| Step |
Hyp |
Ref |
Expression |
| 1 |
|
prmnn |
|- ( P e. Prime -> P e. NN ) |
| 2 |
1
|
adantr |
|- ( ( P e. Prime /\ N e. ( 1 ..^ P ) ) -> P e. NN ) |
| 3 |
|
fzo0sn0fzo1 |
|- ( P e. NN -> ( 0 ..^ P ) = ( { 0 } u. ( 1 ..^ P ) ) ) |
| 4 |
2 3
|
syl |
|- ( ( P e. Prime /\ N e. ( 1 ..^ P ) ) -> ( 0 ..^ P ) = ( { 0 } u. ( 1 ..^ P ) ) ) |
| 5 |
4
|
eleq2d |
|- ( ( P e. Prime /\ N e. ( 1 ..^ P ) ) -> ( I e. ( 0 ..^ P ) <-> I e. ( { 0 } u. ( 1 ..^ P ) ) ) ) |
| 6 |
|
elun |
|- ( I e. ( { 0 } u. ( 1 ..^ P ) ) <-> ( I e. { 0 } \/ I e. ( 1 ..^ P ) ) ) |
| 7 |
|
elsni |
|- ( I e. { 0 } -> I = 0 ) |
| 8 |
|
lbfzo0 |
|- ( 0 e. ( 0 ..^ P ) <-> P e. NN ) |
| 9 |
1 8
|
sylibr |
|- ( P e. Prime -> 0 e. ( 0 ..^ P ) ) |
| 10 |
|
elfzoelz |
|- ( N e. ( 1 ..^ P ) -> N e. ZZ ) |
| 11 |
|
zcn |
|- ( N e. ZZ -> N e. CC ) |
| 12 |
|
mul02 |
|- ( N e. CC -> ( 0 x. N ) = 0 ) |
| 13 |
12
|
oveq2d |
|- ( N e. CC -> ( 0 + ( 0 x. N ) ) = ( 0 + 0 ) ) |
| 14 |
|
00id |
|- ( 0 + 0 ) = 0 |
| 15 |
13 14
|
eqtrdi |
|- ( N e. CC -> ( 0 + ( 0 x. N ) ) = 0 ) |
| 16 |
10 11 15
|
3syl |
|- ( N e. ( 1 ..^ P ) -> ( 0 + ( 0 x. N ) ) = 0 ) |
| 17 |
16
|
adantl |
|- ( ( P e. Prime /\ N e. ( 1 ..^ P ) ) -> ( 0 + ( 0 x. N ) ) = 0 ) |
| 18 |
17
|
oveq1d |
|- ( ( P e. Prime /\ N e. ( 1 ..^ P ) ) -> ( ( 0 + ( 0 x. N ) ) mod P ) = ( 0 mod P ) ) |
| 19 |
|
nnrp |
|- ( P e. NN -> P e. RR+ ) |
| 20 |
|
0mod |
|- ( P e. RR+ -> ( 0 mod P ) = 0 ) |
| 21 |
1 19 20
|
3syl |
|- ( P e. Prime -> ( 0 mod P ) = 0 ) |
| 22 |
21
|
adantr |
|- ( ( P e. Prime /\ N e. ( 1 ..^ P ) ) -> ( 0 mod P ) = 0 ) |
| 23 |
18 22
|
eqtrd |
|- ( ( P e. Prime /\ N e. ( 1 ..^ P ) ) -> ( ( 0 + ( 0 x. N ) ) mod P ) = 0 ) |
| 24 |
|
oveq1 |
|- ( j = 0 -> ( j x. N ) = ( 0 x. N ) ) |
| 25 |
24
|
oveq2d |
|- ( j = 0 -> ( 0 + ( j x. N ) ) = ( 0 + ( 0 x. N ) ) ) |
| 26 |
25
|
oveq1d |
|- ( j = 0 -> ( ( 0 + ( j x. N ) ) mod P ) = ( ( 0 + ( 0 x. N ) ) mod P ) ) |
| 27 |
26
|
eqeq1d |
|- ( j = 0 -> ( ( ( 0 + ( j x. N ) ) mod P ) = 0 <-> ( ( 0 + ( 0 x. N ) ) mod P ) = 0 ) ) |
| 28 |
27
|
rspcev |
|- ( ( 0 e. ( 0 ..^ P ) /\ ( ( 0 + ( 0 x. N ) ) mod P ) = 0 ) -> E. j e. ( 0 ..^ P ) ( ( 0 + ( j x. N ) ) mod P ) = 0 ) |
| 29 |
9 23 28
|
syl2an2r |
|- ( ( P e. Prime /\ N e. ( 1 ..^ P ) ) -> E. j e. ( 0 ..^ P ) ( ( 0 + ( j x. N ) ) mod P ) = 0 ) |
| 30 |
29
|
adantl |
|- ( ( I = 0 /\ ( P e. Prime /\ N e. ( 1 ..^ P ) ) ) -> E. j e. ( 0 ..^ P ) ( ( 0 + ( j x. N ) ) mod P ) = 0 ) |
| 31 |
|
oveq1 |
|- ( I = 0 -> ( I + ( j x. N ) ) = ( 0 + ( j x. N ) ) ) |
| 32 |
31
|
oveq1d |
