| Step | Hyp | Ref | Expression | 
						
							| 1 |  | prmnn | ⊢ ( 𝑃  ∈  ℙ  →  𝑃  ∈  ℕ ) | 
						
							| 2 | 1 | adantr | ⊢ ( ( 𝑃  ∈  ℙ  ∧  𝑁  ∈  ( 1 ..^ 𝑃 ) )  →  𝑃  ∈  ℕ ) | 
						
							| 3 |  | fzo0sn0fzo1 | ⊢ ( 𝑃  ∈  ℕ  →  ( 0 ..^ 𝑃 )  =  ( { 0 }  ∪  ( 1 ..^ 𝑃 ) ) ) | 
						
							| 4 | 2 3 | syl | ⊢ ( ( 𝑃  ∈  ℙ  ∧  𝑁  ∈  ( 1 ..^ 𝑃 ) )  →  ( 0 ..^ 𝑃 )  =  ( { 0 }  ∪  ( 1 ..^ 𝑃 ) ) ) | 
						
							| 5 | 4 | eleq2d | ⊢ ( ( 𝑃  ∈  ℙ  ∧  𝑁  ∈  ( 1 ..^ 𝑃 ) )  →  ( 𝐼  ∈  ( 0 ..^ 𝑃 )  ↔  𝐼  ∈  ( { 0 }  ∪  ( 1 ..^ 𝑃 ) ) ) ) | 
						
							| 6 |  | elun | ⊢ ( 𝐼  ∈  ( { 0 }  ∪  ( 1 ..^ 𝑃 ) )  ↔  ( 𝐼  ∈  { 0 }  ∨  𝐼  ∈  ( 1 ..^ 𝑃 ) ) ) | 
						
							| 7 |  | elsni | ⊢ ( 𝐼  ∈  { 0 }  →  𝐼  =  0 ) | 
						
							| 8 |  | lbfzo0 | ⊢ ( 0  ∈  ( 0 ..^ 𝑃 )  ↔  𝑃  ∈  ℕ ) | 
						
							| 9 | 1 8 | sylibr | ⊢ ( 𝑃  ∈  ℙ  →  0  ∈  ( 0 ..^ 𝑃 ) ) | 
						
							| 10 |  | elfzoelz | ⊢ ( 𝑁  ∈  ( 1 ..^ 𝑃 )  →  𝑁  ∈  ℤ ) | 
						
							| 11 |  | zcn | ⊢ ( 𝑁  ∈  ℤ  →  𝑁  ∈  ℂ ) | 
						
							| 12 |  | mul02 | ⊢ ( 𝑁  ∈  ℂ  →  ( 0  ·  𝑁 )  =  0 ) | 
						
							| 13 | 12 | oveq2d | ⊢ ( 𝑁  ∈  ℂ  →  ( 0  +  ( 0  ·  𝑁 ) )  =  ( 0  +  0 ) ) | 
						
							| 14 |  | 00id | ⊢ ( 0  +  0 )  =  0 | 
						
							| 15 | 13 14 | eqtrdi | ⊢ ( 𝑁  ∈  ℂ  →  ( 0  +  ( 0  ·  𝑁 ) )  =  0 ) | 
						
							| 16 | 10 11 15 | 3syl | ⊢ ( 𝑁  ∈  ( 1 ..^ 𝑃 )  →  ( 0  +  ( 0  ·  𝑁 ) )  =  0 ) | 
						
							| 17 | 16 | adantl | ⊢ ( ( 𝑃  ∈  ℙ  ∧  𝑁  ∈  ( 1 ..^ 𝑃 ) )  →  ( 0  +  ( 0  ·  𝑁 ) )  =  0 ) | 
						
							| 18 | 17 | oveq1d | ⊢ ( ( 𝑃  ∈  ℙ  ∧  𝑁  ∈  ( 1 ..^ 𝑃 ) )  →  ( ( 0  +  ( 0  ·  𝑁 ) )  mod  𝑃 )  =  ( 0  mod  𝑃 ) ) | 
						
