| Step | Hyp | Ref | Expression | 
						
							| 1 |  | reumodprminv |  |-  ( ( P e. Prime /\ N e. ( 1 ..^ P ) ) -> E! r e. ( 1 ... ( P - 1 ) ) ( ( N x. r ) mod P ) = 1 ) | 
						
							| 2 |  | reurex |  |-  ( E! r e. ( 1 ... ( P - 1 ) ) ( ( N x. r ) mod P ) = 1 -> E. r e. ( 1 ... ( P - 1 ) ) ( ( N x. r ) mod P ) = 1 ) | 
						
							| 3 |  | prmz |  |-  ( P e. Prime -> P e. ZZ ) | 
						
							| 4 | 3 | 3ad2ant1 |  |-  ( ( P e. Prime /\ N e. ( 1 ..^ P ) /\ I e. ( 1 ..^ P ) ) -> P e. ZZ ) | 
						
							| 5 | 4 | adantl |  |-  ( ( ( r e. ( 1 ... ( P - 1 ) ) /\ ( ( N x. r ) mod P ) = 1 ) /\ ( P e. Prime /\ N e. ( 1 ..^ P ) /\ I e. ( 1 ..^ P ) ) ) -> P e. ZZ ) | 
						
							| 6 |  | elfzelz |  |-  ( r e. ( 1 ... ( P - 1 ) ) -> r e. ZZ ) | 
						
							| 7 | 6 | adantr |  |-  ( ( r e. ( 1 ... ( P - 1 ) ) /\ ( ( N x. r ) mod P ) = 1 ) -> r e. ZZ ) | 
						
							| 8 |  | elfzoelz |  |-  ( I e. ( 1 ..^ P ) -> I e. ZZ ) | 
						
							| 9 | 8 | 3ad2ant3 |  |-  ( ( P e. Prime /\ N e. ( 1 ..^ P ) /\ I e. ( 1 ..^ P ) ) -> I e. ZZ ) | 
						
							| 10 |  | zmulcl |  |-  ( ( r e. ZZ /\ I e. ZZ ) -> ( r x. I ) e. ZZ ) | 
						
							| 11 | 7 9 10 | syl2an |  |-  ( ( ( r e. ( 1 ... ( P - 1 ) ) /\ ( ( N x. r ) mod P ) = 1 ) /\ ( P e. Prime /\ N e. ( 1 ..^ P ) /\ I e. ( 1 ..^ P ) ) ) -> ( r x. I ) e. ZZ ) | 
						
							| 12 | 5 11 | zsubcld |  |-  ( ( ( r e. ( 1 ... ( P - 1 ) ) /\ ( ( N x. r ) mod P ) = 1 ) /\ ( P e. Prime /\ N e. ( 1 ..^ P ) /\ I e. ( 1 ..^ P ) ) ) -> ( P - ( r x. I ) ) e. ZZ ) | 
						
							| 13 |  | prmnn |  |-  ( P e. Prime -> P e. NN ) | 
						
							| 14 | 13 | 3ad2ant1 |  |-  ( ( P e. Prime /\ N e. ( 1 ..^ P ) /\ I e. ( 1 ..^ P ) ) -> P e. NN ) | 
						
							| 15 | 14 | adantl |  |-  ( ( ( r e. ( 1 ... ( P - 1 ) ) /\ ( ( N x. r ) mod P ) = 1 ) /\ ( P e. Prime /\ N e. ( 1 ..^ P ) /\ I e. ( 1 ..^ P ) ) ) -> P e. NN ) | 
						
							| 16 |  | zmodfzo |  |-  ( ( ( P - ( r x. I ) ) e. ZZ /\ P e. NN ) -> ( ( P - ( r x. I ) ) mod P ) e. ( 0 ..^ P ) ) | 
						
							| 17 | 12 15 16 | syl2anc |  |-  ( ( ( r e. ( 1 ... ( P - 1 ) ) /\ ( ( N x. r ) mod P ) = 1 ) /\ ( P e. Prime /\ N e. ( 1 ..^ P ) /\ I e. ( 1 ..^ P ) ) ) -> ( ( P - ( r x. I ) ) mod P ) e. ( 0 ..^ P ) ) | 
						
							| 18 | 8 | zred |  |-  ( I e. ( 1 ..^ P ) -> I e. RR ) | 
						
							| 19 | 18 | 3ad2ant3 |  |-  ( ( P e. Prime /\ N e. ( 1 ..^ P ) /\ I e. ( 1 ..^ P ) ) -> I e. RR ) | 
						
							| 20 | 19 | adantl |  |-  ( ( ( r e. ( 1 ... ( P - 1 ) ) /\ ( ( N x. r ) mod P ) = 1 ) /\ ( P e. Prime /\ N e. ( 1 ..^ P ) /\ I e. ( 1 ..^ P ) ) ) -> I e. RR ) | 
						
							| 21 | 13 | nnred |  |-  ( P e. Prime -> P e. RR ) | 
						
							| 22 | 21 | 3ad2ant1 |  |-  ( ( P e. Prime /\ N e. ( 1 ..^ P ) /\ I e. ( 1 ..^ P ) ) -> P e. RR ) | 
						
							| 23 | 22 | adantl |  |-  ( ( ( r e. ( 1 ... ( P - 1 ) ) /\ ( ( N x. r ) mod P ) = 1 ) /\ ( P e. Prime /\ N e. ( 1 ..^ P ) /\ I e. ( 1 ..^ P ) ) ) -> P e. RR ) | 
						
							| 24 | 6 | zred |  |-  ( r e. ( 1 ... ( P - 1 ) ) -> r e. RR ) | 
						
							| 25 | 24 | adantr |  |-  ( ( r e. ( 1 ... ( P - 1 ) ) /\ ( ( N x. r ) mod P ) = 1 ) -> r e. RR ) | 
						
