Metamath Proof Explorer


Theorem en2sn

Description: Two singletons are equinumerous. (Contributed by NM, 9-Nov-2003) Avoid ax-pow . (Revised by BTernaryTau, 31-Jul-2024) Avoid ax-un . (Revised by BTernaryTau, 25-Sep-2024)

Ref Expression
Assertion en2sn A C B D A B

Proof

Step Hyp Ref Expression
1 snex A B V
2 f1osng A C B D A B : A 1-1 onto B
3 f1oeq1 f = A B f : A 1-1 onto B A B : A 1-1 onto B
4 3 spcegv A B V A B : A 1-1 onto B f f : A 1-1 onto B
5 1 2 4 mpsyl A C B D f f : A 1-1 onto B
6 snex A V
7 snex B V
8 breng A V B V A B f f : A 1-1 onto B
9 6 7 8 mp2an A B f f : A 1-1 onto B
10 5 9 sylibr A C B D A B