  𝑃 )  =  0 ) | 
						
							| 30 | 29 | ex | ⊢ ( 𝑃  ∈  ℕ  →  ( 𝑃  ∥  𝐴  →  ( 𝐴  mod  𝑃 )  =  0 ) ) | 
						
							| 31 | 28 30 | syl | ⊢ ( ( ( 𝐴  ∈  ℤ  ∧  𝑃  ∈  ( ℙ  ∖  { 2 } ) )  ∧  ( 𝐴  /L  𝑃 )  =  1 )  →  ( 𝑃  ∥  𝐴  →  ( 𝐴  mod  𝑃 )  =  0 ) ) | 
						
							| 32 |  | lgsprme0 | ⊢ ( ( 𝐴  ∈  ℤ  ∧  𝑃  ∈  ℙ )  →  ( ( 𝐴  /L  𝑃 )  =  0  ↔  ( 𝐴  mod  𝑃 )  =  0 ) ) | 
						
							| 33 | 3 32 | sylan2 | ⊢ ( ( 𝐴  ∈  ℤ  ∧  𝑃  ∈  ( ℙ  ∖  { 2 } ) )  →  ( ( 𝐴  /L  𝑃 )  =  0  ↔  ( 𝐴  mod  𝑃 )  =  0 ) ) | 
						
							| 34 |  | eqeq1 | ⊢ ( ( 𝐴  /L  𝑃 )  =  0  →  ( ( 𝐴  /L  𝑃 )  =  1  ↔  0  =  1 ) ) | 
						
							| 35 |  | 0ne1 | ⊢ 0  ≠  1 | 
						
							| 36 |  | eqneqall | ⊢ ( 0  =  1  →  ( 0  ≠  1  →  ¬  𝑃  ∥  𝑥 ) ) | 
						
							| 37 | 35 36 | mpi | ⊢ ( 0  =  1  →  ¬  𝑃  ∥  𝑥 ) | 
						
							| 38 | 34 37 | biimtrdi | ⊢ ( ( 𝐴  /L  𝑃 )  =  0  →  ( ( 𝐴  /L  𝑃 )  =  1  →  ¬  𝑃  ∥  𝑥 ) ) | 
						
							| 39 | 33 38 | biimtrrdi | ⊢ ( ( 𝐴  ∈  ℤ  ∧  𝑃  ∈  ( ℙ  ∖  { 2 } ) )  →  ( ( 𝐴  mod  𝑃 )  =  0  →  ( ( 𝐴  /L  𝑃 )  =  1  →  ¬  𝑃  ∥  𝑥 ) ) ) | 
						
							| 40 | 39 | com23 | ⊢ ( ( 𝐴  ∈  ℤ  ∧  𝑃  ∈  ( ℙ  ∖  { 2 } ) )  →  ( ( 𝐴  /L  𝑃 )  =  1  →  ( ( 𝐴  mod  𝑃 )  =  0  →  ¬  𝑃  ∥  𝑥 ) ) ) | 
						
							| 41 | 40 | imp | ⊢ ( ( ( 𝐴  ∈  ℤ  ∧  𝑃  ∈  ( ℙ  ∖  { 2 } ) )  ∧  ( 𝐴  /L  𝑃 )  =  1 )  →  ( ( 𝐴  mod  𝑃 )  =  0  →  ¬  𝑃  ∥  𝑥 ) ) | 
						
							| 42 | 31 41 | syld | ⊢ ( ( ( 𝐴  ∈  ℤ  ∧  𝑃  ∈  ( ℙ  ∖  { 2 } ) )  ∧  ( 𝐴  /L  𝑃 )  =  1 )  →  ( 𝑃  ∥  𝐴  →  ¬  𝑃  ∥  𝑥 ) ) | 
						
							| 43 | 42 | ad2antrl | ⊢ ( ( 𝑃  ∥  𝑥  ∧  ( ( ( 𝐴  ∈  ℤ  ∧  𝑃  ∈  ( ℙ  ∖  { 2 } ) )  ∧  ( 𝐴  /L  𝑃 )  =  1 )  ∧  𝑥  ∈  ℤ ) )  →  ( 𝑃  ∥  𝐴  →  ¬  𝑃  ∥  𝑥 ) ) | 
						
