Description: If an integer minus 1 is divisible by a prime number, then the integer to the power of the prime number minus 2 is 1 modulo the prime number. (Contributed by Alexander van der Vekens, 30-Aug-2018)
Ref | Expression | ||
---|---|---|---|
Assertion | powm2modprm | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpll | |
|
2 | simpr | |
|
3 | 2 | adantr | |
4 | m1dvdsndvds | |
|
5 | 4 | imp | |
6 | eqid | |
|
7 | 6 | modprminv | |
8 | simpr | |
|
9 | 8 | eqcomd | |
10 | 7 9 | syl | |
11 | 1 3 5 10 | syl3anc | |
12 | modprm1div | |
|
13 | 12 | biimpar | |
14 | 13 | oveq1d | |
15 | 14 | oveq1d | |
16 | zre | |
|
17 | 16 | ad2antlr | |
18 | prmm2nn0 | |
|
19 | 18 | anim1ci | |
20 | 19 | adantr | |
21 | zexpcl | |
|
22 | 20 21 | syl | |
23 | prmnn | |
|
24 | 23 | adantr | |
25 | 24 | adantr | |
26 | 22 25 | zmodcld | |
27 | 26 | nn0zd | |
28 | 23 | nnrpd | |
29 | 28 | adantr | |
30 | 29 | adantr | |
31 | modmulmod | |
|
32 | 17 27 30 31 | syl3anc | |
33 | 19 21 | syl | |
34 | 33 24 | zmodcld | |
35 | 34 | nn0cnd | |
36 | 35 | mullidd | |
37 | 36 | oveq1d | |
38 | 37 | adantr | |
39 | reexpcl | |
|
40 | 16 18 39 | syl2anr | |
41 | 40 29 | jca | |
42 | 41 | adantr | |
43 | modabs2 | |
|
44 | 42 43 | syl | |
45 | 38 44 | eqtrd | |
46 | 15 32 45 | 3eqtr3d | |
47 | 11 46 | eqtr2d | |
48 | 47 | ex | |