| Step | Hyp | Ref | Expression | 
						
							| 1 |  | lgsqr |  |-  ( ( A e. ZZ /\ P e. ( Prime \ { 2 } ) ) -> ( ( A /L P ) = 1 <-> ( -. P || A /\ E. x e. ZZ P || ( ( x ^ 2 ) - A ) ) ) ) | 
						
							| 2 |  | eldifi |  |-  ( P e. ( Prime \ { 2 } ) -> P e. Prime ) | 
						
							| 3 |  | prmnn |  |-  ( P e. Prime -> P e. NN ) | 
						
							| 4 | 2 3 | syl |  |-  ( P e. ( Prime \ { 2 } ) -> P e. NN ) | 
						
							| 5 | 4 | ad2antlr |  |-  ( ( ( A e. ZZ /\ P e. ( Prime \ { 2 } ) ) /\ x e. ZZ ) -> P e. NN ) | 
						
							| 6 |  | zsqcl |  |-  ( x e. ZZ -> ( x ^ 2 ) e. ZZ ) | 
						
							| 7 | 6 | adantl |  |-  ( ( ( A e. ZZ /\ P e. ( Prime \ { 2 } ) ) /\ x e. ZZ ) -> ( x ^ 2 ) e. ZZ ) | 
						
							| 8 |  | simpll |  |-  ( ( ( A e. ZZ /\ P e. ( Prime \ { 2 } ) ) /\ x e. ZZ ) -> A e. ZZ ) | 
						
							| 9 |  | moddvds |  |-  ( ( P e. NN /\ ( x ^ 2 ) e. ZZ /\ A e. ZZ ) -> ( ( ( x ^ 2 ) mod P ) = ( A mod P ) <-> P || ( ( x ^ 2 ) - A ) ) ) | 
						
							| 10 | 5 7 8 9 | syl3anc |  |-  ( ( ( A e. ZZ /\ P e. ( Prime \ { 2 } ) ) /\ x e. ZZ ) -> ( ( ( x ^ 2 ) mod P ) = ( A mod P ) <-> P || ( ( x ^ 2 ) - A ) ) ) | 
						
							| 11 | 10 | biimprd |  |-  ( ( ( A e. ZZ /\ P e. ( Prime \ { 2 } ) ) /\ x e. ZZ ) -> ( P || ( ( x ^ 2 ) - A ) -> ( ( x ^ 2 ) mod P ) = ( A mod P ) ) ) | 
						
							| 12 | 11 | reximdva |  |-  ( ( A e. ZZ /\ P e. ( Prime \ { 2 } ) ) -> ( E. x e. ZZ P || ( ( x ^ 2 ) - A ) -> E. x e. ZZ ( ( x ^ 2 ) mod P ) = ( A mod P ) ) ) | 
						
							| 13 | 12 | adantld |  |-  ( ( A e. ZZ /\ P e. ( Prime \ { 2 } ) ) -> ( ( -. P || A /\ E. x e. ZZ P || ( ( x ^ 2 ) - A ) ) -> E. x e. ZZ ( ( x ^ 2 ) mod P ) = ( A mod P ) ) ) | 
						
							| 14 | 1 13 | sylbid |  |-  ( ( A e. ZZ /\ P e. ( Prime \ { 2 } ) ) -> ( ( A /L P ) = 1 -> E. x e. ZZ ( ( x ^ 2 ) mod P ) = ( A mod P ) ) ) |