| Step |
Hyp |
Ref |
Expression |
| 1 |
|
reumodprminv |
|- ( ( P e. Prime /\ N e. ( 1 ..^ P ) ) -> E! r e. ( 1 ... ( P - 1 ) ) ( ( N x. r ) mod P ) = 1 ) |
| 2 |
|
reurex |
|- ( E! r e. ( 1 ... ( P - 1 ) ) ( ( N x. r ) mod P ) = 1 -> E. r e. ( 1 ... ( P - 1 ) ) ( ( N x. r ) mod P ) = 1 ) |
| 3 |
|
prmz |
|- ( P e. Prime -> P e. ZZ ) |
| 4 |
3
|
3ad2ant1 |
|- ( ( P e. Prime /\ N e. ( 1 ..^ P ) /\ I e. ( 1 ..^ P ) ) -> P e. ZZ ) |
| 5 |
4
|
adantl |
|- ( ( ( r e. ( 1 ... ( P - 1 ) ) /\ ( ( N x. r ) mod P ) = 1 ) /\ ( P e. Prime /\ N e. ( 1 ..^ P ) /\ I e. ( 1 ..^ P ) ) ) -> P e. ZZ ) |
| 6 |
|
elfzelz |
|- ( r e. ( 1 ... ( P - 1 ) ) -> r e. ZZ ) |
| 7 |
6
|
adantr |
|- ( ( r e. ( 1 ... ( P - 1 ) ) /\ ( ( N x. r ) mod P ) = 1 ) -> r e. ZZ ) |
| 8 |
|
elfzoelz |
|- ( I e. ( 1 ..^ P ) -> I e. ZZ ) |
| 9 |
8
|
3ad2ant3 |
|- ( ( P e. Prime /\ N e. ( 1 ..^ P ) /\ I e. ( 1 ..^ P ) ) -> I e. ZZ ) |
| 10 |
|
zmulcl |
|- ( ( r e. ZZ /\ I e. ZZ ) -> ( r x. I ) e. ZZ ) |
| 11 |
7 9 10
|
syl2an |
|- ( ( ( r e. ( 1 ... ( P - 1 ) ) /\ ( ( N x. r ) mod P ) = 1 ) /\ ( P e. Prime /\ N e. ( 1 ..^ P ) /\ I e. ( 1 ..^ P ) ) ) -> ( r x. I ) e. ZZ ) |
| 12 |
5 11
|
zsubcld |
|- ( ( ( r e. ( 1 ... ( P - 1 ) ) /\ ( ( N x. r ) mod P ) = 1 ) /\ ( P e. Prime /\ N e. ( 1 ..^ P ) /\ I e. ( 1 ..^ P ) ) ) -> ( P - ( r x. I ) ) e. ZZ ) |
| 13 |
|
prmnn |
|- ( P e. Prime -> P e. NN ) |
| 14 |
13
|
3ad2ant1 |
|- ( ( P e. Prime /\ N e. ( 1 ..^ P ) /\ I e. ( 1 ..^ P ) ) -> P e. NN ) |
| 15 |
14
|
adantl |
|- ( ( ( r e. ( 1 ... ( P - 1 ) ) /\ ( ( N x. r ) mod P ) = 1 ) /\ ( P e. Prime /\ N e. ( 1 ..^ P ) /\ I e. ( 1 ..^ P ) ) ) -> P e. NN ) |
| 16 |
|
zmodfzo |
|- ( ( ( P - ( r x. I ) ) e. ZZ /\ P e. NN ) -> ( ( P - ( r x. I ) ) mod P ) e. ( 0 ..^ P ) ) |
| 17 |
12 15 16
|
syl2anc |
|- ( ( ( r e. ( 1 ... ( P - 1 ) ) /\ ( ( N x. r ) mod P ) = 1 ) /\ ( P e. Prime /\ N e. ( 1 ..^ P ) /\ I e. ( 1 ..^ P ) ) ) -> ( ( P - ( r x. I ) ) mod P ) e. ( 0 ..^ P ) ) |
| 18 |
8
|
zred |
|- ( I e. ( 1 ..^ P ) -> I e. RR ) |
| 19 |
18
|
3ad2ant3 |
|- ( ( P e. Prime /\ N e. ( 1 ..^ P ) /\ I e. ( 1 ..^ P ) ) -> I e. RR ) |
| 20 |
19
|
adantl |
|- ( ( ( r e. ( 1 ... ( P - 1 ) ) /\ ( ( N x. r ) mod P ) = 1 ) /\ ( P e. Prime /\ N e. ( 1 ..^ P ) /\ I e. ( 1 ..^ P ) ) ) -> I e. RR ) |
| 21 |
13
|
nnred |
|- ( P e. Prime -> P e. RR ) |
| 22 |
21
|
3ad2ant1 |
|- ( ( P e. Prime /\ N e. ( 1 ..^ P ) /\ I e. ( 1 ..^ P ) ) -> P e. RR ) |
| 23 |
22
|
adantl |
|- ( ( ( r e. ( 1 ... ( P - 1 ) ) /\ ( ( N x. r ) mod P ) = 1 ) /\ ( P e. Prime /\ N e. ( 1 ..^ P ) /\ I e. ( 1 ..^ P ) ) ) -> P e. RR ) |
| 24 |
6
|
zred |
|- ( r e. ( 1 ... ( P - 1 ) ) -> r e. RR ) |
| 25 |
24
|
adantr |
|- ( ( r e. ( 1 ... ( P - 1 ) ) /\ ( ( N x. r ) mod P ) = 1 ) -> r e. RR ) |
| 26 |
|
remulcl |
|- ( ( r e. RR /\ I e. RR ) -> ( r x. I ) e. RR ) |
