| Step |
Hyp |
Ref |
Expression |
| 1 |
|
phiprm |
⊢ ( 𝑃 ∈ ℙ → ( ϕ ‘ 𝑃 ) = ( 𝑃 − 1 ) ) |
| 2 |
1
|
eqcomd |
⊢ ( 𝑃 ∈ ℙ → ( 𝑃 − 1 ) = ( ϕ ‘ 𝑃 ) ) |
| 3 |
2
|
3ad2ant1 |
⊢ ( ( 𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ ∧ ¬ 𝑃 ∥ 𝐴 ) → ( 𝑃 − 1 ) = ( ϕ ‘ 𝑃 ) ) |
| 4 |
3
|
oveq2d |
⊢ ( ( 𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ ∧ ¬ 𝑃 ∥ 𝐴 ) → ( 𝐴 ↑ ( 𝑃 − 1 ) ) = ( 𝐴 ↑ ( ϕ ‘ 𝑃 ) ) ) |
| 5 |
4
|
oveq1d |
⊢ ( ( 𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ ∧ ¬ 𝑃 ∥ 𝐴 ) → ( ( 𝐴 ↑ ( 𝑃 − 1 ) ) mod 𝑃 ) = ( ( 𝐴 ↑ ( ϕ ‘ 𝑃 ) ) mod 𝑃 ) ) |
| 6 |
|
prmnn |
⊢ ( 𝑃 ∈ ℙ → 𝑃 ∈ ℕ ) |
| 7 |
6
|
3ad2ant1 |
⊢ ( ( 𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ ∧ ¬ 𝑃 ∥ 𝐴 ) → 𝑃 ∈ ℕ ) |
| 8 |
|
simp2 |
⊢ ( ( 𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ ∧ ¬ 𝑃 ∥ 𝐴 ) → 𝐴 ∈ ℤ ) |
| 9 |
|
prmz |
⊢ ( 𝑃 ∈ ℙ → 𝑃 ∈ ℤ ) |
| 10 |
9
|
anim1ci |
⊢ ( ( 𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ ) → ( 𝐴 ∈ ℤ ∧ 𝑃 ∈ ℤ ) ) |
| 11 |
10
|
3adant3 |
⊢ ( ( 𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ ∧ ¬ 𝑃 ∥ 𝐴 ) → ( 𝐴 ∈ ℤ ∧ 𝑃 ∈ ℤ ) ) |
| 12 |
|
gcdcom |
⊢ ( ( 𝐴 ∈ ℤ ∧ 𝑃 ∈ ℤ ) → ( 𝐴 gcd 𝑃 ) = ( 𝑃 gcd 𝐴 ) ) |
| 13 |
11 12
|
syl |
⊢ ( ( 𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ ∧ ¬ 𝑃 ∥ 𝐴 ) → ( 𝐴 gcd 𝑃 ) = ( 𝑃 gcd 𝐴 ) ) |
| 14 |
|
coprm |
⊢ ( ( 𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ ) → ( ¬ 𝑃 ∥ 𝐴 ↔ ( 𝑃 gcd 𝐴 ) = 1 ) ) |
| 15 |
14
|
biimp3a |
⊢ ( ( 𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ ∧ ¬ 𝑃 ∥ 𝐴 ) → ( 𝑃 gcd 𝐴 ) = 1 ) |
| 16 |
13 15
|
eqtrd |
⊢ ( ( 𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ ∧ ¬ 𝑃 ∥ 𝐴 ) → ( 𝐴 gcd 𝑃 ) = 1 ) |
| 17 |
|
eulerth |
⊢ ( ( 𝑃 ∈ ℕ ∧ 𝐴 ∈ ℤ ∧ ( 𝐴 gcd 𝑃 ) = 1 ) → ( ( 𝐴 ↑ ( ϕ ‘ 𝑃 ) ) mod 𝑃 ) = ( 1 mod 𝑃 ) ) |
| 18 |
7 8 16 17
|
syl3anc |
⊢ ( ( 𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ ∧ ¬ 𝑃 ∥ 𝐴 ) → ( ( 𝐴 ↑ ( ϕ ‘ 𝑃 ) ) mod 𝑃 ) = ( 1 mod 𝑃 ) ) |
| 19 |
6
|
nnred |
⊢ ( 𝑃 ∈ ℙ → 𝑃 ∈ ℝ ) |
| 20 |
|
prmgt1 |
⊢ ( 𝑃 ∈ ℙ → 1 < 𝑃 ) |
| 21 |
19 20
|
jca |
⊢ ( 𝑃 ∈ ℙ → ( 𝑃 ∈ ℝ ∧ 1 < 𝑃 ) ) |
| 22 |
21
|
3ad2ant1 |
⊢ ( ( 𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ ∧ ¬ 𝑃 ∥ 𝐴 ) → ( 𝑃 ∈ ℝ ∧ 1 < 𝑃 ) ) |
| 23 |
|
1mod |
⊢ ( ( 𝑃 ∈ ℝ ∧ 1 < 𝑃 ) → ( 1 mod 𝑃 ) = 1 ) |
| 24 |
22 23
|
syl |
⊢ ( ( 𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ ∧ ¬ 𝑃 ∥ 𝐴 ) → ( 1 mod 𝑃 ) = 1 ) |
| 25 |
5 18 24
|
3eqtrd |
⊢ ( ( 𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ ∧ ¬ 𝑃 ∥ 𝐴 ) → ( ( 𝐴 ↑ ( 𝑃 − 1 ) ) mod 𝑃 ) = 1 ) |