Metamath Proof Explorer


Theorem map1

Description: Set exponentiation: ordinal 1 to any set is equinumerous to ordinal 1. Exercise 4.42(b) of Mendelson p. 255. (Contributed by NM, 17-Dec-2003) (Proof shortened by AV, 17-Jul-2022)

Ref Expression
Assertion map1 AV1𝑜A1𝑜

Proof

Step Hyp Ref Expression
1 df1o2 1𝑜=
2 1 oveq1i 1𝑜A=A
3 0ex V
4 snmapen1 VAVA1𝑜
5 3 4 mpan AVA1𝑜
6 2 5 eqbrtrid AV1𝑜A1𝑜