Description: Set exponentiation: ordinal 1 to any set is equinumerous to ordinal 1. Exercise 4.42(b) of Mendelson p. 255. (Contributed by NM, 17-Dec-2003) (Proof shortened by AV, 17-Jul-2022)
Ref | Expression | ||
---|---|---|---|
Assertion | map1 | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df1o2 | |
|
2 | 1 | oveq1i | |
3 | 0ex | |
|
4 | snmapen1 | |
|
5 | 3 4 | mpan | |
6 | 2 5 | eqbrtrid | |