| Step | Hyp | Ref | Expression | 
						
							| 1 |  | simpl1 |  |-  ( ( ( P e. Prime /\ N e. ZZ /\ ( N mod P ) =/= 0 ) /\ I e. ( 0 ..^ P ) ) -> P e. Prime ) | 
						
							| 2 |  | prmnn |  |-  ( P e. Prime -> P e. NN ) | 
						
							| 3 |  | zmodfzo |  |-  ( ( N e. ZZ /\ P e. NN ) -> ( N mod P ) e. ( 0 ..^ P ) ) | 
						
							| 4 | 2 3 | sylan2 |  |-  ( ( N e. ZZ /\ P e. Prime ) -> ( N mod P ) e. ( 0 ..^ P ) ) | 
						
							| 5 | 4 | ancoms |  |-  ( ( P e. Prime /\ N e. ZZ ) -> ( N mod P ) e. ( 0 ..^ P ) ) | 
						
							| 6 | 5 | 3adant3 |  |-  ( ( P e. Prime /\ N e. ZZ /\ ( N mod P ) =/= 0 ) -> ( N mod P ) e. ( 0 ..^ P ) ) | 
						
							| 7 |  | fzo1fzo0n0 |  |-  ( ( N mod P ) e. ( 1 ..^ P ) <-> ( ( N mod P ) e. ( 0 ..^ P ) /\ ( N mod P ) =/= 0 ) ) | 
						
							| 8 | 7 | simplbi2com |  |-  ( ( N mod P ) =/= 0 -> ( ( N mod P ) e. ( 0 ..^ P ) -> ( N mod P ) e. ( 1 ..^ P ) ) ) | 
						
							| 9 | 8 | 3ad2ant3 |  |-  ( ( P e. Prime /\ N e. ZZ /\ ( N mod P ) =/= 0 ) -> ( ( N mod P ) e. ( 0 ..^ P ) -> ( N mod P ) e. ( 1 ..^ P ) ) ) | 
						
							| 10 | 6 9 | mpd |  |-  ( ( P e. Prime /\ N e. ZZ /\ ( N mod P ) =/= 0 ) -> ( N mod P ) e. ( 1 ..^ P ) ) | 
						
							| 11 | 10 | adantr |  |-  ( ( ( P e. Prime /\ N e. ZZ /\ ( N mod P ) =/= 0 ) /\ I e. ( 0 ..^ P ) ) -> ( N mod P ) e. ( 1 ..^ P ) ) | 
						
							| 12 |  | simpr |  |-  ( ( ( P e. Prime /\ N e. ZZ /\ ( N mod P ) =/= 0 ) /\ I e. ( 0 ..^ P ) ) -> I e. ( 0 ..^ P ) ) | 
						
							| 13 |  | nnnn0modprm0 |  |-  ( ( P e. Prime /\ ( N mod P ) e. ( 1 ..^ P ) /\ I e. ( 0 ..^ P ) ) -> E. j e. ( 0 ..^ P ) ( ( I + ( j x. ( N mod P ) ) ) mod P ) = 0 ) | 
						
							| 14 | 1 11 12 13 | syl3anc |  |-  ( ( ( P e. Prime /\ N e. ZZ /\ ( N mod P ) =/= 0 ) /\ I e. ( 0 ..^ P ) ) -> E. j e. ( 0 ..^ P ) ( ( I + ( j x. ( N mod P ) ) ) mod P ) = 0 ) | 
						
							| 15 |  | elfzoelz |  |-  ( j e. ( 0 ..^ P ) -> j e. ZZ ) | 
						
							| 16 | 15 | zcnd |  |-  ( j e. ( 0 ..^ P ) -> j e. CC ) | 
						
							| 17 | 2 | anim1ci |  |-  ( ( P e. Prime /\ N e. ZZ ) -> ( N e. ZZ /\ P e. NN ) ) | 
						
							| 18 |  | zmodcl |  |-  ( ( N e. ZZ /\ P e. NN ) -> ( N mod P ) e. NN0 ) | 
						
							| 19 |  | nn0cn |  |-  ( ( N mod P ) e. NN0 -> ( N mod P ) e. CC ) | 
						
							| 20 | 17 18 19 | 3syl |  |-  ( ( P e. Prime /\ N e. ZZ ) -> ( N mod P ) e. CC ) | 
						
							| 21 | 20 | 3adant3 |  |-  ( ( P e. Prime /\ N e. ZZ /\ ( N mod P ) =/= 0 ) -> ( N mod P ) e. CC ) | 
						
							| 22 | 21 | adantr |  |-  ( ( ( P e. Prime /\ N e. ZZ /\ ( N mod P ) =/= 0 ) /\ I e. ( 0 ..^ P ) ) -> ( N mod P ) e. CC ) | 
						
