Description: For any prime number and for any positive integer less than this prime number, there is a unique modular inverse of this positive integer. (Contributed by Alexander van der Vekens, 12-May-2018)
Ref | Expression | ||
---|---|---|---|
Assertion | reumodprminv | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpl | |
|
2 | elfzoelz | |
|
3 | 2 | adantl | |
4 | prmnn | |
|
5 | prmz | |
|
6 | fzoval | |
|
7 | 5 6 | syl | |
8 | 7 | eleq2d | |
9 | 8 | biimpa | |
10 | fzm1ndvds | |
|
11 | 4 9 10 | syl2an2r | |
12 | eqid | |
|
13 | 12 | modprminv | |
14 | 13 | simpld | |
15 | 13 | simprd | |
16 | 1eluzge0 | |
|
17 | fzss1 | |
|
18 | 16 17 | mp1i | |
19 | 18 | sseld | |
20 | 19 | 3ad2ant1 | |
21 | 20 | imdistani | |
22 | 12 | modprminveq | |
23 | 22 | biimpa | |
24 | 23 | eqcomd | |
25 | 24 | expr | |
26 | 21 25 | syl | |
27 | 26 | ralrimiva | |
28 | 14 15 27 | jca32 | |
29 | 1 3 11 28 | syl3anc | |
30 | oveq2 | |
|
31 | 30 | oveq1d | |
32 | 31 | eqeq1d | |
33 | eqeq1 | |
|
34 | 33 | imbi2d | |
35 | 34 | ralbidv | |
36 | 32 35 | anbi12d | |
37 | 36 | rspcev | |
38 | 29 37 | syl | |
39 | oveq2 | |
|
40 | 39 | oveq1d | |
41 | 40 | eqeq1d | |
42 | 41 | reu8 | |
43 | 38 42 | sylibr | |