							| 26 |  | remulcl |  |-  ( ( r e. RR /\ I e. RR ) -> ( r x. I ) e. RR ) | 
						
							| 27 | 25 19 26 | syl2an |  |-  ( ( ( r e. ( 1 ... ( P - 1 ) ) /\ ( ( N x. r ) mod P ) = 1 ) /\ ( P e. Prime /\ N e. ( 1 ..^ P ) /\ I e. ( 1 ..^ P ) ) ) -> ( r x. I ) e. RR ) | 
						
							| 28 | 23 27 | resubcld |  |-  ( ( ( r e. ( 1 ... ( P - 1 ) ) /\ ( ( N x. r ) mod P ) = 1 ) /\ ( P e. Prime /\ N e. ( 1 ..^ P ) /\ I e. ( 1 ..^ P ) ) ) -> ( P - ( r x. I ) ) e. RR ) | 
						
							| 29 |  | elfzoelz |  |-  ( N e. ( 1 ..^ P ) -> N e. ZZ ) | 
						
							| 30 | 29 | 3ad2ant2 |  |-  ( ( P e. Prime /\ N e. ( 1 ..^ P ) /\ I e. ( 1 ..^ P ) ) -> N e. ZZ ) | 
						
							| 31 | 30 | adantl |  |-  ( ( ( r e. ( 1 ... ( P - 1 ) ) /\ ( ( N x. r ) mod P ) = 1 ) /\ ( P e. Prime /\ N e. ( 1 ..^ P ) /\ I e. ( 1 ..^ P ) ) ) -> N e. ZZ ) | 
						
							| 32 | 13 | nnrpd |  |-  ( P e. Prime -> P e. RR+ ) | 
						
							| 33 | 32 | 3ad2ant1 |  |-  ( ( P e. Prime /\ N e. ( 1 ..^ P ) /\ I e. ( 1 ..^ P ) ) -> P e. RR+ ) | 
						
							| 34 | 33 | adantl |  |-  ( ( ( r e. ( 1 ... ( P - 1 ) ) /\ ( ( N x. r ) mod P ) = 1 ) /\ ( P e. Prime /\ N e. ( 1 ..^ P ) /\ I e. ( 1 ..^ P ) ) ) -> P e. RR+ ) | 
						
							| 35 |  | modaddmulmod |  |-  ( ( ( I e. RR /\ ( P - ( r x. I ) ) e. RR /\ N e. ZZ ) /\ P e. RR+ ) -> ( ( I + ( ( ( P - ( r x. I ) ) mod P ) x. N ) ) mod P ) = ( ( I + ( ( P - ( r x. I ) ) x. N ) ) mod P ) ) | 
						
							| 36 | 20 28 31 34 35 | syl31anc |  |-  ( ( ( r e. ( 1 ... ( P - 1 ) ) /\ ( ( N x. r ) mod P ) = 1 ) /\ ( P e. Prime /\ N e. ( 1 ..^ P ) /\ I e. ( 1 ..^ P ) ) ) -> ( ( I + ( ( ( P - ( r x. I ) ) mod P ) x. N ) ) mod P ) = ( ( I + ( ( P - ( r x. I ) ) x. N ) ) mod P ) ) | 
						
							| 37 | 13 | nncnd |  |-  ( P e. Prime -> P e. CC ) | 
						
							| 38 | 37 | 3ad2ant1 |  |-  ( ( P e. Prime /\ N e. ( 1 ..^ P ) /\ I e. ( 1 ..^ P ) ) -> P e. CC ) | 
						
							| 39 | 38 | adantl |  |-  ( ( ( r e. ( 1 ... ( P - 1 ) ) /\ ( ( N x. r ) mod P ) = 1 ) /\ ( P e. Prime /\ N e. ( 1 ..^ P ) /\ I e. ( 1 ..^ P ) ) ) -> P e. CC ) | 
						
							| 40 | 6 | zcnd |  |-  ( r e. ( 1 ... ( P - 1 ) ) -> r e. CC ) | 
						
							| 41 | 40 | adantr |  |-  ( ( r e. ( 1 ... ( P - 1 ) ) /\ ( ( N x. r ) mod P ) = 1 ) -> r e. CC ) | 
						
							| 42 | 8 | zcnd |  |-  ( I e. ( 1 ..^ P ) -> I e. CC ) | 
						
							| 43 | 42 | 3ad2ant3 |  |-  ( ( P e. Prime /\ N e. ( 1 ..^ P ) /\ I e. ( 1 ..^ P ) ) -> I e. CC ) | 
						
							| 44 |  | mulcl |  |-  ( ( r e. CC /\ I e. CC ) -> ( r x. I ) e. CC ) | 
						
							| 45 | 41 43 44 | syl2an |  |-  ( ( ( r e. ( 1 ... ( P - 1 ) ) /\ ( ( N x. r ) mod P ) = 1 ) /\ ( P e. Prime /\ N e. ( 1 ..^ P ) /\ I e. ( 1 ..^ P ) ) ) -> ( r x. I ) e. CC ) | 
						
							| 46 | 29 | zcnd |  |-  ( N e. ( 1 ..^ P ) -> N e. CC ) | 
						
							| 47 | 46 | 3ad2ant2 |  |-  ( ( P e. Prime /\ N e. ( 1 ..^ P ) /\ I e. ( 1 ..^ P ) ) -> N e. CC ) | 
						
							| 48 | 47 | adantl |  |-  ( ( ( r e. ( 1 ... ( P - 1 ) ) /\ ( ( N x. r ) mod P ) = 1 ) /\ ( P e. Prime /\ N e. ( 1 ..^ P ) /\ I e. ( 1 ..^ P ) ) ) -> N e. CC ) | 
						
