| Step | Hyp | Ref | Expression | 
						
							| 1 |  | phiprm |  |-  ( P e. Prime -> ( phi ` P ) = ( P - 1 ) ) | 
						
							| 2 | 1 | eqcomd |  |-  ( P e. Prime -> ( P - 1 ) = ( phi ` P ) ) | 
						
							| 3 | 2 | 3ad2ant1 |  |-  ( ( P e. Prime /\ A e. ZZ /\ -. P || A ) -> ( P - 1 ) = ( phi ` P ) ) | 
						
							| 4 | 3 | oveq2d |  |-  ( ( P e. Prime /\ A e. ZZ /\ -. P || A ) -> ( A ^ ( P - 1 ) ) = ( A ^ ( phi ` P ) ) ) | 
						
							| 5 | 4 | oveq1d |  |-  ( ( P e. Prime /\ A e. ZZ /\ -. P || A ) -> ( ( A ^ ( P - 1 ) ) mod P ) = ( ( A ^ ( phi ` P ) ) mod P ) ) | 
						
							| 6 |  | prmnn |  |-  ( P e. Prime -> P e. NN ) | 
						
							| 7 | 6 | 3ad2ant1 |  |-  ( ( P e. Prime /\ A e. ZZ /\ -. P || A ) -> P e. NN ) | 
						
							| 8 |  | simp2 |  |-  ( ( P e. Prime /\ A e. ZZ /\ -. P || A ) -> A e. ZZ ) | 
						
							| 9 |  | prmz |  |-  ( P e. Prime -> P e. ZZ ) | 
						
							| 10 | 9 | anim1ci |  |-  ( ( P e. Prime /\ A e. ZZ ) -> ( A e. ZZ /\ P e. ZZ ) ) | 
						
							| 11 | 10 | 3adant3 |  |-  ( ( P e. Prime /\ A e. ZZ /\ -. P || A ) -> ( A e. ZZ /\ P e. ZZ ) ) | 
						
							| 12 |  | gcdcom |  |-  ( ( A e. ZZ /\ P e. ZZ ) -> ( A gcd P ) = ( P gcd A ) ) | 
						
							| 13 | 11 12 | syl |  |-  ( ( P e. Prime /\ A e. ZZ /\ -. P || A ) -> ( A gcd P ) = ( P gcd A ) ) | 
						
							| 14 |  | coprm |  |-  ( ( P e. Prime /\ A e. ZZ ) -> ( -. P || A <-> ( P gcd A ) = 1 ) ) | 
						
							| 15 | 14 | biimp3a |  |-  ( ( P e. Prime /\ A e. ZZ /\ -. P || A ) -> ( P gcd A ) = 1 ) | 
						
							| 16 | 13 15 | eqtrd |  |-  ( ( P e. Prime /\ A e. ZZ /\ -. P || A ) -> ( A gcd P ) = 1 ) | 
						
							| 17 |  | eulerth |  |-  ( ( P e. NN /\ A e. ZZ /\ ( A gcd P ) = 1 ) -> ( ( A ^ ( phi ` P ) ) mod P ) = ( 1 mod P ) ) | 
						
							| 18 | 7 8 16 17 | syl3anc |  |-  ( ( P e. Prime /\ A e. ZZ /\ -. P || A ) -> ( ( A ^ ( phi ` P ) ) mod P ) = ( 1 mod P ) ) | 
						
							| 19 | 6 | nnred |  |-  ( P e. Prime -> P e. RR ) | 
						
							| 20 |  | prmgt1 |  |-  ( P e. Prime -> 1 < P ) | 
						
							| 21 | 19 20 | jca |  |-  ( P e. Prime -> ( P e. RR /\ 1 < P ) ) | 
						
							| 22 | 21 | 3ad2ant1 |  |-  ( ( P e. Prime /\ A e. ZZ /\ -. P || A ) -> ( P e. RR /\ 1 < P ) ) | 
						
							| 23 |  | 1mod |  |-  ( ( P e. RR /\ 1 < P ) -> ( 1 mod P ) = 1 ) | 
						
							| 24 | 22 23 | syl |  |-  ( ( P e. Prime /\ A e. ZZ /\ -. P || A ) -> ( 1 mod P ) = 1 ) | 
						
							| 25 | 5 18 24 | 3eqtrd |  |-  ( ( P e. Prime /\ A e. ZZ /\ -. P || A ) -> ( ( A ^ ( P - 1 ) ) mod P ) = 1 ) |