| 27 |
25 19 26
|
syl2an |
|- ( ( ( r e. ( 1 ... ( P - 1 ) ) /\ ( ( N x. r ) mod P ) = 1 ) /\ ( P e. Prime /\ N e. ( 1 ..^ P ) /\ I e. ( 1 ..^ P ) ) ) -> ( r x. I ) e. RR ) |
| 28 |
23 27
|
resubcld |
|- ( ( ( r e. ( 1 ... ( P - 1 ) ) /\ ( ( N x. r ) mod P ) = 1 ) /\ ( P e. Prime /\ N e. ( 1 ..^ P ) /\ I e. ( 1 ..^ P ) ) ) -> ( P - ( r x. I ) ) e. RR ) |
| 29 |
|
elfzoelz |
|- ( N e. ( 1 ..^ P ) -> N e. ZZ ) |
| 30 |
29
|
3ad2ant2 |
|- ( ( P e. Prime /\ N e. ( 1 ..^ P ) /\ I e. ( 1 ..^ P ) ) -> N e. ZZ ) |
| 31 |
30
|
adantl |
|- ( ( ( r e. ( 1 ... ( P - 1 ) ) /\ ( ( N x. r ) mod P ) = 1 ) /\ ( P e. Prime /\ N e. ( 1 ..^ P ) /\ I e. ( 1 ..^ P ) ) ) -> N e. ZZ ) |
| 32 |
13
|
nnrpd |
|- ( P e. Prime -> P e. RR+ ) |
| 33 |
32
|
3ad2ant1 |
|- ( ( P e. Prime /\ N e. ( 1 ..^ P ) /\ I e. ( 1 ..^ P ) ) -> P e. RR+ ) |
| 34 |
33
|
adantl |
|- ( ( ( r e. ( 1 ... ( P - 1 ) ) /\ ( ( N x. r ) mod P ) = 1 ) /\ ( P e. Prime /\ N e. ( 1 ..^ P ) /\ I e. ( 1 ..^ P ) ) ) -> P e. RR+ ) |
| 35 |
|
modaddmulmod |
|- ( ( ( I e. RR /\ ( P - ( r x. I ) ) e. RR /\ N e. ZZ ) /\ P e. RR+ ) -> ( ( I + ( ( ( P - ( r x. I ) ) mod P ) x. N ) ) mod P ) = ( ( I + ( ( P - ( r x. I ) ) x. N ) ) mod P ) ) |
| 36 |
20 28 31 34 35
|
syl31anc |
|- ( ( ( r e. ( 1 ... ( P - 1 ) ) /\ ( ( N x. r ) mod P ) = 1 ) /\ ( P e. Prime /\ N e. ( 1 ..^ P ) /\ I e. ( 1 ..^ P ) ) ) -> ( ( I + ( ( ( P - ( r x. I ) ) mod P ) x. N ) ) mod P ) = ( ( I + ( ( P - ( r x. I ) ) x. N ) ) mod P ) ) |
| 37 |
13
|
nncnd |
|- ( P e. Prime -> P e. CC ) |
| 38 |
37
|
3ad2ant1 |
|- ( ( P e. Prime /\ N e. ( 1 ..^ P ) /\ I e. ( 1 ..^ P ) ) -> P e. CC ) |
| 39 |
38
|
adantl |
|- ( ( ( r e. ( 1 ... ( P - 1 ) ) /\ ( ( N x. r ) mod P ) = 1 ) /\ ( P e. Prime /\ N e. ( 1 ..^ P ) /\ I e. ( 1 ..^ P ) ) ) -> P e. CC ) |
| 40 |
6
|
zcnd |
|- ( r e. ( 1 ... ( P - 1 ) ) -> r e. CC ) |
| 41 |
40
|
adantr |
|- ( ( r e. ( 1 ... ( P - 1 ) ) /\ ( ( N x. r ) mod P ) = 1 ) -> r e. CC ) |
| 42 |
8
|
zcnd |
|- ( I e. ( 1 ..^ P ) -> I e. CC ) |
| 43 |
42
|
3ad2ant3 |
|- ( ( P e. Prime /\ N e. ( 1 ..^ P ) /\ I e. ( 1 ..^ P ) ) -> I e. CC ) |
| 44 |
|
mulcl |
|- ( ( r e. CC /\ I e. CC ) -> ( r x. I ) e. CC ) |
| 45 |
41 43 44
|
syl2an |
|- ( ( ( r e. ( 1 ... ( P - 1 ) ) /\ ( ( N x. r ) mod P ) = 1 ) /\ ( P e. Prime /\ N e. ( 1 ..^ P ) /\ I e. ( 1 ..^ P ) ) ) -> ( r x. I ) e. CC ) |
| 46 |
29
|
zcnd |
|- ( N e. ( 1 ..^ P ) -> N e. CC ) |
| 47 |
46
|
3ad2ant2 |
|- ( ( P e. Prime /\ N e. ( 1 ..^ P ) /\ I e. ( 1 ..^ P ) ) -> N e. CC ) |
| 48 |
47
|
adantl |
|- ( ( ( r e. ( 1 ... ( P - 1 ) ) /\ ( ( N x. r ) mod P ) = 1 ) /\ ( P e. Prime /\ N e. ( 1 ..^ P ) /\ I e. ( 1 ..^ P ) ) ) -> N e. CC ) |
| 49 |
39 45 48
|
subdird |
|- ( ( ( r e. ( 1 ... ( P - 1 ) ) /\ ( ( N x. r ) mod P ) = 1 ) /\ ( P e. Prime /\ N e. ( 1 ..^ P ) /\ I e. ( 1 ..^ P ) ) ) -> ( ( P - ( r x. I ) ) x. N ) = ( ( P x. N ) - ( ( r x. I ) x. N ) ) ) |