							| 49 | 39 45 48 | subdird |  |-  ( ( ( r e. ( 1 ... ( P - 1 ) ) /\ ( ( N x. r ) mod P ) = 1 ) /\ ( P e. Prime /\ N e. ( 1 ..^ P ) /\ I e. ( 1 ..^ P ) ) ) -> ( ( P - ( r x. I ) ) x. N ) = ( ( P x. N ) - ( ( r x. I ) x. N ) ) ) | 
						
							| 50 | 49 | oveq2d |  |-  ( ( ( r e. ( 1 ... ( P - 1 ) ) /\ ( ( N x. r ) mod P ) = 1 ) /\ ( P e. Prime /\ N e. ( 1 ..^ P ) /\ I e. ( 1 ..^ P ) ) ) -> ( I + ( ( P - ( r x. I ) ) x. N ) ) = ( I + ( ( P x. N ) - ( ( r x. I ) x. N ) ) ) ) | 
						
							| 51 | 50 | oveq1d |  |-  ( ( ( r e. ( 1 ... ( P - 1 ) ) /\ ( ( N x. r ) mod P ) = 1 ) /\ ( P e. Prime /\ N e. ( 1 ..^ P ) /\ I e. ( 1 ..^ P ) ) ) -> ( ( I + ( ( P - ( r x. I ) ) x. N ) ) mod P ) = ( ( I + ( ( P x. N ) - ( ( r x. I ) x. N ) ) ) mod P ) ) | 
						
							| 52 |  | mulcom |  |-  ( ( P e. CC /\ N e. CC ) -> ( P x. N ) = ( N x. P ) ) | 
						
							| 53 | 37 46 52 | syl2an |  |-  ( ( P e. Prime /\ N e. ( 1 ..^ P ) ) -> ( P x. N ) = ( N x. P ) ) | 
						
							| 54 | 53 | oveq1d |  |-  ( ( P e. Prime /\ N e. ( 1 ..^ P ) ) -> ( ( P x. N ) mod P ) = ( ( N x. P ) mod P ) ) | 
						
							| 55 |  | mulmod0 |  |-  ( ( N e. ZZ /\ P e. RR+ ) -> ( ( N x. P ) mod P ) = 0 ) | 
						
							| 56 | 29 32 55 | syl2anr |  |-  ( ( P e. Prime /\ N e. ( 1 ..^ P ) ) -> ( ( N x. P ) mod P ) = 0 ) | 
						
							| 57 | 54 56 | eqtrd |  |-  ( ( P e. Prime /\ N e. ( 1 ..^ P ) ) -> ( ( P x. N ) mod P ) = 0 ) | 
						
							| 58 | 57 | 3adant3 |  |-  ( ( P e. Prime /\ N e. ( 1 ..^ P ) /\ I e. ( 1 ..^ P ) ) -> ( ( P x. N ) mod P ) = 0 ) | 
						
							| 59 | 58 | adantl |  |-  ( ( ( r e. ( 1 ... ( P - 1 ) ) /\ ( ( N x. r ) mod P ) = 1 ) /\ ( P e. Prime /\ N e. ( 1 ..^ P ) /\ I e. ( 1 ..^ P ) ) ) -> ( ( P x. N ) mod P ) = 0 ) | 
						
							| 60 | 41 | adantr |  |-  ( ( ( r e. ( 1 ... ( P - 1 ) ) /\ ( ( N x. r ) mod P ) = 1 ) /\ ( P e. Prime /\ N e. ( 1 ..^ P ) /\ I e. ( 1 ..^ P ) ) ) -> r e. CC ) | 
						
							| 61 | 43 | adantl |  |-  ( ( ( r e. ( 1 ... ( P - 1 ) ) /\ ( ( N x. r ) mod P ) = 1 ) /\ ( P e. Prime /\ N e. ( 1 ..^ P ) /\ I e. ( 1 ..^ P ) ) ) -> I e. CC ) | 
						
							| 62 | 60 61 48 | mul32d |  |-  ( ( ( r e. ( 1 ... ( P - 1 ) ) /\ ( ( N x. r ) mod P ) = 1 ) /\ ( P e. Prime /\ N e. ( 1 ..^ P ) /\ I e. ( 1 ..^ P ) ) ) -> ( ( r x. I ) x. N ) = ( ( r x. N ) x. I ) ) | 
						
							| 63 | 62 | oveq1d |  |-  ( ( ( r e. ( 1 ... ( P - 1 ) ) /\ ( ( N x. r ) mod P ) = 1 ) /\ ( P e. Prime /\ N e. ( 1 ..^ P ) /\ I e. ( 1 ..^ P ) ) ) -> ( ( ( r x. I ) x. N ) mod P ) = ( ( ( r x. N ) x. I ) mod P ) ) | 
						
							| 64 | 29 | zred |  |-  ( N e. ( 1 ..^ P ) -> N e. RR ) | 
						
							| 65 | 64 | 3ad2ant2 |  |-  ( ( P e. Prime /\ N e. ( 1 ..^ P ) /\ I e. ( 1 ..^ P ) ) -> N e. RR ) | 
						
							| 66 |  | remulcl |  |-  ( ( r e. RR /\ N e. RR ) -> ( r x. N ) e. RR ) | 
						
							| 67 | 25 65 66 | syl2an |  |-  ( ( ( r e. ( 1 ... ( P - 1 ) ) /\ ( ( N x. r ) mod P ) = 1 ) /\ ( P e. Prime /\ N e. ( 1 ..^ P ) /\ I e. ( 1 ..^ P ) ) ) -> ( r x. N ) e. RR ) | 
						
							| 68 | 9 | adantl |  |-  ( ( ( r e. ( 1 ... ( P - 1 ) ) /\ ( ( N x. r ) mod P ) = 1 ) /\ ( P e. Prime /\ N e. ( 1 ..^ P ) /\ I e. ( 1 ..^ P ) ) ) -> I e. ZZ ) | 
						