							| 19 |  | nnrp | ⊢ ( 𝑃  ∈  ℕ  →  𝑃  ∈  ℝ+ ) | 
						
							| 20 |  | 0mod | ⊢ ( 𝑃  ∈  ℝ+  →  ( 0  mod  𝑃 )  =  0 ) | 
						
							| 21 | 1 19 20 | 3syl | ⊢ ( 𝑃  ∈  ℙ  →  ( 0  mod  𝑃 )  =  0 ) | 
						
							| 22 | 21 | adantr | ⊢ ( ( 𝑃  ∈  ℙ  ∧  𝑁  ∈  ( 1 ..^ 𝑃 ) )  →  ( 0  mod  𝑃 )  =  0 ) | 
						
							| 23 | 18 22 | eqtrd | ⊢ ( ( 𝑃  ∈  ℙ  ∧  𝑁  ∈  ( 1 ..^ 𝑃 ) )  →  ( ( 0  +  ( 0  ·  𝑁 ) )  mod  𝑃 )  =  0 ) | 
						
							| 24 |  | oveq1 | ⊢ ( 𝑗  =  0  →  ( 𝑗  ·  𝑁 )  =  ( 0  ·  𝑁 ) ) | 
						
							| 25 | 24 | oveq2d | ⊢ ( 𝑗  =  0  →  ( 0  +  ( 𝑗  ·  𝑁 ) )  =  ( 0  +  ( 0  ·  𝑁 ) ) ) | 
						
							| 26 | 25 | oveq1d | ⊢ ( 𝑗  =  0  →  ( ( 0  +  ( 𝑗  ·  𝑁 ) )  mod  𝑃 )  =  ( ( 0  +  ( 0  ·  𝑁 ) )  mod  𝑃 ) ) | 
						
							| 27 | 26 | eqeq1d | ⊢ ( 𝑗  =  0  →  ( ( ( 0  +  ( 𝑗  ·  𝑁 ) )  mod  𝑃 )  =  0  ↔  ( ( 0  +  ( 0  ·  𝑁 ) )  mod  𝑃 )  =  0 ) ) | 
						
							| 28 | 27 | rspcev | ⊢ ( ( 0  ∈  ( 0 ..^ 𝑃 )  ∧  ( ( 0  +  ( 0  ·  𝑁 ) )  mod  𝑃 )  =  0 )  →  ∃ 𝑗  ∈  ( 0 ..^ 𝑃 ) ( ( 0  +  ( 𝑗  ·  𝑁 ) )  mod  𝑃 )  =  0 ) | 
						
							| 29 | 9 23 28 | syl2an2r | ⊢ ( ( 𝑃  ∈  ℙ  ∧  𝑁  ∈  ( 1 ..^ 𝑃 ) )  →  ∃ 𝑗  ∈  ( 0 ..^ 𝑃 ) ( ( 0  +  ( 𝑗  ·  𝑁 ) )  mod  𝑃 )  =  0 ) | 
						
							| 30 | 29 | adantl | ⊢ ( ( 𝐼  =  0  ∧  ( 𝑃  ∈  ℙ  ∧  𝑁  ∈  ( 1 ..^ 𝑃 ) ) )  →  ∃ 𝑗  ∈  ( 0 ..^ 𝑃 ) ( ( 0  +  ( 𝑗  ·  𝑁 ) )  mod  𝑃 )  =  0 ) | 
						
							| 31 |  | oveq1 | ⊢ ( 𝐼  =  0  →  ( 𝐼  +  ( 𝑗  ·  𝑁 ) )  =  ( 0  +  ( 𝑗  ·  𝑁 ) ) ) | 
						
							| 32 | 31 | oveq1d | ⊢ ( 𝐼  =  0  →  ( ( 𝐼  +  ( 𝑗  ·  𝑁 ) )  mod  𝑃 )  =  ( ( 0  +  ( 𝑗  ·  𝑁 ) )  mod  𝑃 ) ) | 
						