| 50 |
49
|
oveq2d |
|- ( ( ( r e. ( 1 ... ( P - 1 ) ) /\ ( ( N x. r ) mod P ) = 1 ) /\ ( P e. Prime /\ N e. ( 1 ..^ P ) /\ I e. ( 1 ..^ P ) ) ) -> ( I + ( ( P - ( r x. I ) ) x. N ) ) = ( I + ( ( P x. N ) - ( ( r x. I ) x. N ) ) ) ) |
| 51 |
50
|
oveq1d |
|- ( ( ( r e. ( 1 ... ( P - 1 ) ) /\ ( ( N x. r ) mod P ) = 1 ) /\ ( P e. Prime /\ N e. ( 1 ..^ P ) /\ I e. ( 1 ..^ P ) ) ) -> ( ( I + ( ( P - ( r x. I ) ) x. N ) ) mod P ) = ( ( I + ( ( P x. N ) - ( ( r x. I ) x. N ) ) ) mod P ) ) |
| 52 |
|
mulcom |
|- ( ( P e. CC /\ N e. CC ) -> ( P x. N ) = ( N x. P ) ) |
| 53 |
37 46 52
|
syl2an |
|- ( ( P e. Prime /\ N e. ( 1 ..^ P ) ) -> ( P x. N ) = ( N x. P ) ) |
| 54 |
53
|
oveq1d |
|- ( ( P e. Prime /\ N e. ( 1 ..^ P ) ) -> ( ( P x. N ) mod P ) = ( ( N x. P ) mod P ) ) |
| 55 |
|
mulmod0 |
|- ( ( N e. ZZ /\ P e. RR+ ) -> ( ( N x. P ) mod P ) = 0 ) |
| 56 |
29 32 55
|
syl2anr |
|- ( ( P e. Prime /\ N e. ( 1 ..^ P ) ) -> ( ( N x. P ) mod P ) = 0 ) |
| 57 |
54 56
|
eqtrd |
|- ( ( P e. Prime /\ N e. ( 1 ..^ P ) ) -> ( ( P x. N ) mod P ) = 0 ) |
| 58 |
57
|
3adant3 |
|- ( ( P e. Prime /\ N e. ( 1 ..^ P ) /\ I e. ( 1 ..^ P ) ) -> ( ( P x. N ) mod P ) = 0 ) |
| 59 |
58
|
adantl |
|- ( ( ( r e. ( 1 ... ( P - 1 ) ) /\ ( ( N x. r ) mod P ) = 1 ) /\ ( P e. Prime /\ N e. ( 1 ..^ P ) /\ I e. ( 1 ..^ P ) ) ) -> ( ( P x. N ) mod P ) = 0 ) |
| 60 |
41
|
adantr |
|- ( ( ( r e. ( 1 ... ( P - 1 ) ) /\ ( ( N x. r ) mod P ) = 1 ) /\ ( P e. Prime /\ N e. ( 1 ..^ P ) /\ I e. ( 1 ..^ P ) ) ) -> r e. CC ) |
| 61 |
43
|
adantl |
|- ( ( ( r e. ( 1 ... ( P - 1 ) ) /\ ( ( N x. r ) mod P ) = 1 ) /\ ( P e. Prime /\ N e. ( 1 ..^ P ) /\ I e. ( 1 ..^ P ) ) ) -> I e. CC ) |
| 62 |
60 61 48
|
mul32d |
|- ( ( ( r e. ( 1 ... ( P - 1 ) ) /\ ( ( N x. r ) mod P ) = 1 ) /\ ( P e. Prime /\ N e. ( 1 ..^ P ) /\ I e. ( 1 ..^ P ) ) ) -> ( ( r x. I ) x. N ) = ( ( r x. N ) x. I ) ) |
| 63 |
62
|
oveq1d |
|- ( ( ( r e. ( 1 ... ( P - 1 ) ) /\ ( ( N x. r ) mod P ) = 1 ) /\ ( P e. Prime /\ N e. ( 1 ..^ P ) /\ I e. ( 1 ..^ P ) ) ) -> ( ( ( r x. I ) x. N ) mod P ) = ( ( ( r x. N ) x. I ) mod P ) ) |
| 64 |
29
|
zred |
|- ( N e. ( 1 ..^ P ) -> N e. RR ) |
| 65 |
64
|
3ad2ant2 |
|- ( ( P e. Prime /\ N e. ( 1 ..^ P ) /\ I e. ( 1 ..^ P ) ) -> N e. RR ) |
| 66 |
|
remulcl |
|- ( ( r e. RR /\ N e. RR ) -> ( r x. N ) e. RR ) |
| 67 |
25 65 66
|
syl2an |
|- ( ( ( r e. ( 1 ... ( P - 1 ) ) /\ ( ( N x. r ) mod P ) = 1 ) /\ ( P e. Prime /\ N e. ( 1 ..^ P ) /\ I e. ( 1 ..^ P ) ) ) -> ( r x. N ) e. RR ) |
| 68 |
9
|
adantl |
|- ( ( ( r e. ( 1 ... ( P - 1 ) ) /\ ( ( N x. r ) mod P ) = 1 ) /\ ( P e. Prime /\ N e. ( 1 ..^ P ) /\ I e. ( 1 ..^ P ) ) ) -> I e. ZZ ) |
| 69 |
|
modmulmod |
