| Step | Hyp | Ref | Expression | 
						
							| 1 |  | simpll |  |-  ( ( ( P e. Prime /\ A e. ZZ ) /\ P || ( A - 1 ) ) -> P e. Prime ) | 
						
							| 2 |  | simpr |  |-  ( ( P e. Prime /\ A e. ZZ ) -> A e. ZZ ) | 
						
							| 3 | 2 | adantr |  |-  ( ( ( P e. Prime /\ A e. ZZ ) /\ P || ( A - 1 ) ) -> A e. ZZ ) | 
						
							| 4 |  | m1dvdsndvds |  |-  ( ( P e. Prime /\ A e. ZZ ) -> ( P || ( A - 1 ) -> -. P || A ) ) | 
						
							| 5 | 4 | imp |  |-  ( ( ( P e. Prime /\ A e. ZZ ) /\ P || ( A - 1 ) ) -> -. P || A ) | 
						
							| 6 |  | eqid |  |-  ( ( A ^ ( P - 2 ) ) mod P ) = ( ( A ^ ( P - 2 ) ) mod P ) | 
						
							| 7 | 6 | modprminv |  |-  ( ( P e. Prime /\ A e. ZZ /\ -. P || A ) -> ( ( ( A ^ ( P - 2 ) ) mod P ) e. ( 1 ... ( P - 1 ) ) /\ ( ( A x. ( ( A ^ ( P - 2 ) ) mod P ) ) mod P ) = 1 ) ) | 
						
							| 8 |  | simpr |  |-  ( ( ( ( A ^ ( P - 2 ) ) mod P ) e. ( 1 ... ( P - 1 ) ) /\ ( ( A x. ( ( A ^ ( P - 2 ) ) mod P ) ) mod P ) = 1 ) -> ( ( A x. ( ( A ^ ( P - 2 ) ) mod P ) ) mod P ) = 1 ) | 
						
							| 9 | 8 | eqcomd |  |-  ( ( ( ( A ^ ( P - 2 ) ) mod P ) e. ( 1 ... ( P - 1 ) ) /\ ( ( A x. ( ( A ^ ( P - 2 ) ) mod P ) ) mod P ) = 1 ) -> 1 = ( ( A x. ( ( A ^ ( P - 2 ) ) mod P ) ) mod P ) ) | 
						
							| 10 | 7 9 | syl |  |-  ( ( P e. Prime /\ A e. ZZ /\ -. P || A ) -> 1 = ( ( A x. ( ( A ^ ( P - 2 ) ) mod P ) ) mod P ) ) | 
						
							| 11 | 1 3 5 10 | syl3anc |  |-  ( ( ( P e. Prime /\ A e. ZZ ) /\ P || ( A - 1 ) ) -> 1 = ( ( A x. ( ( A ^ ( P - 2 ) ) mod P ) ) mod P ) ) | 
						
							| 12 |  | modprm1div |  |-  ( ( P e. Prime /\ A e. ZZ ) -> ( ( A mod P ) = 1 <-> P || ( A - 1 ) ) ) | 
						
							| 13 | 12 | biimpar |  |-  ( ( ( P e. Prime /\ A e. ZZ ) /\ P || ( A - 1 ) ) -> ( A mod P ) = 1 ) | 
						
							| 14 | 13 | oveq1d |  |-  ( ( ( P e. Prime /\ A e. ZZ ) /\ P || ( A - 1 ) ) -> ( ( A mod P ) x. ( ( A ^ ( P - 2 ) ) mod P ) ) = ( 1 x. ( ( A ^ ( P - 2 ) ) mod P ) ) ) | 
						
							| 15 | 14 | oveq1d |  |-  ( ( ( P e. Prime /\ A e. ZZ ) /\ P || ( A - 1 ) ) -> ( ( ( A mod P ) x. ( ( A ^ ( P - 2 ) ) mod P ) ) mod P ) = ( ( 1 x. ( ( A ^ ( P - 2 ) ) mod P ) ) mod P ) ) | 
						
