| Step | Hyp | Ref | Expression | 
						
							| 1 |  | modprminv.1 |  |-  R = ( ( A ^ ( P - 2 ) ) mod P ) | 
						
							| 2 |  | elfzelz |  |-  ( S e. ( 0 ... ( P - 1 ) ) -> S e. ZZ ) | 
						
							| 3 |  | zmulcl |  |-  ( ( A e. ZZ /\ S e. ZZ ) -> ( A x. S ) e. ZZ ) | 
						
							| 4 | 2 3 | sylan2 |  |-  ( ( A e. ZZ /\ S e. ( 0 ... ( P - 1 ) ) ) -> ( A x. S ) e. ZZ ) | 
						
							| 5 |  | modprm1div |  |-  ( ( P e. Prime /\ ( A x. S ) e. ZZ ) -> ( ( ( A x. S ) mod P ) = 1 <-> P || ( ( A x. S ) - 1 ) ) ) | 
						
							| 6 | 4 5 | sylan2 |  |-  ( ( P e. Prime /\ ( A e. ZZ /\ S e. ( 0 ... ( P - 1 ) ) ) ) -> ( ( ( A x. S ) mod P ) = 1 <-> P || ( ( A x. S ) - 1 ) ) ) | 
						
							| 7 | 6 | expr |  |-  ( ( P e. Prime /\ A e. ZZ ) -> ( S e. ( 0 ... ( P - 1 ) ) -> ( ( ( A x. S ) mod P ) = 1 <-> P || ( ( A x. S ) - 1 ) ) ) ) | 
						
							| 8 | 7 | 3adant3 |  |-  ( ( P e. Prime /\ A e. ZZ /\ -. P || A ) -> ( S e. ( 0 ... ( P - 1 ) ) -> ( ( ( A x. S ) mod P ) = 1 <-> P || ( ( A x. S ) - 1 ) ) ) ) | 
						
							| 9 | 8 | pm5.32d |  |-  ( ( P e. Prime /\ A e. ZZ /\ -. P || A ) -> ( ( S e. ( 0 ... ( P - 1 ) ) /\ ( ( A x. S ) mod P ) = 1 ) <-> ( S e. ( 0 ... ( P - 1 ) ) /\ P || ( ( A x. S ) - 1 ) ) ) ) | 
						
							| 10 | 1 | prmdiveq |  |-  ( ( P e. Prime /\ A e. ZZ /\ -. P || A ) -> ( ( S e. ( 0 ... ( P - 1 ) ) /\ P || ( ( A x. S ) - 1 ) ) <-> S = R ) ) | 
						
							| 11 | 9 10 | bitrd |  |-  ( ( P e. Prime /\ A e. ZZ /\ -. P || A ) -> ( ( S e. ( 0 ... ( P - 1 ) ) /\ ( ( A x. S ) mod P ) = 1 ) <-> S = R ) ) |