|- ( ( ( r x. N ) e. RR /\ I e. ZZ /\ P e. RR+ ) -> ( ( ( ( r x. N ) mod P ) x. I ) mod P ) = ( ( ( r x. N ) x. I ) mod P ) ) |
| 70 |
67 68 34 69
|
syl3anc |
|- ( ( ( r e. ( 1 ... ( P - 1 ) ) /\ ( ( N x. r ) mod P ) = 1 ) /\ ( P e. Prime /\ N e. ( 1 ..^ P ) /\ I e. ( 1 ..^ P ) ) ) -> ( ( ( ( r x. N ) mod P ) x. I ) mod P ) = ( ( ( r x. N ) x. I ) mod P ) ) |
| 71 |
63 70
|
eqtr4d |
|- ( ( ( r e. ( 1 ... ( P - 1 ) ) /\ ( ( N x. r ) mod P ) = 1 ) /\ ( P e. Prime /\ N e. ( 1 ..^ P ) /\ I e. ( 1 ..^ P ) ) ) -> ( ( ( r x. I ) x. N ) mod P ) = ( ( ( ( r x. N ) mod P ) x. I ) mod P ) ) |
| 72 |
59 71
|
oveq12d |
|- ( ( ( r e. ( 1 ... ( P - 1 ) ) /\ ( ( N x. r ) mod P ) = 1 ) /\ ( P e. Prime /\ N e. ( 1 ..^ P ) /\ I e. ( 1 ..^ P ) ) ) -> ( ( ( P x. N ) mod P ) - ( ( ( r x. I ) x. N ) mod P ) ) = ( 0 - ( ( ( ( r x. N ) mod P ) x. I ) mod P ) ) ) |
| 73 |
72
|
oveq1d |
|- ( ( ( r e. ( 1 ... ( P - 1 ) ) /\ ( ( N x. r ) mod P ) = 1 ) /\ ( P e. Prime /\ N e. ( 1 ..^ P ) /\ I e. ( 1 ..^ P ) ) ) -> ( ( ( ( P x. N ) mod P ) - ( ( ( r x. I ) x. N ) mod P ) ) mod P ) = ( ( 0 - ( ( ( ( r x. N ) mod P ) x. I ) mod P ) ) mod P ) ) |
| 74 |
|
remulcl |
|- ( ( P e. RR /\ N e. RR ) -> ( P x. N ) e. RR ) |
| 75 |
21 64 74
|
syl2an |
|- ( ( P e. Prime /\ N e. ( 1 ..^ P ) ) -> ( P x. N ) e. RR ) |
| 76 |
75
|
3adant3 |
|- ( ( P e. Prime /\ N e. ( 1 ..^ P ) /\ I e. ( 1 ..^ P ) ) -> ( P x. N ) e. RR ) |
| 77 |
76
|
adantl |
|- ( ( ( r e. ( 1 ... ( P - 1 ) ) /\ ( ( N x. r ) mod P ) = 1 ) /\ ( P e. Prime /\ N e. ( 1 ..^ P ) /\ I e. ( 1 ..^ P ) ) ) -> ( P x. N ) e. RR ) |
| 78 |
65
|
adantl |
|- ( ( ( r e. ( 1 ... ( P - 1 ) ) /\ ( ( N x. r ) mod P ) = 1 ) /\ ( P e. Prime /\ N e. ( 1 ..^ P ) /\ I e. ( 1 ..^ P ) ) ) -> N e. RR ) |
| 79 |
27 78
|
remulcld |
|- ( ( ( r e. ( 1 ... ( P - 1 ) ) /\ ( ( N x. r ) mod P ) = 1 ) /\ ( P e. Prime /\ N e. ( 1 ..^ P ) /\ I e. ( 1 ..^ P ) ) ) -> ( ( r x. I ) x. N ) e. RR ) |
| 80 |
|
modsubmodmod |
|- ( ( ( P x. N ) e. RR /\ ( ( r x. I ) x. N ) e. RR /\ P e. RR+ ) -> ( ( ( ( P x. N ) mod P ) - ( ( ( r x. I ) x. N ) mod P ) ) mod P ) = ( ( ( P x. N ) - ( ( r x. I ) x. N ) ) mod P ) ) |
| 81 |
77 79 34 80
|
syl3anc |
|- ( ( ( r e. ( 1 ... ( P - 1 ) ) /\ ( ( N x. r ) mod P ) = 1 ) /\ ( P e. Prime /\ N e. ( 1 ..^ P ) /\ I e. ( 1 ..^ P ) ) ) -> ( ( ( ( P x. N ) mod P ) - ( ( ( r x. I ) x. N ) mod P ) ) mod P ) = ( ( ( P x. N ) - ( ( r x. I ) x. N ) ) mod P ) ) |
| 82 |
|
mulcom |
|- ( ( N e. CC /\ r e. CC ) -> ( N x. r ) = ( r x. N ) ) |
| 83 |
47 40 82
|
syl2anr |
|- ( ( r e. ( 1 ... ( P - 1 ) ) /\ ( P e. Prime /\ N e. ( 1 ..^ P ) /\ I e. ( 1 ..^ P ) ) ) -> ( N x. r ) = ( r x. N ) ) |
| 84 |
83
|
oveq1d |
|- ( ( r e. ( 1 ... ( P - 1 ) ) /\ ( P e. Prime /\ N e. ( 1 ..^ P ) /\ I e. ( 1 ..^ P ) ) ) -> ( ( N x. r ) mod P ) = ( ( r x. N ) mod P ) ) |
| 85 |
84
|
eqeq1d |
