Metamath Proof Explorer


Theorem madeun

Description: The made set is the union of the old set and the new set. (Contributed by Scott Fenton, 9-Oct-2024)

Ref Expression
Assertion madeun Could not format assertion : No typesetting found for |- ( _Made ` A ) = ( ( _Old ` A ) u. ( _New ` A ) ) with typecode |-

Proof

Step Hyp Ref Expression
1 newval Could not format ( _New ` A ) = ( ( _Made ` A ) \ ( _Old ` A ) ) : No typesetting found for |- ( _New ` A ) = ( ( _Made ` A ) \ ( _Old ` A ) ) with typecode |-
2 1 uneq2i Could not format ( ( _Old ` A ) u. ( _New ` A ) ) = ( ( _Old ` A ) u. ( ( _Made ` A ) \ ( _Old ` A ) ) ) : No typesetting found for |- ( ( _Old ` A ) u. ( _New ` A ) ) = ( ( _Old ` A ) u. ( ( _Made ` A ) \ ( _Old ` A ) ) ) with typecode |-
3 oldssmade Could not format ( _Old ` A ) C_ ( _Made ` A ) : No typesetting found for |- ( _Old ` A ) C_ ( _Made ` A ) with typecode |-
4 undif Could not format ( ( _Old ` A ) C_ ( _Made ` A ) <-> ( ( _Old ` A ) u. ( ( _Made ` A ) \ ( _Old ` A ) ) ) = ( _Made ` A ) ) : No typesetting found for |- ( ( _Old ` A ) C_ ( _Made ` A ) <-> ( ( _Old ` A ) u. ( ( _Made ` A ) \ ( _Old ` A ) ) ) = ( _Made ` A ) ) with typecode |-
5 3 4 mpbi Could not format ( ( _Old ` A ) u. ( ( _Made ` A ) \ ( _Old ` A ) ) ) = ( _Made ` A ) : No typesetting found for |- ( ( _Old ` A ) u. ( ( _Made ` A ) \ ( _Old ` A ) ) ) = ( _Made ` A ) with typecode |-
6 2 5 eqtr2i Could not format ( _Made ` A ) = ( ( _Old ` A ) u. ( _New ` A ) ) : No typesetting found for |- ( _Made ` A ) = ( ( _Old ` A ) u. ( _New ` A ) ) with typecode |-