							| 16 |  | zre |  |-  ( A e. ZZ -> A e. RR ) | 
						
							| 17 | 16 | ad2antlr |  |-  ( ( ( P e. Prime /\ A e. ZZ ) /\ P || ( A - 1 ) ) -> A e. RR ) | 
						
							| 18 |  | prmm2nn0 |  |-  ( P e. Prime -> ( P - 2 ) e. NN0 ) | 
						
							| 19 | 18 | anim1ci |  |-  ( ( P e. Prime /\ A e. ZZ ) -> ( A e. ZZ /\ ( P - 2 ) e. NN0 ) ) | 
						
							| 20 | 19 | adantr |  |-  ( ( ( P e. Prime /\ A e. ZZ ) /\ P || ( A - 1 ) ) -> ( A e. ZZ /\ ( P - 2 ) e. NN0 ) ) | 
						
							| 21 |  | zexpcl |  |-  ( ( A e. ZZ /\ ( P - 2 ) e. NN0 ) -> ( A ^ ( P - 2 ) ) e. ZZ ) | 
						
							| 22 | 20 21 | syl |  |-  ( ( ( P e. Prime /\ A e. ZZ ) /\ P || ( A - 1 ) ) -> ( A ^ ( P - 2 ) ) e. ZZ ) | 
						
							| 23 |  | prmnn |  |-  ( P e. Prime -> P e. NN ) | 
						
							| 24 | 23 | adantr |  |-  ( ( P e. Prime /\ A e. ZZ ) -> P e. NN ) | 
						
							| 25 | 24 | adantr |  |-  ( ( ( P e. Prime /\ A e. ZZ ) /\ P || ( A - 1 ) ) -> P e. NN ) | 
						
							| 26 | 22 25 | zmodcld |  |-  ( ( ( P e. Prime /\ A e. ZZ ) /\ P || ( A - 1 ) ) -> ( ( A ^ ( P - 2 ) ) mod P ) e. NN0 ) | 
						
							| 27 | 26 | nn0zd |  |-  ( ( ( P e. Prime /\ A e. ZZ ) /\ P || ( A - 1 ) ) -> ( ( A ^ ( P - 2 ) ) mod P ) e. ZZ ) | 
						
							| 28 | 23 | nnrpd |  |-  ( P e. Prime -> P e. RR+ ) | 
						
							| 29 | 28 | adantr |  |-  ( ( P e. Prime /\ A e. ZZ ) -> P e. RR+ ) | 
						
							| 30 | 29 | adantr |  |-  ( ( ( P e. Prime /\ A e. ZZ ) /\ P || ( A - 1 ) ) -> P e. RR+ ) | 
						
							| 31 |  | modmulmod |  |-  ( ( A e. RR /\ ( ( A ^ ( P - 2 ) ) mod P ) e. ZZ /\ P e. RR+ ) -> ( ( ( A mod P ) x. ( ( A ^ ( P - 2 ) ) mod P ) ) mod P ) = ( ( A x. ( ( A ^ ( P - 2 ) ) mod P ) ) mod P ) ) | 
						
							| 32 | 17 27 30 31 | syl3anc |  |-  ( ( ( P e. Prime /\ A e. ZZ ) /\ P || ( A - 1 ) ) -> ( ( ( A mod P ) x. ( ( A ^ ( P - 2 ) ) mod P ) ) mod P ) = ( ( A x. ( ( A ^ ( P - 2 ) ) mod P ) ) mod P ) ) | 
						
							| 33 | 19 21 | syl |  |-  ( ( P e. Prime /\ A e. ZZ ) -> ( A ^ ( P - 2 ) ) e. ZZ ) | 
						
							| 34 | 33 24 | zmodcld |  |-  ( ( P e. Prime /\ A e. ZZ ) -> ( ( A ^ ( P - 2 ) ) mod P ) e. NN0 ) | 
						