|- ( ( r e. ( 1 ... ( P - 1 ) ) /\ ( P e. Prime /\ N e. ( 1 ..^ P ) /\ I e. ( 1 ..^ P ) ) ) -> ( ( ( N x. r ) mod P ) = 1 <-> ( ( r x. N ) mod P ) = 1 ) ) |
| 86 |
85
|
biimpd |
|- ( ( r e. ( 1 ... ( P - 1 ) ) /\ ( P e. Prime /\ N e. ( 1 ..^ P ) /\ I e. ( 1 ..^ P ) ) ) -> ( ( ( N x. r ) mod P ) = 1 -> ( ( r x. N ) mod P ) = 1 ) ) |
| 87 |
86
|
impancom |
|- ( ( r e. ( 1 ... ( P - 1 ) ) /\ ( ( N x. r ) mod P ) = 1 ) -> ( ( P e. Prime /\ N e. ( 1 ..^ P ) /\ I e. ( 1 ..^ P ) ) -> ( ( r x. N ) mod P ) = 1 ) ) |
| 88 |
87
|
imp |
|- ( ( ( r e. ( 1 ... ( P - 1 ) ) /\ ( ( N x. r ) mod P ) = 1 ) /\ ( P e. Prime /\ N e. ( 1 ..^ P ) /\ I e. ( 1 ..^ P ) ) ) -> ( ( r x. N ) mod P ) = 1 ) |
| 89 |
88
|
oveq1d |
|- ( ( ( r e. ( 1 ... ( P - 1 ) ) /\ ( ( N x. r ) mod P ) = 1 ) /\ ( P e. Prime /\ N e. ( 1 ..^ P ) /\ I e. ( 1 ..^ P ) ) ) -> ( ( ( r x. N ) mod P ) x. I ) = ( 1 x. I ) ) |
| 90 |
89
|
oveq1d |
|- ( ( ( r e. ( 1 ... ( P - 1 ) ) /\ ( ( N x. r ) mod P ) = 1 ) /\ ( P e. Prime /\ N e. ( 1 ..^ P ) /\ I e. ( 1 ..^ P ) ) ) -> ( ( ( ( r x. N ) mod P ) x. I ) mod P ) = ( ( 1 x. I ) mod P ) ) |
| 91 |
90
|
oveq2d |
|- ( ( ( r e. ( 1 ... ( P - 1 ) ) /\ ( ( N x. r ) mod P ) = 1 ) /\ ( P e. Prime /\ N e. ( 1 ..^ P ) /\ I e. ( 1 ..^ P ) ) ) -> ( 0 - ( ( ( ( r x. N ) mod P ) x. I ) mod P ) ) = ( 0 - ( ( 1 x. I ) mod P ) ) ) |
| 92 |
91
|
oveq1d |
|- ( ( ( r e. ( 1 ... ( P - 1 ) ) /\ ( ( N x. r ) mod P ) = 1 ) /\ ( P e. Prime /\ N e. ( 1 ..^ P ) /\ I e. ( 1 ..^ P ) ) ) -> ( ( 0 - ( ( ( ( r x. N ) mod P ) x. I ) mod P ) ) mod P ) = ( ( 0 - ( ( 1 x. I ) mod P ) ) mod P ) ) |
| 93 |
61
|
mullidd |
|- ( ( ( r e. ( 1 ... ( P - 1 ) ) /\ ( ( N x. r ) mod P ) = 1 ) /\ ( P e. Prime /\ N e. ( 1 ..^ P ) /\ I e. ( 1 ..^ P ) ) ) -> ( 1 x. I ) = I ) |
| 94 |
93
|
oveq1d |
|- ( ( ( r e. ( 1 ... ( P - 1 ) ) /\ ( ( N x. r ) mod P ) = 1 ) /\ ( P e. Prime /\ N e. ( 1 ..^ P ) /\ I e. ( 1 ..^ P ) ) ) -> ( ( 1 x. I ) mod P ) = ( I mod P ) ) |
| 95 |
32 18
|
anim12ci |
|- ( ( P e. Prime /\ I e. ( 1 ..^ P ) ) -> ( I e. RR /\ P e. RR+ ) ) |
| 96 |
|
elfzo2 |
|- ( I e. ( 1 ..^ P ) <-> ( I e. ( ZZ>= ` 1 ) /\ P e. ZZ /\ I < P ) ) |
| 97 |
|
eluz2 |
|- ( I e. ( ZZ>= ` 1 ) <-> ( 1 e. ZZ /\ I e. ZZ /\ 1 <_ I ) ) |
| 98 |
|
0red |
|- ( I e. ZZ -> 0 e. RR ) |
| 99 |
|
1red |
|- ( I e. ZZ -> 1 e. RR ) |
| 100 |
|
zre |
|- ( I e. ZZ -> I e. RR ) |
| 101 |
98 99 100
|
3jca |
|- ( I e. ZZ -> ( 0 e. RR /\ 1 e. RR /\ I e. RR ) ) |
| 102 |
101
|
adantr |
|- ( ( I e. ZZ /\ 1 <_ I ) -> ( 0 e. RR /\ 1 e. RR /\ I e. RR ) ) |
| 103 |
|
0le1 |
|- 0 <_ 1 |
| 104 |
103
|
a1i |
|- ( I e. ZZ -> 0 <_ 1 ) |
| 105 |
104
|
anim1i |
|- ( ( I e. ZZ /\ 1 <_ I ) -> ( 0 <_ 1 /\ 1 <_ I ) ) |
| 106 |
|
letr |
|- ( ( 0 e. RR /\ 1 e. RR /\ I e. RR ) -> ( ( 0 <_ 1 /\ 1 <_ I ) -> 0 <_ I ) ) |
| 107 |
102 105 106
|
sylc |