							| 69 |  | modmulmod |  |-  ( ( ( r x. N ) e. RR /\ I e. ZZ /\ P e. RR+ ) -> ( ( ( ( r x. N ) mod P ) x. I ) mod P ) = ( ( ( r x. N ) x. I ) mod P ) ) | 
						
							| 70 | 67 68 34 69 | syl3anc |  |-  ( ( ( r e. ( 1 ... ( P - 1 ) ) /\ ( ( N x. r ) mod P ) = 1 ) /\ ( P e. Prime /\ N e. ( 1 ..^ P ) /\ I e. ( 1 ..^ P ) ) ) -> ( ( ( ( r x. N ) mod P ) x. I ) mod P ) = ( ( ( r x. N ) x. I ) mod P ) ) | 
						
							| 71 | 63 70 | eqtr4d |  |-  ( ( ( r e. ( 1 ... ( P - 1 ) ) /\ ( ( N x. r ) mod P ) = 1 ) /\ ( P e. Prime /\ N e. ( 1 ..^ P ) /\ I e. ( 1 ..^ P ) ) ) -> ( ( ( r x. I ) x. N ) mod P ) = ( ( ( ( r x. N ) mod P ) x. I ) mod P ) ) | 
						
							| 72 | 59 71 | oveq12d |  |-  ( ( ( r e. ( 1 ... ( P - 1 ) ) /\ ( ( N x. r ) mod P ) = 1 ) /\ ( P e. Prime /\ N e. ( 1 ..^ P ) /\ I e. ( 1 ..^ P ) ) ) -> ( ( ( P x. N ) mod P ) - ( ( ( r x. I ) x. N ) mod P ) ) = ( 0 - ( ( ( ( r x. N ) mod P ) x. I ) mod P ) ) ) | 
						
							| 73 | 72 | oveq1d |  |-  ( ( ( r e. ( 1 ... ( P - 1 ) ) /\ ( ( N x. r ) mod P ) = 1 ) /\ ( P e. Prime /\ N e. ( 1 ..^ P ) /\ I e. ( 1 ..^ P ) ) ) -> ( ( ( ( P x. N ) mod P ) - ( ( ( r x. I ) x. N ) mod P ) ) mod P ) = ( ( 0 - ( ( ( ( r x. N ) mod P ) x. I ) mod P ) ) mod P ) ) | 
						
							| 74 |  | remulcl |  |-  ( ( P e. RR /\ N e. RR ) -> ( P x. N ) e. RR ) | 
						
							| 75 | 21 64 74 | syl2an |  |-  ( ( P e. Prime /\ N e. ( 1 ..^ P ) ) -> ( P x. N ) e. RR ) | 
						
							| 76 | 75 | 3adant3 |  |-  ( ( P e. Prime /\ N e. ( 1 ..^ P ) /\ I e. ( 1 ..^ P ) ) -> ( P x. N ) e. RR ) | 
						
							| 77 | 76 | adantl |  |-  ( ( ( r e. ( 1 ... ( P - 1 ) ) /\ ( ( N x. r ) mod P ) = 1 ) /\ ( P e. Prime /\ N e. ( 1 ..^ P ) /\ I e. ( 1 ..^ P ) ) ) -> ( P x. N ) e. RR ) | 
						
							| 78 | 65 | adantl |  |-  ( ( ( r e. ( 1 ... ( P - 1 ) ) /\ ( ( N x. r ) mod P ) = 1 ) /\ ( P e. Prime /\ N e. ( 1 ..^ P ) /\ I e. ( 1 ..^ P ) ) ) -> N e. RR ) | 
						
							| 79 | 27 78 | remulcld |  |-  ( ( ( r e. ( 1 ... ( P - 1 ) ) /\ ( ( N x. r ) mod P ) = 1 ) /\ ( P e. Prime /\ N e. ( 1 ..^ P ) /\ I e. ( 1 ..^ P ) ) ) -> ( ( r x. I ) x. N ) e. RR ) | 
						
							| 80 |  | modsubmodmod |  |-  ( ( ( P x. N ) e. RR /\ ( ( r x. I ) x. N ) e. RR /\ P e. RR+ ) -> ( ( ( ( P x. N ) mod P ) - ( ( ( r x. I ) x. N ) mod P ) ) mod P ) = ( ( ( P x. N ) - ( ( r x. I ) x. N ) ) mod P ) ) | 
						
							| 81 | 77 79 34 80 | syl3anc |  |-  ( ( ( r e. ( 1 ... ( P - 1 ) ) /\ ( ( N x. r ) mod P ) = 1 ) /\ ( P e. Prime /\ N e. ( 1 ..^ P ) /\ I e. ( 1 ..^ P ) ) ) -> ( ( ( ( P x. N ) mod P ) - ( ( ( r x. I ) x. N ) mod P ) ) mod P ) = ( ( ( P x. N ) - ( ( r x. I ) x. N ) ) mod P ) ) | 
						
							| 82 |  | mulcom |  |-  ( ( N e. CC /\ r e. CC ) -> ( N x. r ) = ( r x. N ) ) | 
						
							| 83 | 47 40 82 | syl2anr |  |-  ( ( r e. ( 1 ... ( P - 1 ) ) /\ ( P e. Prime /\ N e. ( 1 ..^ P ) /\ I e. ( 1 ..^ P ) ) ) -> ( N x. r ) = ( r x. N ) ) | 
						
							| 84 | 83 | oveq1d |  |-  ( ( r e. ( 1 ... ( P - 1 ) ) /\ ( P e. Prime /\ N e. ( 1 ..^ P ) /\ I e. ( 1 ..^ P ) ) ) -> ( ( N x. r ) mod P ) = ( ( r x. N ) mod P ) ) | 
						
