| Step | Hyp | Ref | Expression | 
						
							| 1 |  | simpll |  | 
						
							| 2 |  | simpr |  | 
						
							| 3 | 2 | adantr |  | 
						
							| 4 |  | m1dvdsndvds |  | 
						
							| 5 | 4 | imp |  | 
						
							| 6 |  | eqid |  | 
						
							| 7 | 6 | modprminv |  | 
						
							| 8 |  | simpr |  | 
						
							| 9 | 8 | eqcomd |  | 
						
							| 10 | 7 9 | syl |  | 
						
							| 11 | 1 3 5 10 | syl3anc |  | 
						
							| 12 |  | modprm1div |  | 
						
							| 13 | 12 | biimpar |  | 
						
							| 14 | 13 | oveq1d |  | 
						
							| 15 | 14 | oveq1d |  | 
						
							| 16 |  | zre |  | 
						
							| 17 | 16 | ad2antlr |  | 
						
							| 18 |  | prmm2nn0 |  | 
						
							| 19 | 18 | anim1ci |  | 
						
							| 20 | 19 | adantr |  | 
						
							| 21 |  | zexpcl |  | 
						
							| 22 | 20 21 | syl |  | 
						
							| 23 |  | prmnn |  | 
						
							| 24 | 23 | adantr |  | 
						
							| 25 | 24 | adantr |  | 
						
							| 26 | 22 25 | zmodcld |  | 
						
							| 27 | 26 | nn0zd |  | 
						
							| 28 | 23 | nnrpd |  | 
						
							| 29 | 28 | adantr |  | 
						
							| 30 | 29 | adantr |  | 
						
							| 31 |  | modmulmod |  | 
						
							| 32 | 17 27 30 31 | syl3anc |  | 
						
							| 33 | 19 21 | syl |  | 
						
							| 34 | 33 24 | zmodcld |  | 
						
							| 35 | 34 | nn0cnd |  | 
						
							| 36 | 35 | mullidd |  | 
						
							| 37 | 36 | oveq1d |  | 
						
							| 38 | 37 | adantr |  | 
						
							| 39 |  | reexpcl |  | 
						
							| 40 | 16 18 39 | syl2anr |  | 
						
							| 41 | 40 29 | jca |  | 
						
							| 42 | 41 | adantr |  | 
						
							| 43 |  | modabs2 |  | 
						
							| 44 | 42 43 | syl |  | 
						
							| 45 | 38 44 | eqtrd |  | 
						
							| 46 | 15 32 45 | 3eqtr3d |  | 
						
							| 47 | 11 46 | eqtr2d |  | 
						
							| 48 | 47 | ex |  |