| Step | Hyp | Ref | Expression | 
						
							| 1 |  | simpl |  |-  ( ( P e. Prime /\ N e. ( 1 ..^ P ) ) -> P e. Prime ) | 
						
							| 2 |  | elfzoelz |  |-  ( N e. ( 1 ..^ P ) -> N e. ZZ ) | 
						
							| 3 | 2 | adantl |  |-  ( ( P e. Prime /\ N e. ( 1 ..^ P ) ) -> N e. ZZ ) | 
						
							| 4 |  | prmnn |  |-  ( P e. Prime -> P e. NN ) | 
						
							| 5 |  | prmz |  |-  ( P e. Prime -> P e. ZZ ) | 
						
							| 6 |  | fzoval |  |-  ( P e. ZZ -> ( 1 ..^ P ) = ( 1 ... ( P - 1 ) ) ) | 
						
							| 7 | 5 6 | syl |  |-  ( P e. Prime -> ( 1 ..^ P ) = ( 1 ... ( P - 1 ) ) ) | 
						
							| 8 | 7 | eleq2d |  |-  ( P e. Prime -> ( N e. ( 1 ..^ P ) <-> N e. ( 1 ... ( P - 1 ) ) ) ) | 
						
							| 9 | 8 | biimpa |  |-  ( ( P e. Prime /\ N e. ( 1 ..^ P ) ) -> N e. ( 1 ... ( P - 1 ) ) ) | 
						
							| 10 |  | fzm1ndvds |  |-  ( ( P e. NN /\ N e. ( 1 ... ( P - 1 ) ) ) -> -. P || N ) | 
						
							| 11 | 4 9 10 | syl2an2r |  |-  ( ( P e. Prime /\ N e. ( 1 ..^ P ) ) -> -. P || N ) | 
						
							| 12 |  | eqid |  |-  ( ( N ^ ( P - 2 ) ) mod P ) = ( ( N ^ ( P - 2 ) ) mod P ) | 
						
							| 13 | 12 | modprminv |  |-  ( ( P e. Prime /\ N e. ZZ /\ -. P || N ) -> ( ( ( N ^ ( P - 2 ) ) mod P ) e. ( 1 ... ( P - 1 ) ) /\ ( ( N x. ( ( N ^ ( P - 2 ) ) mod P ) ) mod P ) = 1 ) ) | 
						
							| 14 | 13 | simpld |  |-  ( ( P e. Prime /\ N e. ZZ /\ -. P || N ) -> ( ( N ^ ( P - 2 ) ) mod P ) e. ( 1 ... ( P - 1 ) ) ) | 
						
							| 15 | 13 | simprd |  |-  ( ( P e. Prime /\ N e. ZZ /\ -. P || N ) -> ( ( N x. ( ( N ^ ( P - 2 ) ) mod P ) ) mod P ) = 1 ) | 
						
							| 16 |  | 1eluzge0 |  |-  1 e. ( ZZ>= ` 0 ) | 
						
							| 17 |  | fzss1 |  |-  ( 1 e. ( ZZ>= ` 0 ) -> ( 1 ... ( P - 1 ) ) C_ ( 0 ... ( P - 1 ) ) ) | 
						
							| 18 | 16 17 | mp1i |  |-  ( P e. Prime -> ( 1 ... ( P - 1 ) ) C_ ( 0 ... ( P - 1 ) ) ) | 
						
							| 19 | 18 | sseld |  |-  ( P e. Prime -> ( s e. ( 1 ... ( P - 1 ) ) -> s e. ( 0 ... ( P - 1 ) ) ) ) | 
						
							| 20 | 19 | 3ad2ant1 |  |-  ( ( P e. Prime /\ N e. ZZ /\ -. P || N ) -> ( s e. ( 1 ... ( P - 1 ) ) -> s e. ( 0 ... ( P - 1 ) ) ) ) | 
						
							| 21 | 20 | imdistani |  |-  ( ( ( P e. Prime /\ N e. ZZ /\ -. P || N ) /\ s e. ( 1 ... ( P - 1 ) ) ) -> ( ( P e. Prime /\ N e. ZZ /\ -. P || N ) /\ s e. ( 0 ... ( P - 1 ) ) ) ) | 
						