							| 85 | 84 | eqeq1d |  |-  ( ( r e. ( 1 ... ( P - 1 ) ) /\ ( P e. Prime /\ N e. ( 1 ..^ P ) /\ I e. ( 1 ..^ P ) ) ) -> ( ( ( N x. r ) mod P ) = 1 <-> ( ( r x. N ) mod P ) = 1 ) ) | 
						
							| 86 | 85 | biimpd |  |-  ( ( r e. ( 1 ... ( P - 1 ) ) /\ ( P e. Prime /\ N e. ( 1 ..^ P ) /\ I e. ( 1 ..^ P ) ) ) -> ( ( ( N x. r ) mod P ) = 1 -> ( ( r x. N ) mod P ) = 1 ) ) | 
						
							| 87 | 86 | impancom |  |-  ( ( r e. ( 1 ... ( P - 1 ) ) /\ ( ( N x. r ) mod P ) = 1 ) -> ( ( P e. Prime /\ N e. ( 1 ..^ P ) /\ I e. ( 1 ..^ P ) ) -> ( ( r x. N ) mod P ) = 1 ) ) | 
						
							| 88 | 87 | imp |  |-  ( ( ( r e. ( 1 ... ( P - 1 ) ) /\ ( ( N x. r ) mod P ) = 1 ) /\ ( P e. Prime /\ N e. ( 1 ..^ P ) /\ I e. ( 1 ..^ P ) ) ) -> ( ( r x. N ) mod P ) = 1 ) | 
						
							| 89 | 88 | oveq1d |  |-  ( ( ( r e. ( 1 ... ( P - 1 ) ) /\ ( ( N x. r ) mod P ) = 1 ) /\ ( P e. Prime /\ N e. ( 1 ..^ P ) /\ I e. ( 1 ..^ P ) ) ) -> ( ( ( r x. N ) mod P ) x. I ) = ( 1 x. I ) ) | 
						
							| 90 | 89 | oveq1d |  |-  ( ( ( r e. ( 1 ... ( P - 1 ) ) /\ ( ( N x. r ) mod P ) = 1 ) /\ ( P e. Prime /\ N e. ( 1 ..^ P ) /\ I e. ( 1 ..^ P ) ) ) -> ( ( ( ( r x. N ) mod P ) x. I ) mod P ) = ( ( 1 x. I ) mod P ) ) | 
						
							| 91 | 90 | oveq2d |  |-  ( ( ( r e. ( 1 ... ( P - 1 ) ) /\ ( ( N x. r ) mod P ) = 1 ) /\ ( P e. Prime /\ N e. ( 1 ..^ P ) /\ I e. ( 1 ..^ P ) ) ) -> ( 0 - ( ( ( ( r x. N ) mod P ) x. I ) mod P ) ) = ( 0 - ( ( 1 x. I ) mod P ) ) ) | 
						
							| 92 | 91 | oveq1d |  |-  ( ( ( r e. ( 1 ... ( P - 1 ) ) /\ ( ( N x. r ) mod P ) = 1 ) /\ ( P e. Prime /\ N e. ( 1 ..^ P ) /\ I e. ( 1 ..^ P ) ) ) -> ( ( 0 - ( ( ( ( r x. N ) mod P ) x. I ) mod P ) ) mod P ) = ( ( 0 - ( ( 1 x. I ) mod P ) ) mod P ) ) | 
						
							| 93 | 61 | mullidd |  |-  ( ( ( r e. ( 1 ... ( P - 1 ) ) /\ ( ( N x. r ) mod P ) = 1 ) /\ ( P e. Prime /\ N e. ( 1 ..^ P ) /\ I e. ( 1 ..^ P ) ) ) -> ( 1 x. I ) = I ) | 
						
							| 94 | 93 | oveq1d |  |-  ( ( ( r e. ( 1 ... ( P - 1 ) ) /\ ( ( N x. r ) mod P ) = 1 ) /\ ( P e. Prime /\ N e. ( 1 ..^ P ) /\ I e. ( 1 ..^ P ) ) ) -> ( ( 1 x. I ) mod P ) = ( I mod P ) ) | 
						
							| 95 | 32 18 | anim12ci |  |-  ( ( P e. Prime /\ I e. ( 1 ..^ P ) ) -> ( I e. RR /\ P e. RR+ ) ) | 
						
							| 96 |  | elfzo2 |  |-  ( I e. ( 1 ..^ P ) <-> ( I e. ( ZZ>= ` 1 ) /\ P e. ZZ /\ I < P ) ) | 
						
							| 97 |  | eluz2 |  |-  ( I e. ( ZZ>= ` 1 ) <-> ( 1 e. ZZ /\ I e. ZZ /\ 1 <_ I ) ) | 
						
							| 98 |  | 0red |  |-  ( I e. ZZ -> 0 e. RR ) | 
						
							| 99 |  | 1red |  |-  ( I e. ZZ -> 1 e. RR ) | 
						
							| 100 |  | zre |  |-  ( I e. ZZ -> I e. RR ) | 
						
							| 101 | 98 99 100 | 3jca |  |-  ( I e. ZZ -> ( 0 e. RR /\ 1 e. RR /\ I e. RR ) ) | 
						
							| 102 | 101 | adantr |  |-  ( ( I e. ZZ /\ 1 <_ I ) -> ( 0 e. RR /\ 1 e. RR /\ I e. RR ) ) | 
						
							| 103 |  | 0le1 |  |-  0 <_ 1 | 
						
							| 104 | 103 | a1i |  |-  ( I e. ZZ -> 0 <_ 1 ) | 
						
							| 105 | 104 | anim1i |  |-  ( ( I e. ZZ /\ 1 <_ I ) -> ( 0 <_ 1 /\ 1 <_ I ) ) | 
						
							| 106 |  | letr |  |-  ( ( 0 e. RR /\ 1 e. RR /\ I e. RR ) -> ( ( 0 <_ 1 /\ 1 <_ I ) -> 0 <_ I ) ) | 
						
