| Step | Hyp | Ref | Expression | 
						
							| 1 |  | phiprm | ⊢ ( 𝑃  ∈  ℙ  →  ( ϕ ‘ 𝑃 )  =  ( 𝑃  −  1 ) ) | 
						
							| 2 | 1 | eqcomd | ⊢ ( 𝑃  ∈  ℙ  →  ( 𝑃  −  1 )  =  ( ϕ ‘ 𝑃 ) ) | 
						
							| 3 | 2 | 3ad2ant1 | ⊢ ( ( 𝑃  ∈  ℙ  ∧  𝐴  ∈  ℤ  ∧  ¬  𝑃  ∥  𝐴 )  →  ( 𝑃  −  1 )  =  ( ϕ ‘ 𝑃 ) ) | 
						
							| 4 | 3 | oveq2d | ⊢ ( ( 𝑃  ∈  ℙ  ∧  𝐴  ∈  ℤ  ∧  ¬  𝑃  ∥  𝐴 )  →  ( 𝐴 ↑ ( 𝑃  −  1 ) )  =  ( 𝐴 ↑ ( ϕ ‘ 𝑃 ) ) ) | 
						
							| 5 | 4 | oveq1d | ⊢ ( ( 𝑃  ∈  ℙ  ∧  𝐴  ∈  ℤ  ∧  ¬  𝑃  ∥  𝐴 )  →  ( ( 𝐴 ↑ ( 𝑃  −  1 ) )  mod  𝑃 )  =  ( ( 𝐴 ↑ ( ϕ ‘ 𝑃 ) )  mod  𝑃 ) ) | 
						
							| 6 |  | prmnn | ⊢ ( 𝑃  ∈  ℙ  →  𝑃  ∈  ℕ ) | 
						
							| 7 | 6 | 3ad2ant1 | ⊢ ( ( 𝑃  ∈  ℙ  ∧  𝐴  ∈  ℤ  ∧  ¬  𝑃  ∥  𝐴 )  →  𝑃  ∈  ℕ ) | 
						
							| 8 |  | simp2 | ⊢ ( ( 𝑃  ∈  ℙ  ∧  𝐴  ∈  ℤ  ∧  ¬  𝑃  ∥  𝐴 )  →  𝐴  ∈  ℤ ) | 
						
							| 9 |  | prmz | ⊢ ( 𝑃  ∈  ℙ  →  𝑃  ∈  ℤ ) | 
						
							| 10 | 9 | anim1ci | ⊢ ( ( 𝑃  ∈  ℙ  ∧  𝐴  ∈  ℤ )  →  ( 𝐴  ∈  ℤ  ∧  𝑃  ∈  ℤ ) ) | 
						
							| 11 | 10 | 3adant3 | ⊢ ( ( 𝑃  ∈  ℙ  ∧  𝐴  ∈  ℤ  ∧  ¬  𝑃  ∥  𝐴 )  →  ( 𝐴  ∈  ℤ  ∧  𝑃  ∈  ℤ ) ) | 
						
							| 12 |  | gcdcom | ⊢ ( ( 𝐴  ∈  ℤ  ∧  𝑃  ∈  ℤ )  →  ( 𝐴  gcd  𝑃 )  =  ( 𝑃  gcd  𝐴 ) ) | 
						
							| 13 | 11 12 | syl | ⊢ ( ( 𝑃  ∈  ℙ  ∧  𝐴  ∈  ℤ  ∧  ¬  𝑃  ∥  𝐴 )  →  ( 𝐴  gcd  𝑃 )  =  ( 𝑃  gcd  𝐴 ) ) | 
						
							| 14 |  | coprm | ⊢ ( ( 𝑃  ∈  ℙ  ∧  𝐴  ∈  ℤ )  →  ( ¬  𝑃  ∥  𝐴  ↔  ( 𝑃  gcd  𝐴 )  =  1 ) ) | 
						
							| 15 | 14 | biimp3a | ⊢ ( ( 𝑃  ∈  ℙ  ∧  𝐴  ∈  ℤ  ∧  ¬  𝑃  ∥  𝐴 )  →  ( 𝑃  gcd  𝐴 )  =  1 ) | 
						
							| 16 | 13 15 | eqtrd | ⊢ ( ( 𝑃  ∈  ℙ  ∧  𝐴  ∈  ℤ  ∧  ¬  𝑃  ∥  𝐴 )  →  ( 𝐴  gcd  𝑃 )  =  1 ) | 
						
							| 17 |  | eulerth | ⊢ ( ( 𝑃  ∈  ℕ  ∧  𝐴  ∈  ℤ  ∧  ( 𝐴  gcd  𝑃 )  =  1 )  →  ( ( 𝐴 ↑ ( ϕ ‘ 𝑃 ) )  mod  𝑃 )  =  ( 1  mod  𝑃 ) ) | 
						
							| 18 | 7 8 16 17 | syl3anc | ⊢ ( ( 𝑃  ∈  ℙ  ∧  𝐴  ∈  ℤ  ∧  ¬  𝑃  ∥  𝐴 )  →  ( ( 𝐴 ↑ ( ϕ ‘ 𝑃 ) )  mod  𝑃 )  =  ( 1  mod  𝑃 ) ) | 
						
							| 19 | 6 | nnred | ⊢ ( 𝑃  ∈  ℙ  →  𝑃  ∈  ℝ ) | 
						
							| 20 |  | prmgt1 | ⊢ ( 𝑃  ∈  ℙ  →  1  <  𝑃 ) | 
						
							| 21 | 19 20 | jca | ⊢ ( 𝑃  ∈  ℙ  →  ( 𝑃  ∈  ℝ  ∧  1  <  𝑃 ) ) | 
						
							| 22 | 21 | 3ad2ant1 | ⊢ ( ( 𝑃  ∈  ℙ  ∧  𝐴  ∈  ℤ  ∧  ¬  𝑃  ∥  𝐴 )  →  ( 𝑃  ∈  ℝ  ∧  1  <  𝑃 ) ) | 
						
							| 23 |  | 1mod | ⊢ ( ( 𝑃  ∈  ℝ  ∧  1  <  𝑃 )  →  ( 1  mod  𝑃 )  =  1 ) | 
						
							| 24 | 22 23 | syl | ⊢ ( ( 𝑃  ∈  ℙ  ∧  𝐴  ∈  ℤ  ∧  ¬  𝑃  ∥  𝐴 )  →  ( 1  mod  𝑃 )  =  1 ) | 
						
							| 25 | 5 18 24 | 3eqtrd | ⊢ ( ( 𝑃  ∈  ℙ  ∧  𝐴  ∈  ℤ  ∧  ¬  𝑃  ∥  𝐴 )  →  ( ( 𝐴 ↑ ( 𝑃  −  1 ) )  mod  𝑃 )  =  1 ) |