							| 33 | 32 | eqeq1d | ⊢ ( 𝐼  =  0  →  ( ( ( 𝐼  +  ( 𝑗  ·  𝑁 ) )  mod  𝑃 )  =  0  ↔  ( ( 0  +  ( 𝑗  ·  𝑁 ) )  mod  𝑃 )  =  0 ) ) | 
						
							| 34 | 33 | adantr | ⊢ ( ( 𝐼  =  0  ∧  ( 𝑃  ∈  ℙ  ∧  𝑁  ∈  ( 1 ..^ 𝑃 ) ) )  →  ( ( ( 𝐼  +  ( 𝑗  ·  𝑁 ) )  mod  𝑃 )  =  0  ↔  ( ( 0  +  ( 𝑗  ·  𝑁 ) )  mod  𝑃 )  =  0 ) ) | 
						
							| 35 | 34 | rexbidv | ⊢ ( ( 𝐼  =  0  ∧  ( 𝑃  ∈  ℙ  ∧  𝑁  ∈  ( 1 ..^ 𝑃 ) ) )  →  ( ∃ 𝑗  ∈  ( 0 ..^ 𝑃 ) ( ( 𝐼  +  ( 𝑗  ·  𝑁 ) )  mod  𝑃 )  =  0  ↔  ∃ 𝑗  ∈  ( 0 ..^ 𝑃 ) ( ( 0  +  ( 𝑗  ·  𝑁 ) )  mod  𝑃 )  =  0 ) ) | 
						
							| 36 | 30 35 | mpbird | ⊢ ( ( 𝐼  =  0  ∧  ( 𝑃  ∈  ℙ  ∧  𝑁  ∈  ( 1 ..^ 𝑃 ) ) )  →  ∃ 𝑗  ∈  ( 0 ..^ 𝑃 ) ( ( 𝐼  +  ( 𝑗  ·  𝑁 ) )  mod  𝑃 )  =  0 ) | 
						
							| 37 | 36 | ex | ⊢ ( 𝐼  =  0  →  ( ( 𝑃  ∈  ℙ  ∧  𝑁  ∈  ( 1 ..^ 𝑃 ) )  →  ∃ 𝑗  ∈  ( 0 ..^ 𝑃 ) ( ( 𝐼  +  ( 𝑗  ·  𝑁 ) )  mod  𝑃 )  =  0 ) ) | 
						
							| 38 | 7 37 | syl | ⊢ ( 𝐼  ∈  { 0 }  →  ( ( 𝑃  ∈  ℙ  ∧  𝑁  ∈  ( 1 ..^ 𝑃 ) )  →  ∃ 𝑗  ∈  ( 0 ..^ 𝑃 ) ( ( 𝐼  +  ( 𝑗  ·  𝑁 ) )  mod  𝑃 )  =  0 ) ) | 
						
							| 39 |  | simpl | ⊢ ( ( 𝑃  ∈  ℙ  ∧  𝑁  ∈  ( 1 ..^ 𝑃 ) )  →  𝑃  ∈  ℙ ) | 
						
							| 40 | 39 | adantl | ⊢ ( ( 𝐼  ∈  ( 1 ..^ 𝑃 )  ∧  ( 𝑃  ∈  ℙ  ∧  𝑁  ∈  ( 1 ..^ 𝑃 ) ) )  →  𝑃  ∈  ℙ ) | 
						
							| 41 |  | simprr | ⊢ ( ( 𝐼  ∈  ( 1 ..^ 𝑃 )  ∧  ( 𝑃  ∈  ℙ  ∧  𝑁  ∈  ( 1 ..^ 𝑃 ) ) )  →  𝑁  ∈  ( 1 ..^ 𝑃 ) ) | 
						
							| 42 |  | simpl | ⊢ ( ( 𝐼  ∈  ( 1 ..^ 𝑃 )  ∧  ( 𝑃  ∈  ℙ  ∧  𝑁  ∈  ( 1 ..^ 𝑃 ) ) )  →  𝐼  ∈  ( 1 ..^ 𝑃 ) ) | 
						