							| 107 | 102 105 106 | sylc |  |-  ( ( I e. ZZ /\ 1 <_ I ) -> 0 <_ I ) | 
						
							| 108 | 107 | 3adant1 |  |-  ( ( 1 e. ZZ /\ I e. ZZ /\ 1 <_ I ) -> 0 <_ I ) | 
						
							| 109 | 97 108 | sylbi |  |-  ( I e. ( ZZ>= ` 1 ) -> 0 <_ I ) | 
						
							| 110 | 109 | 3ad2ant1 |  |-  ( ( I e. ( ZZ>= ` 1 ) /\ P e. ZZ /\ I < P ) -> 0 <_ I ) | 
						
							| 111 |  | simp3 |  |-  ( ( I e. ( ZZ>= ` 1 ) /\ P e. ZZ /\ I < P ) -> I < P ) | 
						
							| 112 | 110 111 | jca |  |-  ( ( I e. ( ZZ>= ` 1 ) /\ P e. ZZ /\ I < P ) -> ( 0 <_ I /\ I < P ) ) | 
						
							| 113 | 96 112 | sylbi |  |-  ( I e. ( 1 ..^ P ) -> ( 0 <_ I /\ I < P ) ) | 
						
							| 114 | 113 | adantl |  |-  ( ( P e. Prime /\ I e. ( 1 ..^ P ) ) -> ( 0 <_ I /\ I < P ) ) | 
						
							| 115 | 95 114 | jca |  |-  ( ( P e. Prime /\ I e. ( 1 ..^ P ) ) -> ( ( I e. RR /\ P e. RR+ ) /\ ( 0 <_ I /\ I < P ) ) ) | 
						
							| 116 | 115 | 3adant2 |  |-  ( ( P e. Prime /\ N e. ( 1 ..^ P ) /\ I e. ( 1 ..^ P ) ) -> ( ( I e. RR /\ P e. RR+ ) /\ ( 0 <_ I /\ I < P ) ) ) | 
						
							| 117 | 116 | adantl |  |-  ( ( ( r e. ( 1 ... ( P - 1 ) ) /\ ( ( N x. r ) mod P ) = 1 ) /\ ( P e. Prime /\ N e. ( 1 ..^ P ) /\ I e. ( 1 ..^ P ) ) ) -> ( ( I e. RR /\ P e. RR+ ) /\ ( 0 <_ I /\ I < P ) ) ) | 
						
							| 118 |  | modid |  |-  ( ( ( I e. RR /\ P e. RR+ ) /\ ( 0 <_ I /\ I < P ) ) -> ( I mod P ) = I ) | 
						
							| 119 | 117 118 | syl |  |-  ( ( ( r e. ( 1 ... ( P - 1 ) ) /\ ( ( N x. r ) mod P ) = 1 ) /\ ( P e. Prime /\ N e. ( 1 ..^ P ) /\ I e. ( 1 ..^ P ) ) ) -> ( I mod P ) = I ) | 
						
							| 120 | 94 119 | eqtrd |  |-  ( ( ( r e. ( 1 ... ( P - 1 ) ) /\ ( ( N x. r ) mod P ) = 1 ) /\ ( P e. Prime /\ N e. ( 1 ..^ P ) /\ I e. ( 1 ..^ P ) ) ) -> ( ( 1 x. I ) mod P ) = I ) | 
						
							| 121 | 120 | oveq2d |  |-  ( ( ( r e. ( 1 ... ( P - 1 ) ) /\ ( ( N x. r ) mod P ) = 1 ) /\ ( P e. Prime /\ N e. ( 1 ..^ P ) /\ I e. ( 1 ..^ P ) ) ) -> ( 0 - ( ( 1 x. I ) mod P ) ) = ( 0 - I ) ) | 
						
							| 122 | 121 | oveq1d |  |-  ( ( ( r e. ( 1 ... ( P - 1 ) ) /\ ( ( N x. r ) mod P ) = 1 ) /\ ( P e. Prime /\ N e. ( 1 ..^ P ) /\ I e. ( 1 ..^ P ) ) ) -> ( ( 0 - ( ( 1 x. I ) mod P ) ) mod P ) = ( ( 0 - I ) mod P ) ) | 
						
							| 123 | 92 122 | eqtrd |  |-  ( ( ( r e. ( 1 ... ( P - 1 ) ) /\ ( ( N x. r ) mod P ) = 1 ) /\ ( P e. Prime /\ N e. ( 1 ..^ P ) /\ I e. ( 1 ..^ P ) ) ) -> ( ( 0 - ( ( ( ( r x. N ) mod P ) x. I ) mod P ) ) mod P ) = ( ( 0 - I ) mod P ) ) | 
						
							| 124 | 73 81 123 | 3eqtr3d |  |-  ( ( ( r e. ( 1 ... ( P - 1 ) ) /\ ( ( N x. r ) mod P ) = 1 ) /\ ( P e. Prime /\ N e. ( 1 ..^ P ) /\ I e. ( 1 ..^ P ) ) ) -> ( ( ( P x. N ) - ( ( r x. I ) x. N ) ) mod P ) = ( ( 0 - I ) mod P ) ) | 
						
							| 125 | 124 | oveq2d |  |-  ( ( ( r e. ( 1 ... ( P - 1 ) ) /\ ( ( N x. r ) mod P ) = 1 ) /\ ( P e. Prime /\ N e. ( 1 ..^ P ) /\ I e. ( 1 ..^ P ) ) ) -> ( I + ( ( ( P x. N ) - ( ( r x. I ) x. N ) ) mod P ) ) = ( I + ( ( 0 - I ) mod P ) ) ) | 
						