							| 23 |  | mulcom |  |-  ( ( j e. CC /\ ( N mod P ) e. CC ) -> ( j x. ( N mod P ) ) = ( ( N mod P ) x. j ) ) | 
						
							| 24 | 16 22 23 | syl2anr |  |-  ( ( ( ( P e. Prime /\ N e. ZZ /\ ( N mod P ) =/= 0 ) /\ I e. ( 0 ..^ P ) ) /\ j e. ( 0 ..^ P ) ) -> ( j x. ( N mod P ) ) = ( ( N mod P ) x. j ) ) | 
						
							| 25 | 24 | oveq2d |  |-  ( ( ( ( P e. Prime /\ N e. ZZ /\ ( N mod P ) =/= 0 ) /\ I e. ( 0 ..^ P ) ) /\ j e. ( 0 ..^ P ) ) -> ( I + ( j x. ( N mod P ) ) ) = ( I + ( ( N mod P ) x. j ) ) ) | 
						
							| 26 | 25 | oveq1d |  |-  ( ( ( ( P e. Prime /\ N e. ZZ /\ ( N mod P ) =/= 0 ) /\ I e. ( 0 ..^ P ) ) /\ j e. ( 0 ..^ P ) ) -> ( ( I + ( j x. ( N mod P ) ) ) mod P ) = ( ( I + ( ( N mod P ) x. j ) ) mod P ) ) | 
						
							| 27 |  | elfzoelz |  |-  ( I e. ( 0 ..^ P ) -> I e. ZZ ) | 
						
							| 28 | 27 | zred |  |-  ( I e. ( 0 ..^ P ) -> I e. RR ) | 
						
							| 29 | 28 | adantl |  |-  ( ( ( P e. Prime /\ N e. ZZ /\ ( N mod P ) =/= 0 ) /\ I e. ( 0 ..^ P ) ) -> I e. RR ) | 
						
							| 30 | 29 | adantr |  |-  ( ( ( ( P e. Prime /\ N e. ZZ /\ ( N mod P ) =/= 0 ) /\ I e. ( 0 ..^ P ) ) /\ j e. ( 0 ..^ P ) ) -> I e. RR ) | 
						
							| 31 |  | zre |  |-  ( N e. ZZ -> N e. RR ) | 
						
							| 32 | 31 | 3ad2ant2 |  |-  ( ( P e. Prime /\ N e. ZZ /\ ( N mod P ) =/= 0 ) -> N e. RR ) | 
						
							| 33 | 32 | adantr |  |-  ( ( ( P e. Prime /\ N e. ZZ /\ ( N mod P ) =/= 0 ) /\ I e. ( 0 ..^ P ) ) -> N e. RR ) | 
						
							| 34 | 33 | adantr |  |-  ( ( ( ( P e. Prime /\ N e. ZZ /\ ( N mod P ) =/= 0 ) /\ I e. ( 0 ..^ P ) ) /\ j e. ( 0 ..^ P ) ) -> N e. RR ) | 
						
							| 35 | 15 | adantl |  |-  ( ( ( ( P e. Prime /\ N e. ZZ /\ ( N mod P ) =/= 0 ) /\ I e. ( 0 ..^ P ) ) /\ j e. ( 0 ..^ P ) ) -> j e. ZZ ) | 
						
							| 36 | 2 | nnrpd |  |-  ( P e. Prime -> P e. RR+ ) | 
						
							| 37 | 36 | 3ad2ant1 |  |-  ( ( P e. Prime /\ N e. ZZ /\ ( N mod P ) =/= 0 ) -> P e. RR+ ) | 
						
							| 38 | 37 | adantr |  |-  ( ( ( P e. Prime /\ N e. ZZ /\ ( N mod P ) =/= 0 ) /\ I e. ( 0 ..^ P ) ) -> P e. RR+ ) | 
						
							| 39 | 38 | adantr |  |-  ( ( ( ( P e. Prime /\ N e. ZZ /\ ( N mod P ) =/= 0 ) /\ I e. ( 0 ..^ P ) ) /\ j e. ( 0 ..^ P ) ) -> P e. RR+ ) | 
						
							| 40 |  | modaddmulmod |  |-  ( ( ( I e. RR /\ N e. RR /\ j e. ZZ ) /\ P e. RR+ ) -> ( ( I + ( ( N mod P ) x. j ) ) mod P ) = ( ( I + ( N x. j ) ) mod P ) ) | 
						