							| 35 | 34 | nn0cnd |  |-  ( ( P e. Prime /\ A e. ZZ ) -> ( ( A ^ ( P - 2 ) ) mod P ) e. CC ) | 
						
							| 36 | 35 | mullidd |  |-  ( ( P e. Prime /\ A e. ZZ ) -> ( 1 x. ( ( A ^ ( P - 2 ) ) mod P ) ) = ( ( A ^ ( P - 2 ) ) mod P ) ) | 
						
							| 37 | 36 | oveq1d |  |-  ( ( P e. Prime /\ A e. ZZ ) -> ( ( 1 x. ( ( A ^ ( P - 2 ) ) mod P ) ) mod P ) = ( ( ( A ^ ( P - 2 ) ) mod P ) mod P ) ) | 
						
							| 38 | 37 | adantr |  |-  ( ( ( P e. Prime /\ A e. ZZ ) /\ P || ( A - 1 ) ) -> ( ( 1 x. ( ( A ^ ( P - 2 ) ) mod P ) ) mod P ) = ( ( ( A ^ ( P - 2 ) ) mod P ) mod P ) ) | 
						
							| 39 |  | reexpcl |  |-  ( ( A e. RR /\ ( P - 2 ) e. NN0 ) -> ( A ^ ( P - 2 ) ) e. RR ) | 
						
							| 40 | 16 18 39 | syl2anr |  |-  ( ( P e. Prime /\ A e. ZZ ) -> ( A ^ ( P - 2 ) ) e. RR ) | 
						
							| 41 | 40 29 | jca |  |-  ( ( P e. Prime /\ A e. ZZ ) -> ( ( A ^ ( P - 2 ) ) e. RR /\ P e. RR+ ) ) | 
						
							| 42 | 41 | adantr |  |-  ( ( ( P e. Prime /\ A e. ZZ ) /\ P || ( A - 1 ) ) -> ( ( A ^ ( P - 2 ) ) e. RR /\ P e. RR+ ) ) | 
						
							| 43 |  | modabs2 |  |-  ( ( ( A ^ ( P - 2 ) ) e. RR /\ P e. RR+ ) -> ( ( ( A ^ ( P - 2 ) ) mod P ) mod P ) = ( ( A ^ ( P - 2 ) ) mod P ) ) | 
						
							| 44 | 42 43 | syl |  |-  ( ( ( P e. Prime /\ A e. ZZ ) /\ P || ( A - 1 ) ) -> ( ( ( A ^ ( P - 2 ) ) mod P ) mod P ) = ( ( A ^ ( P - 2 ) ) mod P ) ) | 
						
							| 45 | 38 44 | eqtrd |  |-  ( ( ( P e. Prime /\ A e. ZZ ) /\ P || ( A - 1 ) ) -> ( ( 1 x. ( ( A ^ ( P - 2 ) ) mod P ) ) mod P ) = ( ( A ^ ( P - 2 ) ) mod P ) ) | 
						
							| 46 | 15 32 45 | 3eqtr3d |  |-  ( ( ( P e. Prime /\ A e. ZZ ) /\ P || ( A - 1 ) ) -> ( ( A x. ( ( A ^ ( P - 2 ) ) mod P ) ) mod P ) = ( ( A ^ ( P - 2 ) ) mod P ) ) | 
						
							| 47 | 11 46 | eqtr2d |  |-  ( ( ( P e. Prime /\ A e. ZZ ) /\ P || ( A - 1 ) ) -> ( ( A ^ ( P - 2 ) ) mod P ) = 1 ) | 
						
							| 48 | 47 | ex |  |-  ( ( P e. Prime /\ A e. ZZ ) -> ( P || ( A - 1 ) -> ( ( A ^ ( P - 2 ) ) mod P ) = 1 ) ) |