							| 22 | 12 | modprminveq |  |-  ( ( P e. Prime /\ N e. ZZ /\ -. P || N ) -> ( ( s e. ( 0 ... ( P - 1 ) ) /\ ( ( N x. s ) mod P ) = 1 ) <-> s = ( ( N ^ ( P - 2 ) ) mod P ) ) ) | 
						
							| 23 | 22 | biimpa |  |-  ( ( ( P e. Prime /\ N e. ZZ /\ -. P || N ) /\ ( s e. ( 0 ... ( P - 1 ) ) /\ ( ( N x. s ) mod P ) = 1 ) ) -> s = ( ( N ^ ( P - 2 ) ) mod P ) ) | 
						
							| 24 | 23 | eqcomd |  |-  ( ( ( P e. Prime /\ N e. ZZ /\ -. P || N ) /\ ( s e. ( 0 ... ( P - 1 ) ) /\ ( ( N x. s ) mod P ) = 1 ) ) -> ( ( N ^ ( P - 2 ) ) mod P ) = s ) | 
						
							| 25 | 24 | expr |  |-  ( ( ( P e. Prime /\ N e. ZZ /\ -. P || N ) /\ s e. ( 0 ... ( P - 1 ) ) ) -> ( ( ( N x. s ) mod P ) = 1 -> ( ( N ^ ( P - 2 ) ) mod P ) = s ) ) | 
						
							| 26 | 21 25 | syl |  |-  ( ( ( P e. Prime /\ N e. ZZ /\ -. P || N ) /\ s e. ( 1 ... ( P - 1 ) ) ) -> ( ( ( N x. s ) mod P ) = 1 -> ( ( N ^ ( P - 2 ) ) mod P ) = s ) ) | 
						
							| 27 | 26 | ralrimiva |  |-  ( ( P e. Prime /\ N e. ZZ /\ -. P || N ) -> A. s e. ( 1 ... ( P - 1 ) ) ( ( ( N x. s ) mod P ) = 1 -> ( ( N ^ ( P - 2 ) ) mod P ) = s ) ) | 
						
							| 28 | 14 15 27 | jca32 |  |-  ( ( P e. Prime /\ N e. ZZ /\ -. P || N ) -> ( ( ( N ^ ( P - 2 ) ) mod P ) e. ( 1 ... ( P - 1 ) ) /\ ( ( ( N x. ( ( N ^ ( P - 2 ) ) mod P ) ) mod P ) = 1 /\ A. s e. ( 1 ... ( P - 1 ) ) ( ( ( N x. s ) mod P ) = 1 -> ( ( N ^ ( P - 2 ) ) mod P ) = s ) ) ) ) | 
						
							| 29 | 1 3 11 28 | syl3anc |  |-  ( ( P e. Prime /\ N e. ( 1 ..^ P ) ) -> ( ( ( N ^ ( P - 2 ) ) mod P ) e. ( 1 ... ( P - 1 ) ) /\ ( ( ( N x. ( ( N ^ ( P - 2 ) ) mod P ) ) mod P ) = 1 /\ A. s e. ( 1 ... ( P - 1 ) ) ( ( ( N x. s ) mod P ) = 1 -> ( ( N ^ ( P - 2 ) ) mod P ) = s ) ) ) ) | 
						
							| 30 |  | oveq2 |  |-  ( i = ( ( N ^ ( P - 2 ) ) mod P ) -> ( N x. i ) = ( N x. ( ( N ^ ( P - 2 ) ) mod P ) ) ) | 
						
							| 31 | 30 | oveq1d |  |-  ( i = ( ( N ^ ( P - 2 ) ) mod P ) -> ( ( N x. i ) mod P ) = ( ( N x. ( ( N ^ ( P - 2 ) ) mod P ) ) mod P ) ) | 
						
							| 32 | 31 | eqeq1d |  |-  ( i = ( ( N ^ ( P - 2 ) ) mod P ) -> ( ( ( N x. i ) mod P ) = 1 <-> ( ( N x. ( ( N ^ ( P - 2 ) ) mod P ) ) mod P ) = 1 ) ) | 
						