							| 41 | 30 34 35 39 40 | syl31anc |  |-  ( ( ( ( P e. Prime /\ N e. ZZ /\ ( N mod P ) =/= 0 ) /\ I e. ( 0 ..^ P ) ) /\ j e. ( 0 ..^ P ) ) -> ( ( I + ( ( N mod P ) x. j ) ) mod P ) = ( ( I + ( N x. j ) ) mod P ) ) | 
						
							| 42 |  | zcn |  |-  ( N e. ZZ -> N e. CC ) | 
						
							| 43 | 42 | adantr |  |-  ( ( N e. ZZ /\ j e. ( 0 ..^ P ) ) -> N e. CC ) | 
						
							| 44 | 16 | adantl |  |-  ( ( N e. ZZ /\ j e. ( 0 ..^ P ) ) -> j e. CC ) | 
						
							| 45 | 43 44 | mulcomd |  |-  ( ( N e. ZZ /\ j e. ( 0 ..^ P ) ) -> ( N x. j ) = ( j x. N ) ) | 
						
							| 46 | 45 | ex |  |-  ( N e. ZZ -> ( j e. ( 0 ..^ P ) -> ( N x. j ) = ( j x. N ) ) ) | 
						
							| 47 | 46 | 3ad2ant2 |  |-  ( ( P e. Prime /\ N e. ZZ /\ ( N mod P ) =/= 0 ) -> ( j e. ( 0 ..^ P ) -> ( N x. j ) = ( j x. N ) ) ) | 
						
							| 48 | 47 | adantr |  |-  ( ( ( P e. Prime /\ N e. ZZ /\ ( N mod P ) =/= 0 ) /\ I e. ( 0 ..^ P ) ) -> ( j e. ( 0 ..^ P ) -> ( N x. j ) = ( j x. N ) ) ) | 
						
							| 49 | 48 | imp |  |-  ( ( ( ( P e. Prime /\ N e. ZZ /\ ( N mod P ) =/= 0 ) /\ I e. ( 0 ..^ P ) ) /\ j e. ( 0 ..^ P ) ) -> ( N x. j ) = ( j x. N ) ) | 
						
							| 50 | 49 | oveq2d |  |-  ( ( ( ( P e. Prime /\ N e. ZZ /\ ( N mod P ) =/= 0 ) /\ I e. ( 0 ..^ P ) ) /\ j e. ( 0 ..^ P ) ) -> ( I + ( N x. j ) ) = ( I + ( j x. N ) ) ) | 
						
							| 51 | 50 | oveq1d |  |-  ( ( ( ( P e. Prime /\ N e. ZZ /\ ( N mod P ) =/= 0 ) /\ I e. ( 0 ..^ P ) ) /\ j e. ( 0 ..^ P ) ) -> ( ( I + ( N x. j ) ) mod P ) = ( ( I + ( j x. N ) ) mod P ) ) | 
						
							| 52 | 26 41 51 | 3eqtrrd |  |-  ( ( ( ( P e. Prime /\ N e. ZZ /\ ( N mod P ) =/= 0 ) /\ I e. ( 0 ..^ P ) ) /\ j e. ( 0 ..^ P ) ) -> ( ( I + ( j x. N ) ) mod P ) = ( ( I + ( j x. ( N mod P ) ) ) mod P ) ) | 
						
							| 53 | 52 | eqeq1d |  |-  ( ( ( ( P e. Prime /\ N e. ZZ /\ ( N mod P ) =/= 0 ) /\ I e. ( 0 ..^ P ) ) /\ j e. ( 0 ..^ P ) ) -> ( ( ( I + ( j x. N ) ) mod P ) = 0 <-> ( ( I + ( j x. ( N mod P ) ) ) mod P ) = 0 ) ) | 
						
							| 54 | 53 | rexbidva |  |-  ( ( ( P e. Prime /\ N e. ZZ /\ ( N mod P ) =/= 0 ) /\ I e. ( 0 ..^ P ) ) -> ( E. j e. ( 0 ..^ P ) ( ( I + ( j x. N ) ) mod P ) = 0 <-> E. j e. ( 0 ..^ P ) ( ( I + ( j x. ( N mod P ) ) ) mod P ) = 0 ) ) | 
						
							| 55 | 14 54 | mpbird |  |-  ( ( ( P e. Prime /\ N e. ZZ /\ ( N mod P ) =/= 0 ) /\ I e. ( 0 ..^ P ) ) -> E. j e. ( 0 ..^ P ) ( ( I + ( j x. N ) ) mod P ) = 0 ) | 
						
							| 56 | 55 | ex |  |-  ( ( P e. Prime /\ N e. ZZ /\ ( N mod P ) =/= 0 ) -> ( I e. ( 0 ..^ P ) -> E. j e. ( 0 ..^ P ) ( ( I + ( j x. N ) ) mod P ) = 0 ) ) |