|- ( I = 0 -> ( ( I + ( j x. N ) ) mod P ) = ( ( 0 + ( j x. N ) ) mod P ) ) |
| 33 |
32
|
eqeq1d |
|- ( I = 0 -> ( ( ( I + ( j x. N ) ) mod P ) = 0 <-> ( ( 0 + ( j x. N ) ) mod P ) = 0 ) ) |
| 34 |
33
|
adantr |
|- ( ( I = 0 /\ ( P e. Prime /\ N e. ( 1 ..^ P ) ) ) -> ( ( ( I + ( j x. N ) ) mod P ) = 0 <-> ( ( 0 + ( j x. N ) ) mod P ) = 0 ) ) |
| 35 |
34
|
rexbidv |
|- ( ( I = 0 /\ ( P e. Prime /\ N e. ( 1 ..^ P ) ) ) -> ( E. j e. ( 0 ..^ P ) ( ( I + ( j x. N ) ) mod P ) = 0 <-> E. j e. ( 0 ..^ P ) ( ( 0 + ( j x. N ) ) mod P ) = 0 ) ) |
| 36 |
30 35
|
mpbird |
|- ( ( I = 0 /\ ( P e. Prime /\ N e. ( 1 ..^ P ) ) ) -> E. j e. ( 0 ..^ P ) ( ( I + ( j x. N ) ) mod P ) = 0 ) |
| 37 |
36
|
ex |
|- ( I = 0 -> ( ( P e. Prime /\ N e. ( 1 ..^ P ) ) -> E. j e. ( 0 ..^ P ) ( ( I + ( j x. N ) ) mod P ) = 0 ) ) |
| 38 |
7 37
|
syl |
|- ( I e. { 0 } -> ( ( P e. Prime /\ N e. ( 1 ..^ P ) ) -> E. j e. ( 0 ..^ P ) ( ( I + ( j x. N ) ) mod P ) = 0 ) ) |
| 39 |
|
simpl |
|- ( ( P e. Prime /\ N e. ( 1 ..^ P ) ) -> P e. Prime ) |
| 40 |
39
|
adantl |
|- ( ( I e. ( 1 ..^ P ) /\ ( P e. Prime /\ N e. ( 1 ..^ P ) ) ) -> P e. Prime ) |
| 41 |
|
simprr |
|- ( ( I e. ( 1 ..^ P ) /\ ( P e. Prime /\ N e. ( 1 ..^ P ) ) ) -> N e. ( 1 ..^ P ) ) |
| 42 |
|
simpl |
|- ( ( I e. ( 1 ..^ P ) /\ ( P e. Prime /\ N e. ( 1 ..^ P ) ) ) -> I e. ( 1 ..^ P ) ) |
| 43 |
|
modprm0 |
|- ( ( P e. Prime /\ N e. ( 1 ..^ P ) /\ I e. ( 1 ..^ P ) ) -> E. j e. ( 0 ..^ P ) ( ( I + ( j x. N ) ) mod P ) = 0 ) |
| 44 |
40 41 42 43
|
syl3anc |
|- ( ( I e. ( 1 ..^ P ) /\ ( P e. Prime /\ N e. ( 1 ..^ P ) ) ) -> E. j e. ( 0 ..^ P ) ( ( I + ( j x. N ) ) mod P ) = 0 ) |
| 45 |
44
|
ex |
|- ( I e. ( 1 ..^ P ) -> ( ( P e. Prime /\ N e. ( 1 ..^ P ) ) -> E. j e. ( 0 ..^ P ) ( ( I + ( j x. N ) ) mod P ) = 0 ) ) |
| 46 |
38 45
|
jaoi |
|- ( ( I e. { 0 } \/ I e. ( 1 ..^ P ) ) -> ( ( P e. Prime /\ N e. ( 1 ..^ P ) ) -> E. j e. ( 0 ..^ P ) ( ( I + ( j x. N ) ) mod P ) = 0 ) ) |
| 47 |
6 46
|
sylbi |
|- ( I e. ( { 0 } u. ( 1 ..^ P ) ) -> ( ( P e. Prime /\ N e. ( 1 ..^ P ) ) -> E. j e. ( 0 ..^ P ) ( ( I + ( j x. N ) ) mod P ) = 0 ) ) |
| 48 |
47
|
com12 |
|- ( ( P e. Prime /\ N e. ( 1 ..^ P ) ) -> ( I e. ( { 0 } u. ( 1 ..^ P ) ) -> E. j e. ( 0 ..^ P ) ( ( I + ( j x. N ) ) mod P ) = 0 ) ) |
| 49 |
5 48
|
sylbid |
|- ( ( P e. Prime /\ N e. ( 1 ..^ P ) ) -> ( I e. ( 0 ..^ P ) -> E. j e. ( 0 ..^ P ) ( ( I + ( j x. N ) ) mod P ) = 0 ) ) |
| 50 |
49
|
3impia |
|- ( ( P e. Prime /\ N e. ( 1 ..^ P ) /\ I e. ( 0 ..^ P ) ) -> E. j e. ( 0 ..^ P ) ( ( I + ( j x. N ) ) mod P ) = 0 ) |