|- ( ( I e. ZZ /\ 1 <_ I ) -> 0 <_ I ) |
| 108 |
107
|
3adant1 |
|- ( ( 1 e. ZZ /\ I e. ZZ /\ 1 <_ I ) -> 0 <_ I ) |
| 109 |
97 108
|
sylbi |
|- ( I e. ( ZZ>= ` 1 ) -> 0 <_ I ) |
| 110 |
109
|
3ad2ant1 |
|- ( ( I e. ( ZZ>= ` 1 ) /\ P e. ZZ /\ I < P ) -> 0 <_ I ) |
| 111 |
|
simp3 |
|- ( ( I e. ( ZZ>= ` 1 ) /\ P e. ZZ /\ I < P ) -> I < P ) |
| 112 |
110 111
|
jca |
|- ( ( I e. ( ZZ>= ` 1 ) /\ P e. ZZ /\ I < P ) -> ( 0 <_ I /\ I < P ) ) |
| 113 |
96 112
|
sylbi |
|- ( I e. ( 1 ..^ P ) -> ( 0 <_ I /\ I < P ) ) |
| 114 |
113
|
adantl |
|- ( ( P e. Prime /\ I e. ( 1 ..^ P ) ) -> ( 0 <_ I /\ I < P ) ) |
| 115 |
95 114
|
jca |
|- ( ( P e. Prime /\ I e. ( 1 ..^ P ) ) -> ( ( I e. RR /\ P e. RR+ ) /\ ( 0 <_ I /\ I < P ) ) ) |
| 116 |
115
|
3adant2 |
|- ( ( P e. Prime /\ N e. ( 1 ..^ P ) /\ I e. ( 1 ..^ P ) ) -> ( ( I e. RR /\ P e. RR+ ) /\ ( 0 <_ I /\ I < P ) ) ) |
| 117 |
116
|
adantl |
|- ( ( ( r e. ( 1 ... ( P - 1 ) ) /\ ( ( N x. r ) mod P ) = 1 ) /\ ( P e. Prime /\ N e. ( 1 ..^ P ) /\ I e. ( 1 ..^ P ) ) ) -> ( ( I e. RR /\ P e. RR+ ) /\ ( 0 <_ I /\ I < P ) ) ) |
| 118 |
|
modid |
|- ( ( ( I e. RR /\ P e. RR+ ) /\ ( 0 <_ I /\ I < P ) ) -> ( I mod P ) = I ) |
| 119 |
117 118
|
syl |
|- ( ( ( r e. ( 1 ... ( P - 1 ) ) /\ ( ( N x. r ) mod P ) = 1 ) /\ ( P e. Prime /\ N e. ( 1 ..^ P ) /\ I e. ( 1 ..^ P ) ) ) -> ( I mod P ) = I ) |
| 120 |
94 119
|
eqtrd |
|- ( ( ( r e. ( 1 ... ( P - 1 ) ) /\ ( ( N x. r ) mod P ) = 1 ) /\ ( P e. Prime /\ N e. ( 1 ..^ P ) /\ I e. ( 1 ..^ P ) ) ) -> ( ( 1 x. I ) mod P ) = I ) |
| 121 |
120
|
oveq2d |
|- ( ( ( r e. ( 1 ... ( P - 1 ) ) /\ ( ( N x. r ) mod P ) = 1 ) /\ ( P e. Prime /\ N e. ( 1 ..^ P ) /\ I e. ( 1 ..^ P ) ) ) -> ( 0 - ( ( 1 x. I ) mod P ) ) = ( 0 - I ) ) |
| 122 |
121
|
oveq1d |
|- ( ( ( r e. ( 1 ... ( P - 1 ) ) /\ ( ( N x. r ) mod P ) = 1 ) /\ ( P e. Prime /\ N e. ( 1 ..^ P ) /\ I e. ( 1 ..^ P ) ) ) -> ( ( 0 - ( ( 1 x. I ) mod P ) ) mod P ) = ( ( 0 - I ) mod P ) ) |
| 123 |
92 122
|
eqtrd |
|- ( ( ( r e. ( 1 ... ( P - 1 ) ) /\ ( ( N x. r ) mod P ) = 1 ) /\ ( P e. Prime /\ N e. ( 1 ..^ P ) /\ I e. ( 1 ..^ P ) ) ) -> ( ( 0 - ( ( ( ( r x. N ) mod P ) x. I ) mod P ) ) mod P ) = ( ( 0 - I ) mod P ) ) |
| 124 |
73 81 123
|
3eqtr3d |
|- ( ( ( r e. ( 1 ... ( P - 1 ) ) /\ ( ( N x. r ) mod P ) = 1 ) /\ ( P e. Prime /\ N e. ( 1 ..^ P ) /\ I e. ( 1 ..^ P ) ) ) -> ( ( ( P x. N ) - ( ( r x. I ) x. N ) ) mod P ) = ( ( 0 - I ) mod P ) ) |
| 125 |
124
|
oveq2d |
|- ( ( ( r e. ( 1 ... ( P - 1 ) ) /\ ( ( N x. r ) mod P ) = 1 ) /\ ( P e. Prime /\ N e. ( 1 ..^ P ) /\ I e. ( 1 ..^ P ) ) ) -> ( I + ( ( ( P x. N ) - ( ( r x. I ) x. N ) ) mod P ) ) = ( I + ( ( 0 - I ) mod P ) ) ) |
| 126 |
125
|
oveq1d |
|- ( ( ( r e. ( 1 ... ( P - 1 ) ) /\ ( ( N x. r ) mod P ) = 1 ) /\ ( P e. Prime /\ N e. ( 1 ..^ P ) /\ I e. ( 1 ..^ P ) ) ) -> ( ( I + ( ( ( P x. N ) - ( ( r x. I ) x. N ) ) mod P ) ) mod P ) = ( ( I + ( ( 0 - I ) mod P ) ) mod P ) ) |