							| 33 |  | eqeq1 |  |-  ( i = ( ( N ^ ( P - 2 ) ) mod P ) -> ( i = s <-> ( ( N ^ ( P - 2 ) ) mod P ) = s ) ) | 
						
							| 34 | 33 | imbi2d |  |-  ( i = ( ( N ^ ( P - 2 ) ) mod P ) -> ( ( ( ( N x. s ) mod P ) = 1 -> i = s ) <-> ( ( ( N x. s ) mod P ) = 1 -> ( ( N ^ ( P - 2 ) ) mod P ) = s ) ) ) | 
						
							| 35 | 34 | ralbidv |  |-  ( i = ( ( N ^ ( P - 2 ) ) mod P ) -> ( A. s e. ( 1 ... ( P - 1 ) ) ( ( ( N x. s ) mod P ) = 1 -> i = s ) <-> A. s e. ( 1 ... ( P - 1 ) ) ( ( ( N x. s ) mod P ) = 1 -> ( ( N ^ ( P - 2 ) ) mod P ) = s ) ) ) | 
						
							| 36 | 32 35 | anbi12d |  |-  ( i = ( ( N ^ ( P - 2 ) ) mod P ) -> ( ( ( ( N x. i ) mod P ) = 1 /\ A. s e. ( 1 ... ( P - 1 ) ) ( ( ( N x. s ) mod P ) = 1 -> i = s ) ) <-> ( ( ( N x. ( ( N ^ ( P - 2 ) ) mod P ) ) mod P ) = 1 /\ A. s e. ( 1 ... ( P - 1 ) ) ( ( ( N x. s ) mod P ) = 1 -> ( ( N ^ ( P - 2 ) ) mod P ) = s ) ) ) ) | 
						
							| 37 | 36 | rspcev |  |-  ( ( ( ( N ^ ( P - 2 ) ) mod P ) e. ( 1 ... ( P - 1 ) ) /\ ( ( ( N x. ( ( N ^ ( P - 2 ) ) mod P ) ) mod P ) = 1 /\ A. s e. ( 1 ... ( P - 1 ) ) ( ( ( N x. s ) mod P ) = 1 -> ( ( N ^ ( P - 2 ) ) mod P ) = s ) ) ) -> E. i e. ( 1 ... ( P - 1 ) ) ( ( ( N x. i ) mod P ) = 1 /\ A. s e. ( 1 ... ( P - 1 ) ) ( ( ( N x. s ) mod P ) = 1 -> i = s ) ) ) | 
						
							| 38 | 29 37 | syl |  |-  ( ( P e. Prime /\ N e. ( 1 ..^ P ) ) -> E. i e. ( 1 ... ( P - 1 ) ) ( ( ( N x. i ) mod P ) = 1 /\ A. s e. ( 1 ... ( P - 1 ) ) ( ( ( N x. s ) mod P ) = 1 -> i = s ) ) ) | 
						
							| 39 |  | oveq2 |  |-  ( i = s -> ( N x. i ) = ( N x. s ) ) | 
						
							| 40 | 39 | oveq1d |  |-  ( i = s -> ( ( N x. i ) mod P ) = ( ( N x. s ) mod P ) ) | 
						
							| 41 | 40 | eqeq1d |  |-  ( i = s -> ( ( ( N x. i ) mod P ) = 1 <-> ( ( N x. s ) mod P ) = 1 ) ) | 
						
							| 42 | 41 | reu8 |  |-  ( E! i e. ( 1 ... ( P - 1 ) ) ( ( N x. i ) mod P ) = 1 <-> E. i e. ( 1 ... ( P - 1 ) ) ( ( ( N x. i ) mod P ) = 1 /\ A. s e. ( 1 ... ( P - 1 ) ) ( ( ( N x. s ) mod P ) = 1 -> i = s ) ) ) | 
						
							| 43 | 38 42 | sylibr |  |-  ( ( P e. Prime /\ N e. ( 1 ..^ P ) ) -> E! i e. ( 1 ... ( P - 1 ) ) ( ( N x. i ) mod P ) = 1 ) |