							| 44 | 27 43 | syl5com | ⊢ ( ( 𝑃  ∥  ( 𝑥 ↑ 2 )  ∧  ( 𝑃  ∥  𝐴  ↔  𝑃  ∥  ( 𝑥 ↑ 2 ) ) )  →  ( ( 𝑃  ∥  𝑥  ∧  ( ( ( 𝐴  ∈  ℤ  ∧  𝑃  ∈  ( ℙ  ∖  { 2 } ) )  ∧  ( 𝐴  /L  𝑃 )  =  1 )  ∧  𝑥  ∈  ℤ ) )  →  ¬  𝑃  ∥  𝑥 ) ) | 
						
							| 45 | 44 | ex | ⊢ ( 𝑃  ∥  ( 𝑥 ↑ 2 )  →  ( ( 𝑃  ∥  𝐴  ↔  𝑃  ∥  ( 𝑥 ↑ 2 ) )  →  ( ( 𝑃  ∥  𝑥  ∧  ( ( ( 𝐴  ∈  ℤ  ∧  𝑃  ∈  ( ℙ  ∖  { 2 } ) )  ∧  ( 𝐴  /L  𝑃 )  =  1 )  ∧  𝑥  ∈  ℤ ) )  →  ¬  𝑃  ∥  𝑥 ) ) ) | 
						
							| 46 | 45 | com23 | ⊢ ( 𝑃  ∥  ( 𝑥 ↑ 2 )  →  ( ( 𝑃  ∥  𝑥  ∧  ( ( ( 𝐴  ∈  ℤ  ∧  𝑃  ∈  ( ℙ  ∖  { 2 } ) )  ∧  ( 𝐴  /L  𝑃 )  =  1 )  ∧  𝑥  ∈  ℤ ) )  →  ( ( 𝑃  ∥  𝐴  ↔  𝑃  ∥  ( 𝑥 ↑ 2 ) )  →  ¬  𝑃  ∥  𝑥 ) ) ) | 
						
							| 47 | 26 46 | mpcom | ⊢ ( ( 𝑃  ∥  𝑥  ∧  ( ( ( 𝐴  ∈  ℤ  ∧  𝑃  ∈  ( ℙ  ∖  { 2 } ) )  ∧  ( 𝐴  /L  𝑃 )  =  1 )  ∧  𝑥  ∈  ℤ ) )  →  ( ( 𝑃  ∥  𝐴  ↔  𝑃  ∥  ( 𝑥 ↑ 2 ) )  →  ¬  𝑃  ∥  𝑥 ) ) | 
						
							| 48 | 19 47 | biimtrid | ⊢ ( ( 𝑃  ∥  𝑥  ∧  ( ( ( 𝐴  ∈  ℤ  ∧  𝑃  ∈  ( ℙ  ∖  { 2 } ) )  ∧  ( 𝐴  /L  𝑃 )  =  1 )  ∧  𝑥  ∈  ℤ ) )  →  ( ( 𝑃  ∥  ( 𝑥 ↑ 2 )  ↔  𝑃  ∥  𝐴 )  →  ¬  𝑃  ∥  𝑥 ) ) | 
						
							| 49 | 18 48 | syld | ⊢ ( ( 𝑃  ∥  𝑥  ∧  ( ( ( 𝐴  ∈  ℤ  ∧  𝑃  ∈  ( ℙ  ∖  { 2 } ) )  ∧  ( 𝐴  /L  𝑃 )  =  1 )  ∧  𝑥  ∈  ℤ ) )  →  ( 𝑃  ∥  ( ( 𝑥 ↑ 2 )  −  𝐴 )  →  ¬  𝑃  ∥  𝑥 ) ) | 
						
							| 50 | 49 | ex | ⊢ ( 𝑃  ∥  𝑥  →  ( ( ( ( 𝐴  ∈  ℤ  ∧  𝑃  ∈  ( ℙ  ∖  { 2 } ) )  ∧  ( 𝐴  /L  𝑃 )  =  1 )  ∧  𝑥  ∈  ℤ )  →  ( 𝑃  ∥  ( ( 𝑥 ↑ 2 )  −  𝐴 )  →  ¬  𝑃  ∥  𝑥 ) ) ) | 
						