| 127 |
77 79
|
resubcld |
|- ( ( ( r e. ( 1 ... ( P - 1 ) ) /\ ( ( N x. r ) mod P ) = 1 ) /\ ( P e. Prime /\ N e. ( 1 ..^ P ) /\ I e. ( 1 ..^ P ) ) ) -> ( ( P x. N ) - ( ( r x. I ) x. N ) ) e. RR ) |
| 128 |
|
modadd2mod |
|- ( ( ( ( P x. N ) - ( ( r x. I ) x. N ) ) e. RR /\ I e. RR /\ P e. RR+ ) -> ( ( I + ( ( ( P x. N ) - ( ( r x. I ) x. N ) ) mod P ) ) mod P ) = ( ( I + ( ( P x. N ) - ( ( r x. I ) x. N ) ) ) mod P ) ) |
| 129 |
127 20 34 128
|
syl3anc |
|- ( ( ( r e. ( 1 ... ( P - 1 ) ) /\ ( ( N x. r ) mod P ) = 1 ) /\ ( P e. Prime /\ N e. ( 1 ..^ P ) /\ I e. ( 1 ..^ P ) ) ) -> ( ( I + ( ( ( P x. N ) - ( ( r x. I ) x. N ) ) mod P ) ) mod P ) = ( ( I + ( ( P x. N ) - ( ( r x. I ) x. N ) ) ) mod P ) ) |
| 130 |
|
0red |
|- ( I e. ( 1 ..^ P ) -> 0 e. RR ) |
| 131 |
130 18
|
resubcld |
|- ( I e. ( 1 ..^ P ) -> ( 0 - I ) e. RR ) |
| 132 |
131
|
adantl |
|- ( ( P e. Prime /\ I e. ( 1 ..^ P ) ) -> ( 0 - I ) e. RR ) |
| 133 |
18
|
adantl |
|- ( ( P e. Prime /\ I e. ( 1 ..^ P ) ) -> I e. RR ) |
| 134 |
32
|
adantr |
|- ( ( P e. Prime /\ I e. ( 1 ..^ P ) ) -> P e. RR+ ) |
| 135 |
132 133 134
|
3jca |
|- ( ( P e. Prime /\ I e. ( 1 ..^ P ) ) -> ( ( 0 - I ) e. RR /\ I e. RR /\ P e. RR+ ) ) |
| 136 |
135
|
3adant2 |
|- ( ( P e. Prime /\ N e. ( 1 ..^ P ) /\ I e. ( 1 ..^ P ) ) -> ( ( 0 - I ) e. RR /\ I e. RR /\ P e. RR+ ) ) |
| 137 |
136
|
adantl |
|- ( ( ( r e. ( 1 ... ( P - 1 ) ) /\ ( ( N x. r ) mod P ) = 1 ) /\ ( P e. Prime /\ N e. ( 1 ..^ P ) /\ I e. ( 1 ..^ P ) ) ) -> ( ( 0 - I ) e. RR /\ I e. RR /\ P e. RR+ ) ) |
| 138 |
|
modadd2mod |
|- ( ( ( 0 - I ) e. RR /\ I e. RR /\ P e. RR+ ) -> ( ( I + ( ( 0 - I ) mod P ) ) mod P ) = ( ( I + ( 0 - I ) ) mod P ) ) |
| 139 |
137 138
|
syl |
|- ( ( ( r e. ( 1 ... ( P - 1 ) ) /\ ( ( N x. r ) mod P ) = 1 ) /\ ( P e. Prime /\ N e. ( 1 ..^ P ) /\ I e. ( 1 ..^ P ) ) ) -> ( ( I + ( ( 0 - I ) mod P ) ) mod P ) = ( ( I + ( 0 - I ) ) mod P ) ) |
| 140 |
|
0cnd |
|- ( I e. ( 1 ..^ P ) -> 0 e. CC ) |
| 141 |
42 140
|
pncan3d |
|- ( I e. ( 1 ..^ P ) -> ( I + ( 0 - I ) ) = 0 ) |
| 142 |
141
|
3ad2ant3 |
|- ( ( P e. Prime /\ N e. ( 1 ..^ P ) /\ I e. ( 1 ..^ P ) ) -> ( I + ( 0 - I ) ) = 0 ) |
| 143 |
142
|
adantl |
|- ( ( ( r e. ( 1 ... ( P - 1 ) ) /\ ( ( N x. r ) mod P ) = 1 ) /\ ( P e. Prime /\ N e. ( 1 ..^ P ) /\ I e. ( 1 ..^ P ) ) ) -> ( I + ( 0 - I ) ) = 0 ) |
| 144 |
143
|
oveq1d |
|- ( ( ( r e. ( 1 ... ( P - 1 ) ) /\ ( ( N x. r ) mod P ) = 1 ) /\ ( P e. Prime /\ N e. ( 1 ..^ P ) /\ I e. ( 1 ..^ P ) ) ) -> ( ( I + ( 0 - I ) ) mod P ) = ( 0 mod P ) ) |
| 145 |
|
0mod |
|- ( P e. RR+ -> ( 0 mod P ) = 0 ) |
| 146 |
32 145
|
syl |
|- ( P e. Prime -> ( 0 mod P ) = 0 ) |
| 147 |
146
|
3ad2ant1 |