							| 126 | 125 | oveq1d |  |-  ( ( ( r e. ( 1 ... ( P - 1 ) ) /\ ( ( N x. r ) mod P ) = 1 ) /\ ( P e. Prime /\ N e. ( 1 ..^ P ) /\ I e. ( 1 ..^ P ) ) ) -> ( ( I + ( ( ( P x. N ) - ( ( r x. I ) x. N ) ) mod P ) ) mod P ) = ( ( I + ( ( 0 - I ) mod P ) ) mod P ) ) | 
						
							| 127 | 77 79 | resubcld |  |-  ( ( ( r e. ( 1 ... ( P - 1 ) ) /\ ( ( N x. r ) mod P ) = 1 ) /\ ( P e. Prime /\ N e. ( 1 ..^ P ) /\ I e. ( 1 ..^ P ) ) ) -> ( ( P x. N ) - ( ( r x. I ) x. N ) ) e. RR ) | 
						
							| 128 |  | modadd2mod |  |-  ( ( ( ( P x. N ) - ( ( r x. I ) x. N ) ) e. RR /\ I e. RR /\ P e. RR+ ) -> ( ( I + ( ( ( P x. N ) - ( ( r x. I ) x. N ) ) mod P ) ) mod P ) = ( ( I + ( ( P x. N ) - ( ( r x. I ) x. N ) ) ) mod P ) ) | 
						
							| 129 | 127 20 34 128 | syl3anc |  |-  ( ( ( r e. ( 1 ... ( P - 1 ) ) /\ ( ( N x. r ) mod P ) = 1 ) /\ ( P e. Prime /\ N e. ( 1 ..^ P ) /\ I e. ( 1 ..^ P ) ) ) -> ( ( I + ( ( ( P x. N ) - ( ( r x. I ) x. N ) ) mod P ) ) mod P ) = ( ( I + ( ( P x. N ) - ( ( r x. I ) x. N ) ) ) mod P ) ) | 
						
							| 130 |  | 0red |  |-  ( I e. ( 1 ..^ P ) -> 0 e. RR ) | 
						
							| 131 | 130 18 | resubcld |  |-  ( I e. ( 1 ..^ P ) -> ( 0 - I ) e. RR ) | 
						
							| 132 | 131 | adantl |  |-  ( ( P e. Prime /\ I e. ( 1 ..^ P ) ) -> ( 0 - I ) e. RR ) | 
						
							| 133 | 18 | adantl |  |-  ( ( P e. Prime /\ I e. ( 1 ..^ P ) ) -> I e. RR ) | 
						
							| 134 | 32 | adantr |  |-  ( ( P e. Prime /\ I e. ( 1 ..^ P ) ) -> P e. RR+ ) | 
						
							| 135 | 132 133 134 | 3jca |  |-  ( ( P e. Prime /\ I e. ( 1 ..^ P ) ) -> ( ( 0 - I ) e. RR /\ I e. RR /\ P e. RR+ ) ) | 
						
							| 136 | 135 | 3adant2 |  |-  ( ( P e. Prime /\ N e. ( 1 ..^ P ) /\ I e. ( 1 ..^ P ) ) -> ( ( 0 - I ) e. RR /\ I e. RR /\ P e. RR+ ) ) | 
						
							| 137 | 136 | adantl |  |-  ( ( ( r e. ( 1 ... ( P - 1 ) ) /\ ( ( N x. r ) mod P ) = 1 ) /\ ( P e. Prime /\ N e. ( 1 ..^ P ) /\ I e. ( 1 ..^ P ) ) ) -> ( ( 0 - I ) e. RR /\ I e. RR /\ P e. RR+ ) ) | 
						
							| 138 |  | modadd2mod |  |-  ( ( ( 0 - I ) e. RR /\ I e. RR /\ P e. RR+ ) -> ( ( I + ( ( 0 - I ) mod P ) ) mod P ) = ( ( I + ( 0 - I ) ) mod P ) ) | 
						
							| 139 | 137 138 | syl |  |-  ( ( ( r e. ( 1 ... ( P - 1 ) ) /\ ( ( N x. r ) mod P ) = 1 ) /\ ( P e. Prime /\ N e. ( 1 ..^ P ) /\ I e. ( 1 ..^ P ) ) ) -> ( ( I + ( ( 0 - I ) mod P ) ) mod P ) = ( ( I + ( 0 - I ) ) mod P ) ) | 
						
							| 140 |  | 0cnd |  |-  ( I e. ( 1 ..^ P ) -> 0 e. CC ) | 
						
							| 141 | 42 140 | pncan3d |  |-  ( I e. ( 1 ..^ P ) -> ( I + ( 0 - I ) ) = 0 ) | 
						
							| 142 | 141 | 3ad2ant3 |  |-  ( ( P e. Prime /\ N e. ( 1 ..^ P ) /\ I e. ( 1 ..^ P ) ) -> ( I + ( 0 - I ) ) = 0 ) | 
						
							| 143 | 142 | adantl |  |-  ( ( ( r e. ( 1 ... ( P - 1 ) ) /\ ( ( N x. r ) mod P ) = 1 ) /\ ( P e. Prime /\ N e. ( 1 ..^ P ) /\ I e. ( 1 ..^ P ) ) ) -> ( I + ( 0 - I ) ) = 0 ) | 
						
							| 144 | 143 | oveq1d |  |-  ( ( ( r e. ( 1 ... ( P - 1 ) ) /\ ( ( N x. r ) mod P ) = 1 ) /\ ( P e. Prime /\ N e. ( 1 ..^ P ) /\ I e. ( 1 ..^ P ) ) ) -> ( ( I + ( 0 - I ) ) mod P ) = ( 0 mod P ) ) | 
						
							| 145 |  | 0mod |  |-  ( P e. RR+ -> ( 0 mod P ) = 0 ) | 
						
							| 146 | 32 145 | syl |  |-  ( P e. Prime -> ( 0 mod P ) = 0 ) | 
						
							| 147 | 146 | 3ad2ant1 |  |-  ( ( P e. Prime /\ N e. ( 1 ..^ P ) /\ I e. ( 1 ..^ P ) ) -> ( 0 mod P ) = 0 ) | 
						