							| 43 |  | modprm0 | ⊢ ( ( 𝑃  ∈  ℙ  ∧  𝑁  ∈  ( 1 ..^ 𝑃 )  ∧  𝐼  ∈  ( 1 ..^ 𝑃 ) )  →  ∃ 𝑗  ∈  ( 0 ..^ 𝑃 ) ( ( 𝐼  +  ( 𝑗  ·  𝑁 ) )  mod  𝑃 )  =  0 ) | 
						
							| 44 | 40 41 42 43 | syl3anc | ⊢ ( ( 𝐼  ∈  ( 1 ..^ 𝑃 )  ∧  ( 𝑃  ∈  ℙ  ∧  𝑁  ∈  ( 1 ..^ 𝑃 ) ) )  →  ∃ 𝑗  ∈  ( 0 ..^ 𝑃 ) ( ( 𝐼  +  ( 𝑗  ·  𝑁 ) )  mod  𝑃 )  =  0 ) | 
						
							| 45 | 44 | ex | ⊢ ( 𝐼  ∈  ( 1 ..^ 𝑃 )  →  ( ( 𝑃  ∈  ℙ  ∧  𝑁  ∈  ( 1 ..^ 𝑃 ) )  →  ∃ 𝑗  ∈  ( 0 ..^ 𝑃 ) ( ( 𝐼  +  ( 𝑗  ·  𝑁 ) )  mod  𝑃 )  =  0 ) ) | 
						
							| 46 | 38 45 | jaoi | ⊢ ( ( 𝐼  ∈  { 0 }  ∨  𝐼  ∈  ( 1 ..^ 𝑃 ) )  →  ( ( 𝑃  ∈  ℙ  ∧  𝑁  ∈  ( 1 ..^ 𝑃 ) )  →  ∃ 𝑗  ∈  ( 0 ..^ 𝑃 ) ( ( 𝐼  +  ( 𝑗  ·  𝑁 ) )  mod  𝑃 )  =  0 ) ) | 
						
							| 47 | 6 46 | sylbi | ⊢ ( 𝐼  ∈  ( { 0 }  ∪  ( 1 ..^ 𝑃 ) )  →  ( ( 𝑃  ∈  ℙ  ∧  𝑁  ∈  ( 1 ..^ 𝑃 ) )  →  ∃ 𝑗  ∈  ( 0 ..^ 𝑃 ) ( ( 𝐼  +  ( 𝑗  ·  𝑁 ) )  mod  𝑃 )  =  0 ) ) | 
						
							| 48 | 47 | com12 | ⊢ ( ( 𝑃  ∈  ℙ  ∧  𝑁  ∈  ( 1 ..^ 𝑃 ) )  →  ( 𝐼  ∈  ( { 0 }  ∪  ( 1 ..^ 𝑃 ) )  →  ∃ 𝑗  ∈  ( 0 ..^ 𝑃 ) ( ( 𝐼  +  ( 𝑗  ·  𝑁 ) )  mod  𝑃 )  =  0 ) ) | 
						
							| 49 | 5 48 | sylbid | ⊢ ( ( 𝑃  ∈  ℙ  ∧  𝑁  ∈  ( 1 ..^ 𝑃 ) )  →  ( 𝐼  ∈  ( 0 ..^ 𝑃 )  →  ∃ 𝑗  ∈  ( 0 ..^ 𝑃 ) ( ( 𝐼  +  ( 𝑗  ·  𝑁 ) )  mod  𝑃 )  =  0 ) ) | 
						
							| 50 | 49 | 3impia | ⊢ ( ( 𝑃  ∈  ℙ  ∧  𝑁  ∈  ( 1 ..^ 𝑃 )  ∧  𝐼  ∈  ( 0 ..^ 𝑃 ) )  →  ∃ 𝑗  ∈  ( 0 ..^ 𝑃 ) ( ( 𝐼  +  ( 𝑗  ·  𝑁 ) )  mod  𝑃 )  =  0 ) |