| Step | Hyp | Ref | Expression | 
						
							| 1 |  | 2m1e1 |  |-  ( 2 - 1 ) = 1 | 
						
							| 2 | 1 | a1i |  |-  ( P e. Prime -> ( 2 - 1 ) = 1 ) | 
						
							| 3 | 2 | eqcomd |  |-  ( P e. Prime -> 1 = ( 2 - 1 ) ) | 
						
							| 4 | 3 | oveq2d |  |-  ( P e. Prime -> ( P - 1 ) = ( P - ( 2 - 1 ) ) ) | 
						
							| 5 |  | prmz |  |-  ( P e. Prime -> P e. ZZ ) | 
						
							| 6 | 5 | zcnd |  |-  ( P e. Prime -> P e. CC ) | 
						
							| 7 |  | 2cnd |  |-  ( P e. Prime -> 2 e. CC ) | 
						
							| 8 |  | 1cnd |  |-  ( P e. Prime -> 1 e. CC ) | 
						
							| 9 | 6 7 8 | subsubd |  |-  ( P e. Prime -> ( P - ( 2 - 1 ) ) = ( ( P - 2 ) + 1 ) ) | 
						
							| 10 | 4 9 | eqtrd |  |-  ( P e. Prime -> ( P - 1 ) = ( ( P - 2 ) + 1 ) ) | 
						
							| 11 | 10 | 3ad2ant1 |  |-  ( ( P e. Prime /\ A e. ZZ /\ -. P || A ) -> ( P - 1 ) = ( ( P - 2 ) + 1 ) ) | 
						
							| 12 | 11 | oveq2d |  |-  ( ( P e. Prime /\ A e. ZZ /\ -. P || A ) -> ( A ^ ( P - 1 ) ) = ( A ^ ( ( P - 2 ) + 1 ) ) ) | 
						
							| 13 |  | zcn |  |-  ( A e. ZZ -> A e. CC ) | 
						
							| 14 | 13 | 3ad2ant2 |  |-  ( ( P e. Prime /\ A e. ZZ /\ -. P || A ) -> A e. CC ) | 
						
							| 15 |  | prmm2nn0 |  |-  ( P e. Prime -> ( P - 2 ) e. NN0 ) | 
						
							| 16 | 15 | 3ad2ant1 |  |-  ( ( P e. Prime /\ A e. ZZ /\ -. P || A ) -> ( P - 2 ) e. NN0 ) | 
						
							| 17 | 14 16 | expp1d |  |-  ( ( P e. Prime /\ A e. ZZ /\ -. P || A ) -> ( A ^ ( ( P - 2 ) + 1 ) ) = ( ( A ^ ( P - 2 ) ) x. A ) ) | 
						
							| 18 | 12 17 | eqtrd |  |-  ( ( P e. Prime /\ A e. ZZ /\ -. P || A ) -> ( A ^ ( P - 1 ) ) = ( ( A ^ ( P - 2 ) ) x. A ) ) | 
						
							| 19 | 18 | oveq1d |  |-  ( ( P e. Prime /\ A e. ZZ /\ -. P || A ) -> ( ( A ^ ( P - 1 ) ) mod P ) = ( ( ( A ^ ( P - 2 ) ) x. A ) mod P ) ) | 
						
							| 20 | 15 | anim1i |  |-  ( ( P e. Prime /\ A e. ZZ ) -> ( ( P - 2 ) e. NN0 /\ A e. ZZ ) ) | 
						
							| 21 | 20 | ancomd |  |-  ( ( P e. Prime /\ A e. ZZ ) -> ( A e. ZZ /\ ( P - 2 ) e. NN0 ) ) | 
						
							| 22 |  | zexpcl |  |-  ( ( A e. ZZ /\ ( P - 2 ) e. NN0 ) -> ( A ^ ( P - 2 ) ) e. ZZ ) | 
						
							| 23 | 21 22 | syl |  |-  ( ( P e. Prime /\ A e. ZZ ) -> ( A ^ ( P - 2 ) ) e. ZZ ) | 
						
							| 24 | 23 | zred |  |-  ( ( P e. Prime /\ A e. ZZ ) -> ( A ^ ( P - 2 ) ) e. RR ) | 
						
							| 25 | 24 | 3adant3 |  |-  ( ( P e. Prime /\ A e. ZZ /\ -. P || A ) -> ( A ^ ( P - 2 ) ) e. RR ) | 
						