							| 51 |  | 2a1 | ⊢ ( ¬  𝑃  ∥  𝑥  →  ( ( ( ( 𝐴  ∈  ℤ  ∧  𝑃  ∈  ( ℙ  ∖  { 2 } ) )  ∧  ( 𝐴  /L  𝑃 )  =  1 )  ∧  𝑥  ∈  ℤ )  →  ( 𝑃  ∥  ( ( 𝑥 ↑ 2 )  −  𝐴 )  →  ¬  𝑃  ∥  𝑥 ) ) ) | 
						
							| 52 | 50 51 | pm2.61i | ⊢ ( ( ( ( 𝐴  ∈  ℤ  ∧  𝑃  ∈  ( ℙ  ∖  { 2 } ) )  ∧  ( 𝐴  /L  𝑃 )  =  1 )  ∧  𝑥  ∈  ℤ )  →  ( 𝑃  ∥  ( ( 𝑥 ↑ 2 )  −  𝐴 )  →  ¬  𝑃  ∥  𝑥 ) ) | 
						
							| 53 | 11 52 | sylbid | ⊢ ( ( ( ( 𝐴  ∈  ℤ  ∧  𝑃  ∈  ( ℙ  ∖  { 2 } ) )  ∧  ( 𝐴  /L  𝑃 )  =  1 )  ∧  𝑥  ∈  ℤ )  →  ( ( ( 𝑥 ↑ 2 )  mod  𝑃 )  =  ( 𝐴  mod  𝑃 )  →  ¬  𝑃  ∥  𝑥 ) ) | 
						
							| 54 | 53 | ancld | ⊢ ( ( ( ( 𝐴  ∈  ℤ  ∧  𝑃  ∈  ( ℙ  ∖  { 2 } ) )  ∧  ( 𝐴  /L  𝑃 )  =  1 )  ∧  𝑥  ∈  ℤ )  →  ( ( ( 𝑥 ↑ 2 )  mod  𝑃 )  =  ( 𝐴  mod  𝑃 )  →  ( ( ( 𝑥 ↑ 2 )  mod  𝑃 )  =  ( 𝐴  mod  𝑃 )  ∧  ¬  𝑃  ∥  𝑥 ) ) ) | 
						
							| 55 | 54 | reximdva | ⊢ ( ( ( 𝐴  ∈  ℤ  ∧  𝑃  ∈  ( ℙ  ∖  { 2 } ) )  ∧  ( 𝐴  /L  𝑃 )  =  1 )  →  ( ∃ 𝑥  ∈  ℤ ( ( 𝑥 ↑ 2 )  mod  𝑃 )  =  ( 𝐴  mod  𝑃 )  →  ∃ 𝑥  ∈  ℤ ( ( ( 𝑥 ↑ 2 )  mod  𝑃 )  =  ( 𝐴  mod  𝑃 )  ∧  ¬  𝑃  ∥  𝑥 ) ) ) | 
						
							| 56 | 2 55 | mpd | ⊢ ( ( ( 𝐴  ∈  ℤ  ∧  𝑃  ∈  ( ℙ  ∖  { 2 } ) )  ∧  ( 𝐴  /L  𝑃 )  =  1 )  →  ∃ 𝑥  ∈  ℤ ( ( ( 𝑥 ↑ 2 )  mod  𝑃 )  =  ( 𝐴  mod  𝑃 )  ∧  ¬  𝑃  ∥  𝑥 ) ) | 
						
							| 57 | 56 | ex | ⊢ ( ( 𝐴  ∈  ℤ  ∧  𝑃  ∈  ( ℙ  ∖  { 2 } ) )  →  ( ( 𝐴  /L  𝑃 )  =  1  →  ∃ 𝑥  ∈  ℤ ( ( ( 𝑥 ↑ 2 )  mod  𝑃 )  =  ( 𝐴  mod  𝑃 )  ∧  ¬  𝑃  ∥  𝑥 ) ) ) |