							| 148 | 147 | adantl |  |-  ( ( ( r e. ( 1 ... ( P - 1 ) ) /\ ( ( N x. r ) mod P ) = 1 ) /\ ( P e. Prime /\ N e. ( 1 ..^ P ) /\ I e. ( 1 ..^ P ) ) ) -> ( 0 mod P ) = 0 ) | 
						
							| 149 | 139 144 148 | 3eqtrd |  |-  ( ( ( r e. ( 1 ... ( P - 1 ) ) /\ ( ( N x. r ) mod P ) = 1 ) /\ ( P e. Prime /\ N e. ( 1 ..^ P ) /\ I e. ( 1 ..^ P ) ) ) -> ( ( I + ( ( 0 - I ) mod P ) ) mod P ) = 0 ) | 
						
							| 150 | 126 129 149 | 3eqtr3d |  |-  ( ( ( r e. ( 1 ... ( P - 1 ) ) /\ ( ( N x. r ) mod P ) = 1 ) /\ ( P e. Prime /\ N e. ( 1 ..^ P ) /\ I e. ( 1 ..^ P ) ) ) -> ( ( I + ( ( P x. N ) - ( ( r x. I ) x. N ) ) ) mod P ) = 0 ) | 
						
							| 151 | 36 51 150 | 3eqtrd |  |-  ( ( ( r e. ( 1 ... ( P - 1 ) ) /\ ( ( N x. r ) mod P ) = 1 ) /\ ( P e. Prime /\ N e. ( 1 ..^ P ) /\ I e. ( 1 ..^ P ) ) ) -> ( ( I + ( ( ( P - ( r x. I ) ) mod P ) x. N ) ) mod P ) = 0 ) | 
						
							| 152 |  | oveq1 |  |-  ( j = ( ( P - ( r x. I ) ) mod P ) -> ( j x. N ) = ( ( ( P - ( r x. I ) ) mod P ) x. N ) ) | 
						
							| 153 | 152 | oveq2d |  |-  ( j = ( ( P - ( r x. I ) ) mod P ) -> ( I + ( j x. N ) ) = ( I + ( ( ( P - ( r x. I ) ) mod P ) x. N ) ) ) | 
						
							| 154 | 153 | oveq1d |  |-  ( j = ( ( P - ( r x. I ) ) mod P ) -> ( ( I + ( j x. N ) ) mod P ) = ( ( I + ( ( ( P - ( r x. I ) ) mod P ) x. N ) ) mod P ) ) | 
						
							| 155 | 154 | eqeq1d |  |-  ( j = ( ( P - ( r x. I ) ) mod P ) -> ( ( ( I + ( j x. N ) ) mod P ) = 0 <-> ( ( I + ( ( ( P - ( r x. I ) ) mod P ) x. N ) ) mod P ) = 0 ) ) | 
						
							| 156 | 155 | rspcev |  |-  ( ( ( ( P - ( r x. I ) ) mod P ) e. ( 0 ..^ P ) /\ ( ( I + ( ( ( P - ( r x. I ) ) mod P ) x. N ) ) mod P ) = 0 ) -> E. j e. ( 0 ..^ P ) ( ( I + ( j x. N ) ) mod P ) = 0 ) | 
						
							| 157 | 17 151 156 | syl2anc |  |-  ( ( ( r e. ( 1 ... ( P - 1 ) ) /\ ( ( N x. r ) mod P ) = 1 ) /\ ( P e. Prime /\ N e. ( 1 ..^ P ) /\ I e. ( 1 ..^ P ) ) ) -> E. j e. ( 0 ..^ P ) ( ( I + ( j x. N ) ) mod P ) = 0 ) | 
						
							| 158 | 157 | ex |  |-  ( ( r e. ( 1 ... ( P - 1 ) ) /\ ( ( N x. r ) mod P ) = 1 ) -> ( ( P e. Prime /\ N e. ( 1 ..^ P ) /\ I e. ( 1 ..^ P ) ) -> E. j e. ( 0 ..^ P ) ( ( I + ( j x. N ) ) mod P ) = 0 ) ) | 
						
							| 159 | 158 | rexlimiva |  |-  ( E. r e. ( 1 ... ( P - 1 ) ) ( ( N x. r ) mod P ) = 1 -> ( ( P e. Prime /\ N e. ( 1 ..^ P ) /\ I e. ( 1 ..^ P ) ) -> E. j e. ( 0 ..^ P ) ( ( I + ( j x. N ) ) mod P ) = 0 ) ) | 
						
							| 160 | 1 2 159 | 3syl |  |-  ( ( P e. Prime /\ N e. ( 1 ..^ P ) ) -> ( ( P e. Prime /\ N e. ( 1 ..^ P ) /\ I e. ( 1 ..^ P ) ) -> E. j e. ( 0 ..^ P ) ( ( I + ( j x. N ) ) mod P ) = 0 ) ) | 
						
							| 161 | 160 | 3adant3 |  |-  ( ( P e. Prime /\ N e. ( 1 ..^ P ) /\ I e. ( 1 ..^ P ) ) -> ( ( P e. Prime /\ N e. ( 1 ..^ P ) /\ I e. ( 1 ..^ P ) ) -> E. j e. ( 0 ..^ P ) ( ( I + ( j x. N ) ) mod P ) = 0 ) ) | 
						
							| 162 | 161 | pm2.43i |  |-  ( ( P e. Prime /\ N e. ( 1 ..^ P ) /\ I e. ( 1 ..^ P ) ) -> E. j e. ( 0 ..^ P ) ( ( I + ( j x. N ) ) mod P ) = 0 ) |