							| 26 |  | simp2 |  |-  ( ( P e. Prime /\ A e. ZZ /\ -. P || A ) -> A e. ZZ ) | 
						
							| 27 |  | prmnn |  |-  ( P e. Prime -> P e. NN ) | 
						
							| 28 | 27 | nnrpd |  |-  ( P e. Prime -> P e. RR+ ) | 
						
							| 29 | 28 | 3ad2ant1 |  |-  ( ( P e. Prime /\ A e. ZZ /\ -. P || A ) -> P e. RR+ ) | 
						
							| 30 |  | modmulmod |  |-  ( ( ( A ^ ( P - 2 ) ) e. RR /\ A e. ZZ /\ P e. RR+ ) -> ( ( ( ( A ^ ( P - 2 ) ) mod P ) x. A ) mod P ) = ( ( ( A ^ ( P - 2 ) ) x. A ) mod P ) ) | 
						
							| 31 | 25 26 29 30 | syl3anc |  |-  ( ( P e. Prime /\ A e. ZZ /\ -. P || A ) -> ( ( ( ( A ^ ( P - 2 ) ) mod P ) x. A ) mod P ) = ( ( ( A ^ ( P - 2 ) ) x. A ) mod P ) ) | 
						
							| 32 |  | zre |  |-  ( A e. ZZ -> A e. RR ) | 
						
							| 33 | 32 | adantl |  |-  ( ( P e. Prime /\ A e. ZZ ) -> A e. RR ) | 
						
							| 34 | 15 | adantr |  |-  ( ( P e. Prime /\ A e. ZZ ) -> ( P - 2 ) e. NN0 ) | 
						
							| 35 | 33 34 | reexpcld |  |-  ( ( P e. Prime /\ A e. ZZ ) -> ( A ^ ( P - 2 ) ) e. RR ) | 
						
							| 36 | 28 | adantr |  |-  ( ( P e. Prime /\ A e. ZZ ) -> P e. RR+ ) | 
						
							| 37 | 35 36 | modcld |  |-  ( ( P e. Prime /\ A e. ZZ ) -> ( ( A ^ ( P - 2 ) ) mod P ) e. RR ) | 
						
							| 38 | 37 | recnd |  |-  ( ( P e. Prime /\ A e. ZZ ) -> ( ( A ^ ( P - 2 ) ) mod P ) e. CC ) | 
						
							| 39 | 13 | adantl |  |-  ( ( P e. Prime /\ A e. ZZ ) -> A e. CC ) | 
						
							| 40 | 38 39 | mulcomd |  |-  ( ( P e. Prime /\ A e. ZZ ) -> ( ( ( A ^ ( P - 2 ) ) mod P ) x. A ) = ( A x. ( ( A ^ ( P - 2 ) ) mod P ) ) ) | 
						
							| 41 | 40 | 3adant3 |  |-  ( ( P e. Prime /\ A e. ZZ /\ -. P || A ) -> ( ( ( A ^ ( P - 2 ) ) mod P ) x. A ) = ( A x. ( ( A ^ ( P - 2 ) ) mod P ) ) ) | 
						
							| 42 | 41 | oveq1d |  |-  ( ( P e. Prime /\ A e. ZZ /\ -. P || A ) -> ( ( ( ( A ^ ( P - 2 ) ) mod P ) x. A ) mod P ) = ( ( A x. ( ( A ^ ( P - 2 ) ) mod P ) ) mod P ) ) | 
						
							| 43 | 19 31 42 | 3eqtr2d |  |-  ( ( P e. Prime /\ A e. ZZ /\ -. P || A ) -> ( ( A ^ ( P - 1 ) ) mod P ) = ( ( A x. ( ( A ^ ( P - 2 ) ) mod P ) ) mod P ) ) | 
						
							| 44 |  | eqid |  |-  ( ( A ^ ( P - 2 ) ) mod P ) = ( ( A ^ ( P - 2 ) ) mod P ) | 
						
							| 45 | 44 | modprminv |  |-  ( ( P e. Prime /\ A e. ZZ /\ -. P || A ) -> ( ( ( A ^ ( P - 2 ) ) mod P ) e. ( 1 ... ( P - 1 ) ) /\ ( ( A x. ( ( A ^ ( P - 2 ) ) mod P ) ) mod P ) = 1 ) ) | 
						
							| 46 | 45 | simprd |  |-  ( ( P e. Prime /\ A e. ZZ /\ -. P || A ) -> ( ( A x. ( ( A ^ ( P - 2 ) ) mod P ) ) mod P ) = 1 ) | 
						
							| 47 | 43 46 | eqtrd |  |-  ( ( P e. Prime /\ A e. ZZ /\ -. P || A ) -> ( ( A ^ ( P - 1 ) ) mod P ) = 1 ) |