|- ( ( P e. Prime /\ N e. ( 1 ..^ P ) /\ I e. ( 1 ..^ P ) ) -> ( 0 mod P ) = 0 ) |
| 148 |
147
|
adantl |
|- ( ( ( r e. ( 1 ... ( P - 1 ) ) /\ ( ( N x. r ) mod P ) = 1 ) /\ ( P e. Prime /\ N e. ( 1 ..^ P ) /\ I e. ( 1 ..^ P ) ) ) -> ( 0 mod P ) = 0 ) |
| 149 |
139 144 148
|
3eqtrd |
|- ( ( ( r e. ( 1 ... ( P - 1 ) ) /\ ( ( N x. r ) mod P ) = 1 ) /\ ( P e. Prime /\ N e. ( 1 ..^ P ) /\ I e. ( 1 ..^ P ) ) ) -> ( ( I + ( ( 0 - I ) mod P ) ) mod P ) = 0 ) |
| 150 |
126 129 149
|
3eqtr3d |
|- ( ( ( r e. ( 1 ... ( P - 1 ) ) /\ ( ( N x. r ) mod P ) = 1 ) /\ ( P e. Prime /\ N e. ( 1 ..^ P ) /\ I e. ( 1 ..^ P ) ) ) -> ( ( I + ( ( P x. N ) - ( ( r x. I ) x. N ) ) ) mod P ) = 0 ) |
| 151 |
36 51 150
|
3eqtrd |
|- ( ( ( r e. ( 1 ... ( P - 1 ) ) /\ ( ( N x. r ) mod P ) = 1 ) /\ ( P e. Prime /\ N e. ( 1 ..^ P ) /\ I e. ( 1 ..^ P ) ) ) -> ( ( I + ( ( ( P - ( r x. I ) ) mod P ) x. N ) ) mod P ) = 0 ) |
| 152 |
|
oveq1 |
|- ( j = ( ( P - ( r x. I ) ) mod P ) -> ( j x. N ) = ( ( ( P - ( r x. I ) ) mod P ) x. N ) ) |
| 153 |
152
|
oveq2d |
|- ( j = ( ( P - ( r x. I ) ) mod P ) -> ( I + ( j x. N ) ) = ( I + ( ( ( P - ( r x. I ) ) mod P ) x. N ) ) ) |
| 154 |
153
|
oveq1d |
|- ( j = ( ( P - ( r x. I ) ) mod P ) -> ( ( I + ( j x. N ) ) mod P ) = ( ( I + ( ( ( P - ( r x. I ) ) mod P ) x. N ) ) mod P ) ) |
| 155 |
154
|
eqeq1d |
|- ( j = ( ( P - ( r x. I ) ) mod P ) -> ( ( ( I + ( j x. N ) ) mod P ) = 0 <-> ( ( I + ( ( ( P - ( r x. I ) ) mod P ) x. N ) ) mod P ) = 0 ) ) |
| 156 |
155
|
rspcev |
|- ( ( ( ( P - ( r x. I ) ) mod P ) e. ( 0 ..^ P ) /\ ( ( I + ( ( ( P - ( r x. I ) ) mod P ) x. N ) ) mod P ) = 0 ) -> E. j e. ( 0 ..^ P ) ( ( I + ( j x. N ) ) mod P ) = 0 ) |
| 157 |
17 151 156
|
syl2anc |
|- ( ( ( r e. ( 1 ... ( P - 1 ) ) /\ ( ( N x. r ) mod P ) = 1 ) /\ ( P e. Prime /\ N e. ( 1 ..^ P ) /\ I e. ( 1 ..^ P ) ) ) -> E. j e. ( 0 ..^ P ) ( ( I + ( j x. N ) ) mod P ) = 0 ) |
| 158 |
157
|
ex |
|- ( ( r e. ( 1 ... ( P - 1 ) ) /\ ( ( N x. r ) mod P ) = 1 ) -> ( ( P e. Prime /\ N e. ( 1 ..^ P ) /\ I e. ( 1 ..^ P ) ) -> E. j e. ( 0 ..^ P ) ( ( I + ( j x. N ) ) mod P ) = 0 ) ) |
| 159 |
158
|
rexlimiva |
|- ( E. r e. ( 1 ... ( P - 1 ) ) ( ( N x. r ) mod P ) = 1 -> ( ( P e. Prime /\ N e. ( 1 ..^ P ) /\ I e. ( 1 ..^ P ) ) -> E. j e. ( 0 ..^ P ) ( ( I + ( j x. N ) ) mod P ) = 0 ) ) |
| 160 |
1 2 159
|
3syl |
|- ( ( P e. Prime /\ N e. ( 1 ..^ P ) ) -> ( ( P e. Prime /\ N e. ( 1 ..^ P ) /\ I e. ( 1 ..^ P ) ) -> E. j e. ( 0 ..^ P ) ( ( I + ( j x. N ) ) mod P ) = 0 ) ) |
| 161 |
160
|
3adant3 |
|- ( ( P e. Prime /\ N e. ( 1 ..^ P ) /\ I e. ( 1 ..^ P ) ) -> ( ( P e. Prime /\ N e. ( 1 ..^ P ) /\ I e. ( 1 ..^ P ) ) -> E. j e. ( 0 ..^ P ) ( ( I + ( j x. N ) ) mod P ) = 0 ) ) |
| 162 |
161
|
pm2.43i |
|- ( ( P e. Prime /\ N e. ( 1 ..^ P ) /\ I e. ( 1 ..^ P ) ) -> E. j e. ( 0 ..^ P ) ( ( I + ( j x. N ) ) mod P ) = 0 ) |